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Highlights

The most important contributions from this research project are listed below.

• Development of a novel GPU-accelerated Filter-Matrix Lattice Boltzmann Method (FM-LBM) algorithm
for thermal hydraulics and precursor transport simulations. This algorithm demonstrates computational
performance comparable to other GPU-optimized LBM algorithms reported in the literature. Additionally,
it achieves a performance gain of approximately a factor of 1000 compared to serial implementations of
the LBM algorithm for similar applications.

• Integration of the developed FM-LBM algorithm with the discontinuous Galerkin finite element method-
based Phantom-SN algorithm for neutron transport calculations. This integration resulted in a multi-
physics simulation tool suitable for molten salt fast reactor core simulations. The tool was successfully
validated under both steady-state and transient conditions against well-established benchmark codes
from the literature.

• A forward-looking and comprehensive discussion on potential extensions and improvements to the de-
veloped multiphysics simulation tool, aimed at achieving even more realistic simulations of molten salt
fast reactor cores.
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Abstract

This research focuses on developing a novel Thermal-Hydraulics-Neutronics (NTH) simulation tool to cap-
ture the complex multiphysics inside an Molten Salt Fast Reactor (MSFR) core. This is achieved by devel-
oping a GPU-accelerated Filter Matrix Lattice Boltzmann Method (FM-LBM) algorithm to simulate thermal
hydraulics and precursor transport and integrating this tool with the existing Discontinuous-Galerkin Finite
Element Method (DG-FEM) based Phantom-SN algorithm for neutronics simulation.

The FM-LBM algorithm simulates the evolution of thermal fluids through alternating propagation and col-
lision steps at each grid point within a lattice grid. In our implementation, we adopt the double distribution
function approach, wherein distinct distribution functions are defined for the velocity, temperature, and pre-
cursor fields, which interact via convective and source terms during the collision step. Due to its inherently
symmetric computational steps performed at each lattice node across the domain, the FM-LBM algorithm is
particularly well-suited for parallel computation. As a result, this study implements the algorithm using the
Julia-CUDA framework, allowing us to leverage the computational power of NVIDIA GPUs. The Julia-CUDA
framework was specifically selected for its high-level syntax, superior computational performance compared
to other scientific languages, and its flexibility in GPU programming. This flexibility enables the optimization of
GPU performance through low-level memory management, effectively utilizing the hierarchical memory archi-
tecture of NVIDIA GPUs. Consequently, a highly optimized GPU-accelerated FM-LBM algorithm is developed,
tailored for thermal fluid simulation and precursor transport.

In the second stage of this research, the FM-LBM algorithm is integrated with the existing Phantom-SN

algorithm for neutronics simulations, written in Fortran-90. This integration is facilitated by enabling interaction
between the Julia-based FM-LBM executable and the Fortran-90 code through system calls via the command
line interface. The difference in spatial discretization between the two algorithms is addressed by applying
interpolation techniques to the FM-LBM lattice grid and subsequently transforming the interpolated variables
into coefficients of basis functions within the DG-FEM framework using Galerkin projection. The execution
order and information exchange between the two algorithms are managed through separate implementations
for steady-state and transient simulations. In steady-state simulations, the power method is employed to solve
the keff eigenvalue problem. For transient simulations, the algorithm proceeds as an alternation between the
FM-LBM algorithm and Phantom-SN , with each simulating a single time step in sequence.

The developed NTH tool is benchmarked against literature data in three stages. First, the FM-LBM code
is independently validated by simulating a thermal fluid flow in a side-heated cavity. The maximum velocities
along the horizontal and vertical centerlines are compared with reference results from the literature, showing
average discrepancies below 1%, indicating satisfactory performance of the FM-LBM algorithm. In the second
and third stages, the full multiphysics simulation tool is benchmarked using the Tiberga benchmark case under
steady-state and transient conditions, respectively. The steady-state study adopts a step-by-step approach
to progressively couple the physical fields. At each step, the relevant physical variables are evaluated along
the centerlines of the domain. For all but one step, the steady-state results showed average discrepancies
below 1% when compared to benchmark data. For the transient analysis, the benchmark evaluates the sys-
tem’s power output response to a perturbation in the heat sink term within the frequency domain. The study
examines normalized gains and phase shifts in the power output across a range of perturbation frequencies.
Our simulation results align closely with the benchmark data, demonstrating that the fully coupled NTH tool
provides accurate simulations for both steady-state and transient scenarios.

Additionally, the performance of the FM-LBM algorithm was evaluated by comparing the number of Mil-
lion Lattice Updates Per Second (MLUPS) it achieves with results from literature focused on optimizing GPU
implementations for LBM. Our solution achieved 390 MLUPS in the side-heated cavity benchmark case us-
ing double-precision floating-point numbers. This performance is considered satisfactory, as studies in the
literature report performance close to 1200 MLUPS. These studies, however, consider simplified conditions,
where they simulate only the velocity field, whereas our approach simulates both velocity and temperature
fields. Moreover, these studies employ simplified collision operators, while our implementation utilizes the
filter matrix operator, which is considered as the most computationally intensive step in our algorithm.

Finally, a forward looking discussion is introduced in which extension of the simulation tool are proposed to
advance towards realistic MSFR core simulations, such as the integration of turbulence modeling by including
Large Eddy Simulation (LES) into the LBM framework, and by implementing the actual geometry of an MSFR
by simulating a segment of the cylindrical design of the MSFR reactor core.
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1
Introduction

“Much more likely than not, global warming is upon us. We should expect weather patterns to
continue to change and the seas to continue to rise, in an ever worsening pattern, in our lifetimes
and on into our grandchildren’s. The question has graduated from the scientific community: climate
change is a major social, economic, and political issue. Nearly everyone in the world will need to
adjust. It will be hardest for the poorer groups and nations among us, but nobody is exempt”

– Spencer R. Weart

In his book The Discovery of Global Warming [113], Spencer R. Weart provides a comprehensive overview
of the scientific history surrounding global warming and its connection to the rise in atmospheric greenhouse
gases due to the industrialization of modern society. The book describes how pioneering climate scientists
and key scientific studies led to a consensus within the scientific community on the causal relationship be-
tween human activities and climate change. In response to these findings, numerous geopolitical efforts have
been undertaken to reduce global greenhouse gas emissions, primarily facilitated through the UN Framework
Convention on Climate Change (UNFCCC), an international treaty signed by 197 countries in 1992. The
UNFCCC’s supreme governing body, the Conference of the Parties (COP), holds an annual forum where
governments debate the international efforts made to mitigate climate change. These meetings have led to
significant international agreements on emission-reduction commitments, including the Kyoto Protocol in 2005
[81] and the Paris Agreement in 2015 [2]. The latter established the global goal of achieving net-zero emis-
sions by 2050 and aimed to limit global warming to 1.5°C above pre-industrial levels, a threshold generally
regarded as the upper limit beyond which we risk experiencing severe and irreversible effects on the Earth’s
ecosystems [26].

With the latest report from the Intergovernmental Panel on Climate Change (IPCC) estimating the Equilibrium
Climate Sensitivity (ECS)1 at 3°C [59], the demand for renewable, carbon-free energy sources such as wind,
solar, and hydroelectric power has never been greater. While these renewable sources are effective andwidely
deployed, their energy output remains dependent on environmental and weather conditions. Consequently,
nuclear energy is emerging as an increasingly attractive option for sustainable power generation, due to its
ability to produce continuous, reliable energy regardless of external factors. In response to this need, the
Generation IV International Forum (GIF) was established in 2001 as a collaborative research initiative aimed
at developing advanced nuclear reactors with improved sustainability, safety, and reliability [114]. Six reactor
designs have been selected for further research under the Generation IV program [51], one of which is the
Molten Salt Reactor, the focus of this research.

1.1. The Molten Salt Fast Reactor
The Molten Salt Reactor (MSR) refers to a family of reactor designs that are uniquely characterized by the
use of a fluid molten salt mixture, which functions as both the fuel and the coolant of the system [4]. Liquid-
fueled reactor designs based on molten salt offer enhanced safety, sustainability, and waste management
compared to conventional solid-fuel reactors, making them promising candidates to fulfill the goals set by the
GIF. One such design is the Molten Salt Fast Reactor (MSFR), in which the fuel salt contains fertile isotopes.

1ECS refers to the projected long-term increase in global surface temperature resulting from a doubling of atmospheric carbon dioxide
concentrations, once the climate system has reached equilibrium.

1
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Combined with the fast neutron spectrum in which the reactor operates, this configuration enables a breeding
mechanism. The MSFR reactor design is still in the conceptual phase, with most design decisions guided by
numerical modeling results. The reference MSFR model used in these simulations is a 3 GWth reactor that
employs a molten binary fluoride salt, composed of 77.5 mol% lithium fluoride (LiF ), 20 mol% fertile thorium
fluoride (ThF4), and 2.5 mol% fissile uranium fluoride (UF4) [4, 38, 83]. The reactor system comprises three
circuits: the fuel circuit, the intermediate circuit, and the power conversion circuit. The fuel circuit, shown in
Figure 1.1, is regarded as the reactor core. It has a toroidal shape with inner and outer radii of 1.05 m and
1.41 m, respectively, and a height of 1.6 m at the center, increasing to 2.25 m at the boundary [4, 83]. The
fuel salt inside the reactor core occupies a total volume of 18 m3 and operates at a maximum temperature
of 750°C. It flows through 16 segments of heat exchangers and pumps symmetrically arranged around the
core, with a total circulation time of approximately 3 to 4 seconds [4, 83]. These heat exchangers and pumps
facilitate the transfer of thermal energy from the fuel circuit to the intermediate circuit.

Figure 1.1: Overview of the MSFR reactor core and its components. The fuel circuit contains molten salt that serves as both the
fuel and coolant. The fuel salt circulates through 16 segments of symmetrically placed heat exchangers and pumps around the
core. Gaseous and metallic insoluble fission products are removed from the reactor core by injecting helium bubbles, which are
recaptured at the gas separator. This separator also collects small amounts of fuel salt for continuous reprocessing. The core
includes reflectors on the top and bottom walls to enhance neutron population, and a fertile blanket on the annular wall to increase
the reactor’s breeding ratio. A passive safety system, consisting of a draining mechanism, activates if the core overheats, diverting
the fuel salt into sub-critical storage tanks positioned underground, where it is safely neutralized.

Figure 1.1 illustrates additional key features of the MSFR reactor core. For instance, the core is surrounded
by neutron reflectors at both the top and bottom to prevent neutron leakage from the reactor core, as well
as by an annular fertile blanket made of LiF - ThF4 on the sides, which increases the reactor’s breeding
ratio [4, 83]. Moreover, helium bubbles are injected into the core via a bubble injector to capture gaseous
and metallic insoluble fission products, thereby purifying the fuel salt. These bubbles are then recaptured
at the gas separator, which also extracts a small volume of fuel salt daily for continuous reprocessing. This
continuous reprocessing allows for real-time adjustments to the fuel composition (i.e., the ratio of fertile to
fissile materials) and the removal of neutron-absorbing fission products, such as xenon, without requiring a
reactor shutdown [46, 58, 84]. Additionally, the reactor incorporates a completely passive safety system by
connecting the fuel circuit to a salt-draining system. The valve of this draining system is sealed with a freeze
plug, which is actively cooled under normal operating conditions. In the event of an accident where excessive
heat cannot be managed by the cooling system, the freeze plug melts, triggering the draining system. This
allows gravitational forces to transfer the fuel salt into geometrically sub-critical tanks positioned beneath the
reactor core, thereby neutralizing the fuel salt [58, 95, 109]. Finally, the outer core structure is fully enclosed
by thick neutron reflectors, which reflect 99% of the neutrons back into the core. These reflectors themselves
are then surrounded by a 20 cm thick layer of boron carbide (B4C) to absorb any remaining neutrons that
escape [4, 83].

In addition to the continuous reprocessing of fuel salt without requiring a reactor shutdown and the passive
safety system facilitated by the salt-draining mechanism, the fluid-fuel reactor design of the MSFR offers sev-
eral other advantages related to safety, sustainability, and reliability. The most notable benefit is the strong
negative temperature feedback effect [46, 58, 84]. Due to the large negative feedback coefficients associated
with both density feedback (arising from the thermal expansion of the fuel salt) and Doppler feedback, a total



1.2. Existing Literature 3

reactivity feedback of -5 pcm/K is achieved [4]. This inherent negative feedback loop causes the system to
stabilize itself when heat production increases within the core. Compared to solid-fuel reactors, this negative
feedback effects act much more rapidly. This is due to the density feedback effect, which acts almost instan-
taneous, given that there is no heat transfer delay, as the heat is generated directly within the fuel salt mixture.
Consequently, reactivity in the MSFR reactor core can be entirely controlled through temperature regulation
and by dissolving helium bubbles in the fuel salt, eliminating the need for control rods [4, 58, 92]. Additional
safety and sustainability advantages include:

• The MSFR operates under low pressures due to the high boiling point and low vapor pressure of
the fuel salt. This reduces the pressure on reactor materials, lowering the risk of pipe ruptures and
other mechanical failures [58, 92].

• The continuous circulation of fuel salt ensures uniform irradiation and burnup, leading to more
efficient fuel utilization compared to solid-fuel reactor designs [84, 92].

• The thorium breeding fuel cycle leads to substantially lower production of long-lived radioactive
actinides, such as plutonium. In solid-fuel reactor designs, the fuel must be replaced long before
achieving complete burnup. However, in the MSFR, continuous reprocessing of the fuel salt allows
these elements to remain in the salt until nearly all are burned by the fast neutron spectrum. Con-
sequently, the long-term radiotoxicity of the nuclear waste is greatly reduced in the MSFR design,
with waste remaining hazardous for only a few centuries [29, 46]. Moreover, the MSFR reactor de-
sign also has the potential to burn away long-lived actinide-containing waste from other reactors,
reducing its radioactivity to similar levels of only a few hundred years [29, 58].

• Thorium is approximately four times more abundant than uranium and is already produced as a
by-product of rare-earth mining, making fuel acquisition easier and more sustainable [29, 58].

Most of these safety and sustainability advantages of the MSFR reactor design stem directly from the use
of a liquideous fuel in the reactor core. However, this fluid-fuel design also introduces significant challenges
in the design process, particularly when simulating the full multiphysics behavior of the reactor core. Since
various physical fields are now strongly interrelated, conventional codes used for describing the neutronics
behavior in solid-fuel reactors are inadequate for MSFR cores. These codes fail to account for the additional
processes involving thermal hydraulics and precursor flow. As a result, current literature on numerical methods
for MSFR core calculations, such as [92], aims to develop new simulation tools focused on combining thermal
hydraulics and neutronics simulations into a single model. This research aims to contribute to this literature by
introducing a new multiphysics simulation tool for the MSFR reactor cores, where the thermal flow simulation
part is facilitated through GPU-accelerated Lattice Boltzmann techniques.

1.2. Existing Literature
This thesis aims to develop a so-called neutronics-thermal-hydraulics (NTH) simulation tool to model the com-
plete multiphysics behavior of an MSFR reactor core. Broadly, this tool consists of three components: a
GPU-accelerated Filter-Matrix Lattice Boltzmann Method (FM-LBM) code for thermal hydraulics simulations,
a Discontinuous Galerkin Finite Element Method (DG-FEM) based code for neutronics simulations, and the
coupling mechanism between these codes. The GPU-accelerated FM-LBM code for fluid simulation, along
with its integration with the neutronics code, has been fully developed in this research. In contrast, an in-house
neutron transport code, Phantom-SN , is used for DG-FEM-based neutronic calculations. Consequently, this
literature review will only focus on studies related to Lattice Boltzmann techniques for thermal fluid simulation
and the development of NTH simulation tools for MSFR reactor core simulations, as research specifically on
the topic of DG-FEM-based neutronics simulations is not directly relevant to this work.

1.2.1. LBM for Thermal Fluid Simulation
The Lattice Boltzmann Method (LBM) is a numerical technique that has gained widespread use and attention
since the 1980s due to its straightforward structure and suitability for parallel implementation [55]. The book
The Lattice Boltzmann Method by Krüger et al. [55] provides a thorough summary of LBM fundamentals, aim-
ing to organize and standardize knowledge collected from scientific literature over the past several decades.
This book is used as the main reference for the implementation of LBM in this study.

One of the key advancements in LBM was introduced by He et al. [47], who proposed the double distribution
function (DDF) approach tomodel temperature and velocity fields simultaneously. This method solves both the
momentum and energy equations within the LBM framework, allowing the simulation of thermal fluids. Since
then, many studies have adapted the DDF approach to model other convective flows. For example, Chatterjee
et al. [19] introduced a distribution function for enthalpy instead of temperature to simulate the energy equation.
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Furthermore, Chatterjee et al. also use the DDF approach to perform magnetohydrodynamics simulations
by adding a distribution function for the magnetic field along with the velocity and temperature fields. More
recently, Wang et al. [110] used the DDFmethod to simulate convective precursor flow by adding a distribution
function for precursor density. These studies provide insights into applying the DDF approach in this work,
enabling the modeling of velocity, temperature, and precursor fields within the LBM framework.

In contrast to conventional LBM implementations, which often use single or multiple relaxation time collision
operators, this research employs the Filter-Matrix Lattice Boltzmann Method (FM-LBM), first introduced by
Somers [86]. The FM-LBM is an extension of the conventional LBM that filters out non-physical terms intro-
duced during the discretization of the governing equations, thereby enhancing the algorithm’s stability. Zhuo
et al. [121, 122] demonstrated how the FM-LBM can be applied to velocity and temperature fields in both 2D
and 3D thermal fluid simulations. To our knowledge, the FM-LBM approach has not yet been applied to the
precursor field, however, this can be achieved through a straightforward extension, as the filter matrix operator
for precursor density can be implemented analogously to that of the temperature field.

1.2.2. GPU Accelerated LBM Simulation Techniques
One key advantage of LBM algorithms over other numerical methods for fluid simulation is its scalability
potential through parallel computing. The LBM algorithm consists of repeated alternations between simple
calculations performed locally at each grid point in the spatial discretization, making it highly suitable for GPU
computation. In 2003, Li et al. [62] demonstrated how general-purpose computing on GPUs could be used to
efficiently perform LBM calculations using the OpenGL graphics API. Since then, many studies have investi-
gated optimizations for implementing LBM on GPU hardware to achieve high performance. Notably, Habich
et al. [43] and Tölke [97] illustrated how shared memory — a GPU hardware feature that provides rapid ac-
cess to short-lived memory — can be leveraged to accelerate the LBM algorithm by an order of magnitude.
Additionally, Delbosc et al. [24] and Tran et al. [98] showed how optimizing data layout can enhance mem-
ory coalescence, further improving the performance of LBM on GPUs. More recent studies, such as Xu et
al. [116], have extended these optimizations to multi-GPU applications, enabling LBM simulations to achieve
exceptionally high computational performance.

1.2.3. Multiphysics Simulation Tools for MSFR Calculations
Numerous studies have developed NTH simulation tools for MSFR core calculations. Wang et al. [110],
for example, created a complete NTH simulation tool solely using LBM techniques, introducing additional
distribution functions for precursor density and neutron flux. While this study provides valuable insights into
using LBM for modeling precursor flow, its neutronics simulation relies on the neutron diffusion approximation.
The motivation behind Wang et al.’s approach is to avoid external data exchange and interpolation that would
be necessary if separate models were used for thermal-hydraulics and neutronics simulations. However, the
study acknowledges the limitations in accuracy introduced by the diffusion approximation and highlights the
need for neutron transport calculations to capture more complex neutronic behaviors. Other studies have
similarly developed NTH simulation tools using the diffusion approximation, however, these tools often rely on
multiphysics software packages such as OpenFOAM [36, 48] and COMSOL [13] for their simulations.

In contrast, this research adopts a more advanced approach by coupling the FM-LBM code for thermal-
hydraulics simulations with a neutronics code specifically designed to solve the Neutron Transport Equa-
tion (NTE). This method removes the need for the neutron diffusion approximation, enabling the NTH tool to
achieve greater accuracy, particularly in small-scale conditions. Such hybrid approaches, which use distinct
models for thermal-hydraulics and neutronics, are also present in the literature. Many of these approaches
rely on multiphysics software for thermal-fluid simulations and couple these models with advanced neutron
transport algorithms, such as MCNP [20, 104] or OpenMC [33, 70].

Central to this research is the Tiberga benchmark case study, which is used to validate our NTH simulation tool.
This benchmark study is a collaborative project involving researchers from four universities, each developing
its own NTH simulation tool for MSFR core simulations. The most relevant benchmark results for our work are
those produced by TU Delft’s code, developed by Tiberga [93]. This code features a thermal-fluid simulation
tool based on a DG-FEM solver to solve the Reynolds-averaged Navier–Stokes equations for incompressible
fluids and, importantly, integrates this tool with the same neutronics solver, Phantom-SN , that we use in our
research. Given the identical approach for neutronics simulation, we expect our results to closely align with
those generated by Tiberga.

Other NTH simulation tools in the Tiberga benchmark study include the CNRS code developed at LPSC/CNRS-
Grenoble [9], the PSI code from the Paul Scherrer Institute [36], and the PoliMi code developed by Cervi et al.
[15]. These tools all utilize OpenFOAM for thermal-fluid simulations and perform neutron diffusion simulations
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with Monte Carlo methods. Consequently, the TU Delft’s code is the only tool in the Tiberga benchmark study
that accounts for neutron transport effects.

1.3. Research Goals
The ultimate research goal of this thesis is to develop a full working multiphysics simulation tool that combines
thermal hydraulics and neutronics simulations into a single code base to perform steady-state and transient
simulations for an MSFR reactor core. This is achieved by first developing a GPU-accelerated FM-LBM
algorithm for thermal fluid simulation in the Julia-CUDA framework, and subsequently coupling this code to
the in-house Phantom-SN algorithm used for neutronics simulations. During this developing process, answers
will be formulated to the following research questions:

1. FM-LBMmodel development: How can the Julia-CUDA framework be utilized to develop a novel
GPU-accelerated FM-LBM simulation tool that effectively models thermal hydraulics and precursor
transport in an MSFR reactor core?

• How can the DDF approach be employed to model the velocity, temperature, and precursor
fields using a single LBM algorithm?

• How can we leverage the flexibility of Julia-CUDA to implement optimization techniques from
the literature, such as the use of shared memory, to enhance the algorithm’s performance on
the GPU?

2. Coupling mechanism: How can the newly developed thermal-hydraulics FM-LBM simulation tool
be coupled with the existing Phantom-SN code for neutronics simulations, which is written in the
Fortran-90 programming language?

• How can we create a unified simulation tool that utilizes and executes codes written in different
programming languages (Julia-CUDA and Fortran-90)?

• When are the different codes executed, and at what points does information need to be ex-
changed between them?

• How is information transferred between the codes, and how do we manage the differential
spatial discretization during the exchange of information?

3. Comparison to benchmark: How does the fully coupled multiphysics NTH tool compare to estab-
lished benchmark results from the literature for steady-state and transient simulations of an MSFR
reactor core?

• What discrepancies exist between the simulation results and the benchmark study, and can
these differences be explained using physical principles?

• Can we conclude that the developed multiphysics simulation tool yields accurate results for
MSFR core simulations in laminar flow conditions?

4. Computational performance: What is the computational performance of our multiphysics simu-
lation tool?

• Can we achieve significant improvements in the computational performance of the thermal-
hydraulics code compared to other fluid simulation codes that utilize serial implementations?

• How does the performance of the FM-LBM algorithm compare to existing literature focused
on the optimization of the LBM algorithm through GPU computing?

1.4. Thesis Outline
The structure of this report is as follows. Chapter 2 covers the theoretical background relevant to this project,
including fundamental principles of fluid dynamics, thermal hydraulics, kinetic theory, nuclear reactor physics,
and GPU computation. Chapter 3 details the numerical methods employed, first explaining the FM-LBM
algorithm and its GPU implementation, followed by a discussion of the complete NTH tool, which includes
neutronics and the coupling mechanism between the thermal hydraulics and neutronics codes. Chapter 4
presents the benchmark case for validating the FM-LBM thermal hydraulics code by simulating thermal fluid
behavior in a side-heated square cavity. Chapters 5 and 6 focus on the Tiberga benchmark case used to
validate the full multiphysics simulation tool under steady-state and transient conditions, respectively. Chapter
7 provides a forward looking discussion on possible additional features to be implemented in the multiphysics
simulation tool. Finally, Chapter 8 concludes the report, summarizing the findings of this thesis and offering
recommendations for future research.



2
Theory

This chapter presents several key physical principles relevant to the methods applied in this research. Sec-
tion 2.1 introduces fundamental concepts in fluid dynamics, including conservation laws, and kinetic theory,
which serve as the foundation for our thermal flow simulation code. Section 2.2 provides an overview of the
neutronics in MSFR’s, detailing essential formulas from nuclear reactor physics. Section 2.3 explores the mul-
tiphysics interactions within the MSFR reactor core, describing the coupling of various physical phenomena.
Finally, Section 2.4 offers a technical background on parallel programming and the CUDA software package.

Throughout this section and the remainder of the report, vector notation and Einstein summation notation are
used interchangeably, employing whichever provides more clarity or conciseness. In the case of Einstein
notation, repeated indices imply a summation.

2.1. Fluid Dynamics
To capture the physical phenomenon of fluids in terms of mathematical formulas, we rely on the continuum
approximation. The continuum approximation is based on the premise of a continuous mass distribution
within the material under consideration [82]. This means that the discrete nature of individual atoms and their
interactions are ignored. Instead, fluids are characterized solely by macroscopic variables such as pressure,
velocity, and density. As a consequence, continuum physics gives rise to so-called conservation laws. These
laws state that certain measurable quantities cannot change over time in an isolated physical system. These
laws, in turn, can capture the complete evolution of a fluid system.

2.1.1. Conservation Laws
One of these conservation laws states that within a control volume, no mass can be created or destroyed.
This implies that any change in mass within a particular control volume can only result from mass entering or
leaving it. This principle leads to the so-called continuity equation, described by

∂ρ

∂t
+∇ · (ρu) = 0 , (2.1)

where ρ denotes the density of the control volume, and u its velocity [82]. A second important conservation law
is conservation of momentum. Similar to mass conservation, momentumwithin a control volume is considered.
In this case, any change in momentummust stem frommomentum entering the system, stresses at the control
volume’s boundary, or body forces acting upon it. This yields the Cauchy momentum equation, formulated as

∂u

∂t
+ u · ∇u =

1

ρ
∇ · σ + f . (2.2)

Here, σ denotes the Cauchy stress tensor in units of N/m2, and f denotes the specific bodyforce in units
of N/kg [75]. Assuming that we are dealing with a Newtonian fluid, where viscosity is independent of any
applied shear stresses, and assuming an incompressible flow in which the material density of each fluid
element does not change with time (expressed simply as Dρ

Dt = 0, with D
Dt denoting the material derivative),

the momentum equation simplifies considerably. This leads us to the well-known Navier-Stokes Equations
(NSE) for incompressible Newtonian fluids, represented as

∂u

∂t
+ u · ∇u = −1

ρ
∇p+ ν∇2u+ f , (2.3)

6
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where ν denotes the kinematic viscosity of the fluid. Together, the continuity and the NSE form a complete
set of equations for describing of incompressible Newtonian fluids [82].

2.1.2. Thermal Hydraulics
In addition to mass and momentum, a conservation law can also be formulated for energy. In this case, the
energy within a control volume can only change due to energy entering or leaving the volume (in the form of
heat or work) or through energy loss or generation occurring within the volume. By assuming that the rate of
change of the internal energy is proportional to the rate of change of its temperature and by applying Fourier’s
law, which states that the rate of heat transfer is proportional to the negative gradient of temperature [65], the
energy balance equation can be rewritten into the heat equation, given by

∂T

∂t
+ u · ∇T =

κ

ρCp
∇2T +

q

ρCp
. (2.4)

Here T denotes the temperature, κ the thermal thermal conductivity, Cp the specific heat capacity, and q
a temperature source or sink term [71]. In this equation, the time rate of temperature change (first term)
is described by three processes, namely convection, diffusion, and external sources (second to fourth term
respectively).

Note that the heat equation is coupled to the Navier-Stokes equations through the velocity field u in the con-
vection term. To describe a two-way coupled thermal flow, where the velocity field influences the temperature
field and vice-versa, the temperature must be coupled back to the momentum equation. In the case of a
buoyancy-driven flow, such a formulation can be obtained using the Boussinesq approximation. This approx-
imation states that only variations in the density ρ are considered and that all other fluid properties are held
constant [100]. Furthermore, the variations in density are modeled using a reference density and a correction
term that is linearly dependent on temperature, formulated as

ρ = ρ(T0)[1− βth(T − T0)] . (2.5)

Here βth denotes the thermal expansion coefficient in units of K−1, which relates temperature deviations to the
expansion of the fluid, and T0 is a reference temperature. Additionally, the Boussinesq approximation states
that density variations are only important in the buoyancy force term in the NSE. As a consequence, the NSE
can be rewritten as [100]

∂u

∂t
+ u · ∇u = − 1

ρ0
∇(p− ρ0g · z) + ν∇2u− gβth(T − T0) . (2.6)

Together with the continuity equation (2.1) and the heat equation (2.4) these equations are called the Boussi-
nesq equations, and they form the bases for the description of incompressible buoyancy-driven Newtonian
fluids.

2.1.3. Dimensionless Numbers
Dimensionless numbers are a powerful tool in fluid mechanics that enable the evaluation of fluid behavior
using ratios between key fluid and system characteristics [74]. Their significance can be demonstrated by
performing a non-dimensional analysis of the NSE from Equation 2.3. This is achieved by substituting the
variables in the equation with their dimensionless counterparts, defined as

x̃ =
x

L
, t̃ =

t

T
, ũ =

u

U
=

uT

L
, p̃ =

p

P
=

pT 2

ρL2
, etc. (2.7)

Here, L, T , and U represent the characteristic length, time, and velocity scales of the fluid and the problem
domain, respectively. By introducing these non-dimensional variables, the NSE can be rewritten as

∂ũ

∂t̃
+ ũ · ∇ũ = −1

ρ̃
∇p̃+

1

Re
ν̃∇2ũ+ f̃ . (2.8)

In this form, we have introduced the Reynolds number, a dimensionless quantity defined as

Re =
UL

ν
. (2.9)

This dimensionless version of the NSE reveals the significance of the Reynolds number in evaluating fluid
behavior. Specifically, a high Reynolds number indicates that the convective term (second term on the left)
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dominates over the diffusive term (second term on the right). Since the convective term is non-linear, this
dominance results in chaotic and irregular flow patterns, ultimately leading to turbulence. In contrast, a low
Reynolds number implies that the diffusive term dominates, resulting in a smooth and stable flow, known as
laminar flow.

This example highlights the power of dimensionless numbers. They can be easily calculated from system
and fluid properties, yet they provide significant insights into fluid behavior. In addition to this, another key
advantage of dimensionless numbers is that they allow us to compare flows that appear to operate on different
physical scales. This is achieved through the principle of dynamic similarity, which states that if the governing
dimensionless numbers of two systems are identical, their fluid behaviors will be the same [74].

In addition to the Reynolds number, several other dimensionless numbers are used in this research. Table 2.1
provides a comprehensive overview of these dimensionless numbers, including their mathematical definitions
and physical interpretations.

Table 2.1: This section provides an overview of the dimensionless numbers used in this research. It includes their mathematical
definitions in terms of fluid and system characteristics, along with a physical interpretation of each dimensionless number and its
application in evaluating fluid behavior. In this context, L, U , and ∆T represent the characteristic length, velocity, and temperature
scales of the system, respectively. The symbols ν, α, D, and βth refer to the fluid’s viscosity, thermal diffusivity, molecular diffusivity,
and thermal expansion coefficient. Additionally, cs denotes the speed of sound in the fluid, and g represents Earth’s gravitational
acceleration.

Dimensionless number Definition Physical interpretation

Reynolds Re =
UL

ν
Measures the ratio between inertial and viscous forces acting on the
fluid, and determines whether the fluid will be laminar or turbulent.

Prandtl Pr =
ν

α

Measures the ratio between the viscosity of a fluid and its thermal
conductivity. It compares the rate at which momentum diffuses
through a fluid versus the rate at which heat diffuses.

Schmidt Sc =
ν

D

Measures the ratio between the viscosity of a fluid and its mass dif-
fusivity. It compares the rate at which momentum diffuses through
a fluid versus the rate at which mass (or species) diffuses.

Rayleigh Ra =
βthL

3g∆T

να

Measures the ratio between buoyancy forces and viscous and ther-
mal diffusion effects. It quantifies the balance between buoyancy
and diffusive forces acting on the fluid.

Nusselt Nu =
hL

κ
Measures the ratio between total heat transfer (convection + conduc-
tion) and conductive heat transfer.

2.1.4. Kinetic Theory
Fluids can be understood from different perspectives. In the previous section, the continuum approximation
was used to describe a fluid on a macroscopic scale, using fluid quantities such as pressure and velocity.
However Newtonian fluids can also be described on a microscopic scale, by tracking the interaction between
individual particles or molecules using Newtonian mechanics. Kinetic theory takes the middle route and fo-
cuses on the in-between mesoscopic scale. Rather than describing individual particles, Kinetic theory studies
how particle densities move within the fluid [55]. These particle densities, also called particle distributions,
are given by f(r, ξ, t), which denotes the density of particles moving with velocity ξ = (ξx, ξy, ξz) at position
r = (x, y, z) and time t. Furthermore, these particle distributions can be related to macroscopic variables
through their moments, which are calculated as [55]

ρ(r, t) =

∫
f(r, ξ, t)d3ξ ,

ρ(r, t)u(r, t) =

∫
ξf(r, ξ, t)d3ξ ,

ρ(r, t)E(r, t) =
1

2

∫
|ξ|2f(r, ξ, t)d3ξ .

(2.10)

Kinetic theory investigates the evolution of these particle densities over time. As f is a function of position r,
particle velocity ξ, and time t, its derivative with respect to time is equal to

df
dt

=
(∂f
∂t

)dt
dt

+
( ∂f
∂ri

)dri
dt

+
( ∂f
∂ξi

)dξi
dt

. (2.11)
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By replacing df/dt = Ω(f), dt/dt = 1, dri/dt = ξi, and dri/dt = fi (the latter being the specific body force in
units of N/Kg) and using vector notation we arrive at the Boltzmann equation, given by

∂f

∂t
+ ξ · ∇f +∇ξf · f = Ω(f) . (2.12)

This equation explains how particle densities change over time, resembling an advection process [55]. The
first two terms on the left show how the densities move through advection with a velocity ξ, while the third
term represents how an external force affects this velocity. On the right side, the collision operator Ω(f)
serves as a source term, reflecting how particle collisions redistribute densities locally. Formally, the collision
operator is a nonlinear integral operator that accounts for all changes in the distribution function f resulting
from collisions between particles. Kinetic theory states that, due to the random nature of collisions within a
fluid, the particle distributions converge over time towards a so-called equilibrium distribution feq(r, ξ, t). This
equilibrium distribution, known as the Maxwell-Boltzmann distribution [64], is isotropic in velocity space around
the macroscopic velocity u, and has the property Ω(feq) = 0.

Through a so-called Chapman-Enskog analysis, the Navier-Stokes equations can be recovered from the Boltz-
mann equation. This process entails expanding the particle densities as a perturbative series, and then
systematically equating terms of similar orders between the distribution function and the collision operator
expansion [18]. By decomposing the particle distribution functions into an equilibrium and a non-equilibrium
part, and using the relationships between the moments of the particle distributions given in Equation 2.10,
this process results in the same conservation laws as described in Section 2.1.1, proving that the mesoscopic
description of fluids through the evolution of particle densities correctly simulates the dynamics described by
the Navier-Stokes equations.

2.2. Nuclear Reactor Physics
At the heart of nuclear reactor physics lies the principle that energy can be harnessed through the splitting
of fissile Actinides like uranium-235 and plutonium-239. This splitting process, known as nuclear fission,
generates energy from a difference in binding energy between the pre-split and post-split configuration of sub-
atomic particles, resulting in a mass discrepancy between the two states. As described by Einstein’s famous
formula, this mass difference is converted into energy through the equation E = mc2. Nuclear fission events
can occur spontaneously in a decay process but can also be induced by irradiating the fissile isotopes with
neutrons. In the latter case, the fissile nuclide first absorbs a neutron, resulting in a new compound state.
This heavier nuclide has an increased instability, triggering a fission event. Although this process is inherently
stochastic, and should therefore be described in a statistical framework, most fission events yield two new
nuclei along with several neutrons. Within a nuclear reactor, the neutrons produced from initial fission events
trigger subsequent fissions, initiating a chain reaction. When this chain reaction is regulated, it can sustainably
generate energy by continuously burning up Actinides [30].

This regulation of the nuclear chain reaction is crucial for ensuring safe and efficient energy production in a
nuclear reactor. For example, if too few neutrons are generated in the nuclear process, the chain reaction
cannot sustain itself, resulting in the gradual shutdown of the reactor over time. Conversely, when too many
neutrons are produced, the number of fission events will grow exponentially, introducing significant safety
issues, as nuclear reactor cores can only transport limited energy. This leads to the definition of the multiplica-
tion factor k, calculated as the number of neutrons in one generation divided by the number of neutrons in the
preceding generation. When k = 1, the reactor operates at a critical state, where each neutron, on average,
spawns exactly one new neutron after fission, leading to a stable reactor core. In other cases when k < 1 or
k > 1 the reactor is in a sub-critical or super-critical state respectively. In these cases the neutron population
is a function of time, leading to an unstable reactor core. Therefore, nuclear reactor control is concerned with
keeping the multiplication factor at unity during normal operating conditions [30].

To effectively monitor and control the multiplication factor, it is important to accurately assess the neutron
population within the reactor core. This necessitates the use of neutronic calculations, employing a stochastic
framework to compute average neutron densities by evaluating various neutron-nucleus interactions. Such an
analysis results in the neutron transport equation, which will be elaborated on the next section. Key to these
calculations is the use of nuclear macroscopic cross-sections Σx, which quantify the likelihood of specific nu-
clear reactions occurring [118]. Thesemacroscopic cross-sections are derived from the product of microscopic
cross-sections σx, which are material and energy-dependent parameters, and the atomic number densityN of
the material. By multiplying the macroscopic cross-section by the neutron density and velocity, we obtain the
reaction rate of x (in terms of reactions/cm3/sec), where x denotes the nuclear reaction type. These reaction
types include scattering, fission, absorption, among others.
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2.2.1. Neutron Transport
Similar to the conservation equations for fluid dynamics and thermodynamics described in Section 2.1, a
balance equation for neutron transport can be derived. Following an analogous approach, this is achieved
by analyzing a control volume and equating the time rate of change of the neutron population to the various
processes that influence neutron transport into and out of the volume. This results in the so-called neutron
transport equation (NTE), described as

1

v

∂φ

∂t
+ Ω̂ · ∇φ+Σt(r, E)φ(r, E, Ω̂, t) =

∫
4π

dΩ̂
′
∫ ∞

0

dE′Σs(E
′ → E, Ω̂

′
→ Ω̂)φ(r, E′, Ω̂

′
, t)

+ S(r, E, Ω̂, t) .

(2.13)

Here, φ(r, E, Ω̂, t) denotes the angular neutron flux, which serves as a measure for the expected number of
neutrons crossing a small unit area d3r around r, with an energy in the range E to E + dE, and moving with
a velocity pointing in the direction Ω̂ within a solid angle dΩ̂, at time t. Furthermore, v describes the speed
of the neutrons, Σt(r, E) the total cross-section of the material, Σs(E

′ → E, Ω̂
′
→ Ω̂) the differential scatter

cross-section of neutrons scattering from energyE′ and angleΩ′ toE andΩ, and finally S(r, E, Ω̂, t) acts as a
source term [61]. Moving from left to right, the different terms of the equation denote the time rate of change of
the neutrons, the transport of neutrons across the boundaries of the control volume, the loss of neutrons due
to absorption or collision, the number of in-scattering neutrons from other energy levels and velocity directions,
and finally a source term. The source term can be further decomposed into several contributors, one being
the source of neutrons from fission reactions, given by

Sf (r, E, Ω̂, t) =
χ(E)

4π

∫
4π

dΩ̂
′
∫ ∞

0

dE′ν(E′)Σf (E
′)φ(r, E′, Ω̂

′
, t) . (2.14)

Here χ(E) denotes the energy spectrum of the emitted fission neutrons (acting as a distribution function), ν(E)
the average number of neutrons emitted in a fission event as a function of energy, and Σf (E) the fission cross-
section as a function of energy. This formula denotes the production of neutrons with energy E by integrating
over all fission events from neutrons with different energies and velocity directions. Note, that the formula
assumes isotropic emission of the neutrons produced from fission, indicated by the 1/4π term.

2.2.2. Nuclear Reactor Kinetics
Equation 2.13 assumes that all neutrons are emitted directly after the fission event, in reality however, this is not
the case. While most neutrons are released directly after fission, some of the produced fission nuclei, also emit
neutrons through a decay process. These nuclei are called precursors, and their emission of neutrons takes
a considerably longer time than the neutrons emitted in the fission event itself [30]. Therefore, a distinction
should be made between neutrons obtained from the fission event (prompt neutrons) and neutrons originating
from precursor decay (delayed neutrons) in the transport equation. In terms of mathematics, we say that a
fraction βi of the fission neutrons originate from the decay of precursor species Ci. This means that the
remaining 1 −

∑
i βi fraction of neutrons are prompt. consequently, the NTE can be completed by adding a

precursor source term for the delayed neutrons, turning Equation 2.13 into

1

v

∂φ

∂t
+ Ω̂ · ∇φ+Σt(r, E)φ(r, E, Ω̂, t) =

∫
4π

dΩ̂
′
∫ ∞

0

dE′Σs(E
′ → E, Ω̂

′
→ Ω̂)φ(r, E′, Ω̂

′
, t)

+
(1− β)χp(E)

4π

∫
4π

dΩ̂
′
∫ ∞

0

dE′ν(E′)Σf (E
′)φ(r, E′, Ω̂

′
, t) (2.15)

+
χd(E)

4π

∑
i

λiCi(r, t) + Sext(r, E, Ω̂, t) .

Here, β =
∑

i β is the complete fraction of neutrons originating from precursor decay, λi denotes the decay
constant of precursor species Ci, and χp and χd denote the neutron emission spectrum of the prompt neu-
trons and delayed neutrons respectively [61]. Similar to the prompt neutrons, the delayed neutrons are also
assumed to be emitted isotropically by again introducing the 1/4π term. Note finally that an extra external
source term Sext(r, E, Ω̂, t) is added for completeness.

While equation 2.15 correctly describes the neutron population of a reactor core, it does require a description
of the precursor transport. This is especially important in the case of an MSFR, where the precursors will
experience convective transport due to the velocity field of the liquideous fuel-salt. This precursor transport
can be described using an advection-convection equation, given by

∂Ci

∂t
+∇ · (uCi) + λiCi(r, t) = ∇ · (Di∇Ci) + βi

∫
4π

dΩ̂
′
∫ ∞

0

dE′ν(E′)Σf (E
′)φ(r, E′, Ω̂

′
, t) . (2.16)
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Here, u denotes the velocity field of the fuel-salt, and Di is known as the molecular diffusivity of the precursor
family Ci in the fuel salt [30]. The usage of the indexation in Ci indicates that the equation only describes the
transport of a single precursor family. From left to right, the terms are identified as the time rate of change, a
convection term, a loss term due to decay, an advection term, and a fission source term. Note that the latter
is similar to the fission term in Equation 2.15 but weighted by βi for the fraction of precursors Ci produced
in fission events. Together, Equations 2.15 and 2.16 capture the full neutronics of an MSFR nuclear reactor
core.

2.3. Multiphysics of an MSFR Reactor Core
As discussed in the introduction of this report, in the design of the MSFR, the molten salt serves a dual
purpose as both the fuel and the coolant. Consequently, simulating the reactor core requires accounting for
both thermal fluid dynamics and neutronics, making it a multiphysics problem. Although thermal fluid dynamics
and neutronics calculations operate on different time and length scales and are governed by separate physical
laws, they cannot be computed independently due to their strong coupling through various processes. Most of
these interactions have been mentioned in previous sections, but they are summarized here to emphasize the
importance of integrating these coupling processes into the simulation code. Figure 2.1 provides a schematic
overview of the different physical quantities and the processes through which they are interrelated.

Firstly, as discussed in Section 2.1, velocity and temperature are two-way coupled through the convection
term in the heat equation and the buoyancy force in the NSE. Moreover, the velocity field is also coupled to
the precursor field through the convective transport of precursor species. However, there is no direct process
coupling the precursor density back to the velocity field. The precursor density is also directly two-way coupled
with the neutron flux. As mentioned in Section 2.2, precursors introduce delayed neutrons through radioactive
decay, while new fission reactions act as a source for precursors. Finally, there is a direct two-way coupling
between temperature and neutron flux. Fission reactions generate heat, which serves as a power source
in the heat equation. Conversely, temperature influences the neutron flux through changes in nuclear cross-
sections. These changes are due to Doppler shifts, which can broaden resonance peaks in neutron-nucleus
interactions, as well as density feedback effects.

These direct interactions also highlight the indirect influences among these quantities. For instance, an in-
crease in neutron flux leads to more fission events, which raises the power output and, consequently, the
temperature. The temperature rise then affects the velocity field via buoyancy forces. This altered velocity
field modifies the convective transport of precursor species, which, in turn, influences the neutron flux. This
creates a feedback loop where each component affects the others, illustrating the complex interdependencies
within the system.

Figure 2.1: Schematic overview of the key physical quantities in MSFR reactor core simulations and the
processes coupling these fields. This research employs the NSE to model velocity, the heat equation for
temperature, the advection-convection equation for the precursor density, and the NTE for neutron flux.

2.4. Parallel Programming
The direct numerical simulation of thermal fluids using the NSE is notoriously computationally expensive [35].
To address this challenge, this research focuses on simulating thermal flows using a kinematic representation,
leading to the adoption of the Lattice Boltzmann Method (LBM), a simulation technique that streamlines the
simulation of thermal fluids by decomposing the process into a sequence of repetitive calculations. [55]. These
calculations are performed locally at each grid point within the spatial discretization of the problem domain
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and are independent of one another. This independence enables the parallel execution of these calculations,
significantly reducing the computational burden associated with fluid simulations.

In the case of LBM, the parallelized calculations are computationally small enough to be performed on a
Graphics Processing Unit (GPU). A GPU contains thousands of cores that, although individually less powerful
than a conventional CPU core, can perform calculations simultaneously in parallel. Originally designed to
accelerate graphics rendering for video games, GPUs are now widely used for high-performance computing
(HPC), a practice known as general-purpose computing on GPUs (GPGPU). This technique finds applications
in various fields, including machine learning [63, 77, 87], medical imaging [5, 32, 67], and scientific computing
[25, 49, 78].

2.4.1. CUDA Programming Language
Parallel programming involves writing algorithms that allow different segments of code to execute simultane-
ously across multiple processor cores. In this research, the Compute Unified Device Architecture (CUDA)
programming language is used to implement such an algorithm. CUDA, developed by NVIDIA, is a parallel
computing platform that allows developers to leverage NVIDIA GPUs for general-purpose processing [27].
Within this framework, pieces of code that should run independently on each core can be defined. These
pieces of code, known as kernel functions, are sent to the GPU to run independently on each core. Generally
speaking, this leads to the following procedure for parallel programming using CUDA

1. Transfer input variables from CPU memory to GPU memory.
2. Allocate GPU memory for simulation output.
3. Perform calculations on the GPU by sending kernel functions from the CPU to the GPU.
4. Transfer the simulation results from GPU memory back to CPU memory.

When using CUDA for parallel programming, several challenges related to GPGPU must be considered.
Firstly, the computational cores of a GPU are generally less powerful than those of a conventional CPU
core. As a result, it is crucial to minimize the complexity of computations performed within kernel functions.
This can be achieved by adopting modular code design, where each kernel function performs a single, well-
defined task, thereby reducing the computational load within each kernel. Additionally, the complexity of the
calculations should be minimized by avoiding costly operations like loops whenever possible. Lastly, using
single-precision floating-point numbers is recommended, as this in theory can halve the computational burden
compared to double-precision floats.

Secondly, in the CUDA framework, only a limited set of operations is supported within a kernel function. While
standard operations like addition, multiplication, and division are available, along with basic constructs such
as loops, more advanced operations like matrix manipulations are not natively provided. Consequently, oper-
ations such as inner products and matrix multiplications must be manually implemented using loops.

Lastly, GPU programming with kernel functions relies on the assumption that calculations and memory ad-
dresses accessed by the kernels are independent. When this independence is not maintained, race conditions
may arise, where multiple kernels on different cores access or modify the same memory location simultane-
ously. In such situations, CUDA does not generate an error, but the results can become distorted, making
debugging challenging. To prevent this issue, it is crucial to use available features such as atomic operations
and synchronization functions to ensure proper coordination among kernels and avoid data conflicts.

2.4.2. GPU Hardware Architecture
The CUDA programming language is designed exclusively for general-purpose computing on NVIDIA GPUs.
Therefore, it is important to discuss the hardware architecture of NVIDIA GPUs, as this structure has certain
implications for the software abstractions used in these GPUs. As illustrated in Figure 2.2, NVIDIA GPUs are
organized in a layered architecture designed to optimize memory handling and processing efficiency.

At the top layer, the GPU is subdivided into streaming multiprocessors (SMs), which are individual processing
units responsible for the parallel execution of tasks, and a block of global memory accessible by all computing
cores. Within each SM, additional specific structures can be identified at the second layer. Each SM contains
its own block of shared memory, accessible only by the cores within that specific SM. Additionally, each SM
includes a warp scheduler, a component dedicated to scheduling the execution of the CUDA cores, which
will be discussed in more detail in a later section. Finally, the SM contains several thousand CUDA cores
that perform the actual computations. At the finest layer, each CUDA core contains the necessary hardware
to perform computations along with its own block of register memory, which is used solely by that single
computational unit.
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Figure 2.2: Hardware architecture of an NVIDIA GPU. This figure depicts the layered structure of the GPU,
optimized for efficient memory management. At the top layer, the GPU is divided into multiple SMs and a block
of global memory. Each SM, in turn, contains its own block shared memory and several thousand CUDA cores.
At the most granular level, each CUDA core functions as an individual processing unit with its own dedicated
register memory.

2.4.3. GPU Memory Hierarchy
The layered structure of the NVIDIA GPU allows for different types of memory, leading to a so-called memory
hierarchy. As shown in Figure 2.2, different types of memory can be accessed by different groups of compu-
tational cores. For example, global memory can be accessed by all cores, while shared memory is limited
to cores within the same SM. Although it might seem disadvantageous to have memory accessible by only a
subset of cores, this design actually enhances memory access speed. For example, as the shared memory
block is situated closer to the CUDA cores, it takes less time to read and write data. The same principle
applies to register memory, while its accessibility is limited to a single computational core, its proximity allows
for extremely fast data transfers. In addition to the memory access speed, the different types of memory also
have varying capacities. Register memory has the smallest capacity as it is dedicated to a single core, while
global memory offers the largest storage due to its broad accessibility. Consequently, this memory hierar-
chy creates a trade-off between accessibility, capacity, and access speed, which must be carefully balanced
when developing code for simulations. Optimal storage locations should be chosen based on maximizing
transfer speed while adhering to accessibility and capacity constraints. Within the CUDA programming frame-
work, there are two more types of memory—distinct memory addresses within global memory. To provide a
complete overview, a full summary of the memory hierarchy is given in Table 2.2.

2.4.4. CUDA Software Abstractions
In CUDA programming, the problem space is organized into a grid for parallel computation, with calculations
performed at each grid point. Efficient scheduling of kernel launches across these grid points is managed
through specific software abstractions within the CUDA framework, as illustrated in Figure 2.3.

Table 2.2: Comprehensive overview of the different memory addresses in an NVIDIA GPU. The GPU’s layered architecture results
in a hierarchical memory structure, with each type of memory offering distinct advantages and disadvantages in terms of accessibility,
capacity, and access speed. Consequently, when developing code, it is essential to consider optimal storage locations to balance
these factors effectively.

Memory type Description

Global memory Main storage of the GPU, is accessible for all CUDA cores as well as the CPU. Large
memory storage, however slow information transfer.

Constant memory Small amount of memory within global memory, that is read-only. Again it is acces-
sible for all CUDA cores, however, the fact that it is read-only allows for fast reading.
CPU can write to this piece of memory before the kernel launches.

Shared memory Relatively small amount of memory specific to a single SM. Only cores located on
the SM can access this memory, however, they can do so at a high speed.

Register memory Smallest amount of memory, specific to a single CUDA core. As it is located on the
core itself it is the fastest type of memory.

Local memory Located within the global memory block, and specifically assigned to a single CUDA
core. This memory is used when the register memory is fully occupied. Compared
to register memory, the data transfer is very slow, however the capability is much
larger.
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Initially, the grid is divided into blocks, with each block assigned to a single SM. This subdivision determines
how portions of the problem space are distributed among the SMs. Each block is further divided into warps,
each consisting of 32 threads. A thread is the smallest unit of computation, performing operations for a
single grid point. Warps group 32 threads together for efficient scheduling, a process that will be discussed
further in the next section. CUDA allows the specification of both the number of blocks and the number of
threads per block, which are crucial for simulation efficiency. While the total number of threads must cover
the entire problem domain, the configuration of blocks and threads per block significantly impacts simulation
performance.

Figure 2.3: Overview of the software abstractions used in CUDA programming. While the number of threads
in a warp is fixed at 32, CUDA allows for the specification of both the number of blocks and the number of
threads per block. Optimizing the number of blocks and threads per block is essential for achieving balanced
thread distribution across SMs, which maximizes computational performance.

Optimizing the number of blocks and threads per block is essential for performance. Since multiple blocks are
assigned to a single SM and the number of SMs is limited, the goal is to balance the distribution of threads
across the SMs. Achieving this often requires trial and error, involving testing various configurations and
evaluating their impact on simulation speed to determine the most effective setup.

2.4.5. Warp Scheduling Process
The warp scheduler, as illustrated for a single SM in Figure 2.4, oversees the scheduling of calculations
within an SM. Multiple blocks are assigned to each SM, and the warp scheduler manages the execution of
these blocks by extracting warps from them and distributing the threads to the CUDA cores. When 32 cores
are available, the warp scheduler assigns a new warp from the block to these cores. Once a block is fully
processed, the scheduler proceeds to the next block.

Figure 2.4: Illustration of the warp scheduling process on a single SM. The warp scheduler manages all warps
from the blocks assigned to that SM, scheduling them in full rather than scheduling individual threads.
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This scheduling process has two significant implications. First, shared memory can only be allocated for
threads within the same block. The warp scheduler handles all warps within a block, ensuring that these
threads have access to the shared memory within the same SM, while warps from different blocks may be
allocated to different SMs. Second, since the warp scheduler schedules entire warps rather than individual
threads, it is most efficient to define the number of threads per block as a multiple of 32. If the number of
threads is not a multiple of 32, the warp scheduler will include inactive threads in the final warp. For instance,
with 35 threads in a block, the second warp will contain 29 inactive threads. These inactive threads occupy
CUDA cores that could have been used for active computations, leading to inefficient resource utilization.



3
Numerical Method

This chapter presents the numerical techniques and algorithms applied in this research. To simulate the
complex multiphysics of an MSFR reactor core, a combination of two algorithms is employed. Section 3.1
provides a detailed description of the Filter Matrix Lattice Boltzmann Method (FM-LBM), which is utilized
to simulate thermal flows and precursor transport. Moreover, Section 3.2 details how GPU acceleration is
integrated into the FM-LBM algorithm to achieve parallel computing, alongside various techniques aimed at
optimizing its performance. Section 3.3 introduces the Phantom-SN algorithm, an in-house algorithm used
for performing neutronics simulations. When combined with the FM-LBM algorithm, these two simulation
tools capture the full multiphysics of the reactor core. Finally, Section 3.4 explores the coupling between the
algorithms, explaining the mathematical techniques used to overcome the differential spatial discretizations
of the two approaches, and detailing the process of information exchange between the two codes.

3.1. Thermal Fluid Simulation
To simulate thermal fluid dynamics, this research employs the Filter-Matrix Lattice Boltzmann Method (FM-
LBM). This algorithm extends the traditional Lattice Boltzmann Method (LBM), providing greater stability com-
pared to conventional LBM algorithms. LBM is a widely used numerical technique that has gained increasing
scientific interest since the 1980s [55]. While originally developed for solving fluid mechanics problems [3,
22], LBM has found applications in a variety of other fields, including quantum mechanics [90, 89] and image
processing [17, 50].

3.1.1. Lattice Boltzmann Method
The Lattice Boltzmann Equation (LBE) is derived from the Boltzmann equation for fluid kinetics through dis-
cretization over velocity, space, and time. This involves dividing the problem space into lattice points and the
velocity space into a set of discrete velocities ci. These discrete velocities are specifically chosen such that
particle densities move from one lattice point to another at each time step. Consequently, particle densities at
each lattice point can be represented by a discrete set of distribution functions {fi}, where each distribution
function fi is the product of the continuous particle density function moving in the direction ci and a weight
specific to that direction, expressed as fi(x, t) = wif(x, ci, t). By neglecting the force term in Equation 2.12
this discretization leads to the LBE, given by

fi(x+ ci∆t, t+∆t)− fi(x, t) = ∆t Ωi(f) . (3.1)

This equation describes the evolution of the particle densities fi(x, t) moving in the direction ci at each time
step ∆t. Similar to the relations provided in Equation 2.10, these distribution functions enable the calculation
of macroscopic quantities at each lattice point by summing over the different velocity directions. For example,
at an arbitrary lattice point, the density and the velocity of the fluid can be calculated using

ρ =
∑
i

fi , ρu =
∑
i

fici . (3.2)

Note that, Equation 3.1 is not uniquely defined. First of all, we haven’t said anything about the velocity set {ci}
and corresponding weights {wi}. This is because multiple possibilities exist for these so-called schemes. By
convention these schemes are denoted as DdQq, where d denotes the dimensionality of the problem space
and q indicates the number of velocity directions. To illustrate differences between such schemes, Figure

16
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3.1 gives a visual representation of some of the possible schemes in 2D and 3D. Note that, more possible
schemes exist in both 2D and 3D problem spaces.

The second parameter in Equation 3.1 that is not uniquely defined is the collision operator Ω(f). As described
in Section 2.1.4, this operator accounts for the redistribution of particle densities after collision events. Fur-
thermore, in the limit, it should relax the particle density functions towards the equilibrium distribution, given
by the Maxwell-Boltzmann distribution. In the discrete framework, this equilibrium distribution is given by

feq
i = wiρ

(
1 +

u · ci
c2s

+
(u · ci)2

2c4s
− u · u

2c2s

)
. (3.3)

Here, ρ and u denote the macroscopic density and velocity, which can be obtained through the relationships
given in Equation 3.2, wi denotes the weight corresponding to velocity direction ci, and cs is the lattice speed
of sound, which is defined through the isothermal equation of state p = c2sρ. Chapman-Enskog analysis
confirms that by representing the equilibrium distribution in the form of Equation 3.3, the discrete framework
of the Lattice Boltzmann equation correctly solves the force-free Navier-Stokes equations in the limit [55].

Different collision operators exist to guide particle distributions towards equilibrium, and the choice of this op-
erator distinguishes various Lattice Boltzmann algorithms. The simplest among them, the Bhatnagar-Gross-
Krook (BGK) operator [8], relaxes distribution functions towards equilibrium using a single relaxation parame-
ter, τ , and is defined as

ΩBGK(f) = −1

τ
(fi − feq

i ) . (3.4)

Despite its simplicity and ease of implementation, the BGK collision operator’s performance is unsatisfactory,
often leading to unstable results [66]. Hence, more sophisticated collision operators such as the two-relaxation-
times operator (TRT) [41], the multi-relaxation-times operator (MRT) [16], and Filter-Matrix operator (FM) [121,
123] have been introduced. This research uses the latter, the specifics of which will be discussed in a later
section.

Figure 3.1: Examples of velocity schemes used in LBM simulations, characterized by their dimensionality, d, and the number of
velocity directions, q. As can be seen from the figure, a higher q indicates greater interdependence between adjacent lattice points.
This figure is obtained from [91].

Streaming and Collision
A closer look at the LBE reveals that the evolution of the density functions can be simulated using a combina-
tion of two steps.

1. Collision step: The redistribution of the density functions on the lattice node through the collision operator,

f∗
i (x, t) = fi(x, t) + ∆t Ωi(f) . (3.5)

Here, f∗
i (x, t) denotes the post-collision distribution functions.

2. Propagation step: The streaming of particle distributions to neighboring lattice nodes,

fi(x+ ci∆t, t+∆t) = f∗
i (x, t) . (3.6)

These steps, visually represented in Figure 3.2, illustrate one of the key strengths of LBM, its simplicity. Fluid
simulation can be effectively performed by simply alternating between these two straightforward steps.
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Figure 3.2: Visual representation of the LBM algorithm, which consists of two steps: collision and propagation.
Fluid simulations can be performed by alternating between these two simple processes. This figure is adapted
from [72].

3.1.2. Filter-Matrix Lattice Boltzmann Method
The Filter-Matrix Lattice Boltzmann Method (FM-LBM) can be derived from the LBE by redefining the spatial
and temporal dimensions using a staggered grid approach [121]. This involves offsetting the space dimension
by half a grid spacing and the time dimension by half a time step. As a result, Equation 3.1 is reformulated as

fi

(
x+

ci∆t

2
, t+

∆t

2

)
= fi

(
x− ci∆t

2
, t− ∆t

2

)
+∆t Ωi(f) . (3.7)

Using a Taylor expansion around fi(x, t) and by filling in the staggered representation of the LBE given in
Equation 3.7, we obtain

fi

(
x± ci∆t

2
, t± ∆t

2

)
= fi(x, t)±

∆t

2
Ωi(f) +O

(
∆t2

)
. (3.8)

Subsequently, Chapman-Enskog analysis should be applied to Equation 3.8. As described in Section 2.1.4,
this involves decomposing the particle density functions into an equilibrium part, given by Equation 3.3, and
a non-equilibrium part. This analysis allows for the derivation of specific expressions for both the particle
distributions fi and the collision operator Ωi in terms of macroscopic variables. These expressions ensure
that the staggered formulation of the LBE correctly simulates incompressible flows within the framework of
the NSE, and are given by

fi(x, t) = ρωi

[
1 +

ci · u
c2s

+
1

2

(
(ci · u)2

c4s
− u · u

c2s

)
− ν

(
(ci · ∇) (ci · u)

c4s
− ∇ · u

c2s

)]
, (3.9)

Ωi(f) =
ρwi

c2s

[
(ci · ∇)(ci · u)− c2s∇ · u+ ci · f

]
. (3.10)

Here, ν denotes the kinematic viscosity of the fluid, and f represents the specific body force, both of which
can be found in the NSE formulated in Equation 2.3. By substituting these relationships back into Equation
3.8, the staggered particle distributions can be expressed as

fi

(
x± ci∆t

2
, t± ∆t

2

)
= ρωi

[
1 +

ci · u
c2s

+
1

2

(
(ci · u)2

c4s
− u · u

c2s

)

− ν

(
(ci · ∇) (ci · u)

c4s
− ∇ · u

c2s

)
±∆t

2

(
(ci · ∇) (ci · u)

c2s
−∇ · u+

ci · f
c2s

)]
.

(3.11)

This representation of the particle distributions can be written more concisely as a matrix multiplication by
introducing the so-called filter matrix Eik and the solution vector α±

k (x, t) as

fi

(
x± ci∆t

2
, t± ∆t

2

)
=
∑
k

wiEikα
±
k (x, t) . (3.12)

Here, the filter matrix contains terms corresponding to microscopic velocities ci, and the solution vector con-
tains terms corresponding to macroscopic variables such as ρ, u, ν, and f . The exact composition of the filter
matrix and the solution vector depends on the specific scheme used and will be elaborated on shortly for the
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D3Q19 scheme. The relationship in Equation 3.12 can also be inverted by introducing the matrix Eki, which
is related to the filter matrix through wiEik = (Eki)

−1, leading to

α±
k (x, t) =

∑
i

Ekifi

(
x± ci∆t

2
, t± ∆t

2

)
. (3.13)

This concludes the derivation of the FM-LBM method. Fundamentally, the algorithm remains unchanged, still
comprising a streaming and a collision step. However, in the filter matrix algorithm, the collision operator
now involves two matrix multiplications. First, the solution vector α−

k (x, t) is computed from the pre-collision
particle distributions using Equation 3.13. Subsequently, the post-collision particle densities are obtained by
transforming the solution vector α−

k (x, t) → α+
k (x, t), and using the matrix multiplication given in Equation

3.12.

D3Q19 Filter Matrix
As shown in Figure 3.1, various schemes exist for 3D fluid simulation, including the D3Q15, D3Q19, and
D3Q27 schemes. The D3Q27 scheme allows for more interdependence between neighboring nodes than the
D3Q15, resulting in greater stability and accuracy. However, the D3Q15 scheme requires significantly less
computational power for each time iteration, as calculations are performed for only 15 directions instead of
27. Therefore, selecting a scheme involves a trade-off between stability, accuracy, and simulation speed. In
this research, the D3Q19 scheme is employed to simulate the velocity field, as it strikes a balance between
accuracy and computational efficiency. In the context of the D3Q19 scheme, the filter matrix Eki is defined as

Eki =
[
1, cix, ciy, ciz, 3c

2
ix − 1, 3c2iy − 1, 3c2iz − 1,

3ciyciz, 3cixciz, 3cixciy, 3cix
(
c2iy − c2iz

)
, 3ciy

(
c2iz − c2ix

)
,

3ciz
(
c2ix − c2iy

)
, cix

(
3c2iy + 3c2iz − 2

)
, ciy

(
3c2ix + 3c2iz − 2

)
,

ciz
(
3c2ix + 3c2iy − 2

)
, 3
(
2c2ix − c2iy − c2iz

)(
|ci|2 −

3

2

)
,

3
(
c2iy − c2iz

)(
|ci|2 −

3

2

)
, 3 |ci|2

(
|ci|2 − 2

)
+ 1

]⊤
.

(3.14)

Note that this matrix can be constructed at the beginning of the simulation solely from the velocity set {ci}.
The corresponding 19-speed solution vector α±

k is given by

α±
k =



ρ
ρ(ux ±∆tfx/2)
ρ(uy ±∆tfy/2)
ρ(uz ±∆tfz/2)

3ρu2
x + ρ(−6v ±∆t)∂xux + ρv∇ · u

3ρu2
y + ρ(−6v ±∆t)∂yuy + ρv∇ · u

3ρu2
z + ρ(−6v ±∆t)∂zuz + ρv∇ · u

3ρuyuz + ρ(−3v ± 0.5∆t) (∂yuz + ∂zuy)
3ρuxuz + ρ(−3v ± 0.5∆t) (∂xuz + ∂zux)
3ρuxuy + ρ(−3v ± 0.5∆t) (∂xuy + ∂yux)

−0.8, k = 11, . . . , 16
−0.95, k = 17, 18, 19


. (3.15)

Here, the parameters α±
11−16 and α

±
17−19 correspond to third- and fourth-order terms, respectively. These terms

arise as non-physical artifacts due to the discretization of the LBE. To enhance the numerical stability of the
algorithm, these parameters are set to -0.8 and -0.95, respectively. This combination effectively dampens the
contribution of the non-physical terms, leading to more stable simulations. These parameters do not have any
inherent physical significance and can therefore alternatively be equated to zero, without altering the physical
outcome of the simulation. This filtering of the higher-order terms is where the filter matrix collision operator
derives its name from. The enhanced numerical stability obtained from this filtering is the main advantage of
the filter matrix collision operator over other LBM collision operators [121].

3.1.3. FM-LBM for Thermal Flows
Until now, we have discussed the application of the Lattice Boltzmann framework primarily for simulating ve-
locity fields. However, the FM-LBM algorithm can also be applied to advection-diffusion equations, enabling
the simulation of the heat equation shown in Equation 2.4. This extension allows us to solve for both temper-
ature and velocity fields using FM-LBM. By coupling these simulations, the algorithm can be used to model
thermally driven fluids within the Boussinesq framework.

At the basis of Thermal FM-LBM lies the introduction of a new set of distribution functions {gi}, known as the
temperature distribution functions. The evolution of these distributions is again described by the LBE through

gi(x+ ci∆t, t+∆t)− gi(x, t) = ∆t Ωi(g) . (3.16)
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Similar to velocity simulations, the collision operator relaxes the thermal distribution functions towards an
equilibrium distribution, given by

geqi = wiT

(
1 +

u · ci
c2s

+
(u · ci)2

2c4s
− u · u

2c2s

)
. (3.17)

Finally, the macroscopic temperature, T , can be obtained at any lattice point by summing over the temperature
distribution functions:

T =
∑
i

gi . (3.18)

By employing a staggered grid for the spatial and temporal domains, the filter matrix collision operator can also
be constructed for the thermal distribution functions. This results in a similar formulation of the filter matrix but
introduces a new solution vector β±

k (x, t) specific to the thermal distribution functions. Analogous to Equation
3.12, this solution vector is related to the thermal distributions through

gi

(
x± ci∆t

2
, t± ∆t

2

)
=
∑
k

wiEikβ
±
k (x, t) . (3.19)

This relationship can also be inverted using the same method as in Equation 3.13. In the D3Q19 framework,
the filter matrix is identical to the one given in Equation 3.14, while the solution vector β±

k is defined as

β±
k =


T

Tux + −8α±∆t
8

∂xT

Tuy + −8α±∆t
8

∂yT

Tuz + −8α±∆t
8

∂zT
0, k = 5, . . . , 19

 . (3.20)

Here, α is the thermal diffusivity, which is also found in the heat equation formulated in Equation 2.4. For
thermal FM-LBM, the simulation process mirrors that of velocity FM-LBM, where the simulation consists of an
alternation between a streaming step and a collision step. During the collision step, the solution vector β−

k (x, t)
is calculated from the pre-collision thermal distributions. Subsequently, the solution vector is transformed to
β+
k (x, t), which is then used to compute the post-collision thermal distributions.

The thermal and velocity fields are coupled during the collision step of the simulation. First, the thermal field
is used to calculate the buoyancy force, as described in Equation 2.6. This force term is then applied in
the collision step of the velocity field, specifically when transforming the solution vector α−

k (x, t) → α+
k (x, t).

Additionally, the velocity field is used in the thermal collision step during the transformation of the solution
vector β−

k (x, t) → β+
k (x, t). This coupling of the two fields within the collision step enables the simulation of

thermally driven flows.

3.1.4. FM-LBM for Precursor Transport
Similar to heat transport, precursor transport is also described by an advection-diffusion equation, as pre-
sented in Equation 2.16. Consequently, precursor flow can also be simulated using the FM-LBM. The imple-
mentation of precursor FM-LBM parallels that of thermal FM-LBM and thus also requires introducing new sets
of distribution functions. In the case of precursor simulation, the distribution sets are denoted as {hj

i}. Note
that an additional index j is introduced which represents the simulation of multiple precursor families. Thus,
for each precursor species j, a new set of distribution functions is introduced.

Mathematically, the formulations of precursor FM-LBM remain consistent with those in Equation 3.16 to Equa-
tion 3.20 for thermal FM-LBM. However, in this case, the macroscopic quantity is the precursor density. This
means a summation over the distribution functions leads to

Cj =
∑
i

hj
i . (3.21)

Additionally, the solution vector for precursor family j is now denoted by γj ±
k . This vector is analogous to

the solution vector for thermal LBM in Equation 3.20, however, with the thermal diffusivity α replaced by the
molecular diffusivity Dj for precursor family j in the fluid.

Finally, precursor FM-LBM follows the same standard procedure of alternating between streaming and collision
steps. And because the collision steps of precursor FM-LBM and thermal FM-LBM are virtually identical, the
precursor field is coupled to the velocity field when the solution vectors are transformed from γj −

k (x, t) →
γj +
k (x, t). This coupling ensures the convective transport of precursor densities within the velocity field.
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3.1.5. Boundary Conditions
In the LBM framework, boundary conditions are applied directly to the mesoscopic distribution functions fi by
manipulating the streaming schemes of lattice nodes situated closest to the boundary. The literature offers
a wide range of boundary schemes [69, 124], which can be broadly categorized into two families: link-wise
boundary conditions and wet-node boundary conditions, as illustrated in Figure 3.3.

In the case of wet-node boundary conditions, the computational boundary coincides with the physical domain
boundary. This means lattice points represent the corners of computational cells, with boundary lattice nodes
located directly on the physical boundary. This research, however, focuses exclusively on link-wise boundary
conditions. In this case, the lattice points are shifted by half a grid spacing, placing them at the centers
of computational cells. Consequently, a small gap of half a grid spacing arises between the computational
and physical boundaries, placing the computational domain inside the physical domain. To implement the
boundary streaming scheme on these boundary nodes, it is convenient to introduce so-called ghost nodes.
These nodes lie just outside the physical domain, with the physical boundary located between the boundary
nodes and the ghost nodes. As these nodes are outside the physical domain, they are also referred to as
solid nodes, implying a solid containing the fluid.

Figure 3.3: Comparison of link-wise and wet-node boundary conditions in LBM simulations. With link-wise
boundary conditions, the computational boundary is shifted by half a grid spacing from the physical boundary,
positioning the lattice nodes at the centers of the computational cells. In contrast, wet-node boundary condi-
tions align the computational boundary with the physical boundary, placing the lattice nodes at the corners of
the computational cells. This figure is obtained from [55].

In the remainder of this section, various types of boundary conditions will be discussed, along with their implica-
tions for the manipulation of the streaming schemes of the boundary nodes. These methods are summarized
from [55]. The examples below will be illustrated using the D2Q9 grid given in Figure 3.1a, as this allows for
more convenient visualizations. However, the corresponding formulas are generally applicable to all scheme
variants, including those in 3D.

Periodic Boundary Conditions
Periodic boundary conditions are straightforward to implement by equating the incoming post-streaming distri-
bution functions at one end of the domain with the outgoing pre-streaming distribution functions at the opposite
end. This relationship is given by

fi(xb, t+∆t) = f∗
i (xb + L, t) , (3.22)

where f∗
i and fi represent the pre- and post-streaming distribution functions, respectively. Additionally, xb

denotes a boundary lattice point. Figure 3.4 illustrates the implementation of periodic boundary conditions
by introducing ghost nodes x0 and xN+1. In this setup, the pre-streaming distributions on ghost node x0 is
initialized according to f∗

i (x0, t) = f∗
i (xN , t) for the velocity directions i = 1, 5, 8. As a result, in terms of

the post-streaming distribution functions fi, we obtain fi(x1, t + ∆t) = f∗
i (xN , t) for these directions. Con-

versely, for the distributions moving in the opposite direction, i = 3, 6, 7, we initialize the ghost nodes through
f∗
i (xN+1, t) = f∗

i (x1, t) and thus obtain for the post-streaming distributions the relation fi(xN , t + ∆t) =
f∗
i (x1, t).

Dirichlet Boundary Conditions
Implementing Dirichlet boundary conditions presents a more advanced challenge compared to periodic bound-
ary conditions. First of all, due to the differential physical behavior between the NSE underlying the velocity
fields, and the advection-convection equations underlying the temperature and precursor fields, it is essential
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Figure 3.4: Visualization of periodic boundary conditions in LBM and its implementation using ghost nodes.
The black arrows indicate pre-streaming distributions while the red arrows denote post-streaming distributions.

to differentiate between the streaming schemes for the distribution functions corresponding to the velocity
field, fi, and those for the temperature and precursor fields, gi and hi, respectively. This research uses the
halfway bounce-back (HBB) method for the implementation of these Dirichlet boundary conditions. First, we
focus on the implementation HBB approach for the velocity field, specifically for a no-slip boundary condition
where the macroscopic fluid velocity at the physical wall, uwall, is set to zero. This condition is achieved by
streaming the boundary nodes according to

fi(xb, t+∆t) = f∗
ī (xb, t) . (3.23)

Here, f∗
i and fi represent the pre- and post-streaming distribution functions, respectively. Additionally, ī

denotes the opposite direction of i, implying cī = −ci. This means that distribution functions moving from
the boundary nodes to the solid nodes are reversed at the boundary, as illustrated in Figure 3.5. In terms of
implementation using the ghost nodes, we can initialize the pre-streaming distribution functions on the ghost
nodes with the reversed distribution functions through the relation f∗

i (xb− ci∆t, t) = f∗
ī
(xb, t), and then apply

normal streaming.

Figure 3.5: Visualization of Dirichlet boundary conditions in LBM and its implementation by reverting the
distribution functions moving towards the solid nodes. The black arrows indicate pre-streaming distributions
while the red arrows denote post-streaming distributions

For a moving wall, an extra contribution must be added after reversing, due to the momentum of the moving
wall, transforming Equation 3.23 to

fi(xb, t+∆t) = f∗
ī (xb, t) + 2wiρ

ci · uwall

c2s
. (3.24)

For the distribution functions describing an advection-diffusion equation, the anti-bounce-back (ABB) approach
is used [55]. This method is similar to the half-way bounce-back (HBB) approach, where particle densities
streaming into the wall are reflected back into the domain. The ABBmethod, however, introduces an additional
negative sign in front of the pre-streaming distribution function. Moreover, when the macroscopic quantity
corresponding to the distribution functions is specified to a non-zero value Qwall at the physical boundary
an additional term must be incorporated to enforce this requirement. This yields the complete ABB method,
represented by

gi(xb, t+∆t) = −g∗ī (xb, t) + 2wiQwall . (3.25)
Note that here the distribution functions, gi, for the temperature field is used, however, the formula will be
identical for the distributions, hi, of the precursor field.
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Von Neumann Boundary Conditions
The Von Neumann boundary condition specifies that the normal gradient of a macroscopic quantity at a bound-
ary is set to a constant value. In this study, we focus exclusively on the case where this gradient is zero. This
condition is implemented by transforming the streaming schemes using mirror symmetry at the boundary, as
described by the relation

fi(xb + ci,t∆t, t+∆t) = f∗
î
(xb, t) . (3.26)

Here, î denotes the mirrored direction of i relative to the boundary, which means that the normal velocity
component is reversed, such that cî,n = −ci,n. Furthermore, ci,t denotes the tangential velocity component
relative to the boundary. Figure 3.6 illustrates how this boundary condition can be implemented using ghost
nodes. First, the pre-streaming distribution functions are initialized on the ghost nodes using the symmetry
conditions. Subsequently, normal streaming is applied. Note that no differentiation in the implementation of
the Von Neumann boundary condition is needed for the different distribution functions describing the velocity,
temperature, and precursor fields. Furthermore, for the velocity field, the Neumann boundary condition is also
commonly referred to as the free-slip boundary condition.

Figure 3.6: Visualization of Neumann boundary conditions in LBM and its implementation using ghost nodes.
The black arrows indicate pre-streaming distributions while the red arrows denote post-streaming distributions

3.1.6. Unit Conversion
In LBM simulations, the simulation parameters are expressed in lattice units. For instance, the spatial dimen-
sion is determined by the number of grid points. When the problem domain is represented by a 100 × 100
grid, the spatial dimension is said to be 100 ls along each axis, where ”ls” denotes the lattice unit of distance.
Similarly, the lattice unit of time, ”lt”, is measured by the time iterations of the LBM algorithm. For example,
after five iterations, 5 lt has passed. Like physical units, Lattice units can also be combined to express the
units of other variables. For instance, the lattice unit of velocity is given by ls/lt. In this research, whenever
a variable Q is expressed in lattice units, it is provided with an asterisk superscript (e.g. Q∗). Conversely,
whenever we want to specifically emphasize a variable is in physical units, it is represented with the subscript
”ph” (e.g. Qph).

When using simulation parameters expressed in lattice units, a few important considerations must be ad-
dressed. First, the parameters must be chosen to ensure that the algorithm simulates the same fluid problem
as defined by the physical parameters. This is achieved by selecting the simulation parameters such that they
yield the same values for the dimensionless numbers governing the fluid and system properties. For example,
if a fluid problem is fully characterized by the Reynolds number, the simulation parameters should be selected
to satisfy the relation

Re =
UphLph

νph
=

U∗L∗

ν∗
. (3.27)

Secondly, when switching between lattice units and physical units, conversion factors must be used. These
factors are calculated as the ratio of the variable in physical units to its corresponding value in lattice units,
expressed as

CQ =
Qph

Q∗ . (3.28)

For example, the conversion factor for distance is given by

Cx =
Lph

L∗ =
Lph

N
, (3.29)
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where N denotes the number of grid points along a given axis. Additionally, as outlined by [55], conversion
factors can be combined to derive conversion factors for other variables. For instance, combining the distance
conversion factor from Equation 3.29 with the viscosity conversion factor, defined as

Cν =
νph
ν∗

, (3.30)

yields the conversion factor for time as

Ct =
C2

x

Cν
. (3.31)

3.2. GPU Accelerated Thermal Fluid Simulation
Due to the independent calculations of the streaming and collision steps at each lattice point, the FM-LBM al-
gorithm provides a perfect candidate for parallel computing of thermal fluids. Since the streaming and collision
operations are computationally small enough, a GPU is used to execute this code in parallel. GPU-accelerated
FM-LBM allows the collision and streaming steps within the FM-LBM code to be computed simultaneously for
all lattice points. Theoretically, this means the computation time for the simulation does not necessarily in-
crease with larger problem spaces, as all calculations on the lattice points are performed in parallel. In practice,
however, computation time does increase with the number of lattice points, primarily due to the higher mem-
ory overhead involved in reading and writing larger arrays. Larger problem spaces require more storage to
accommodate additional lattice points, which introduces memory access costs. Nevertheless, the increase
in computation time on the GPU is significantly lower than that on a CPU, where lattice points are processed
sequentially [44].

3.2.1. Julia-CUDA
In this research, the programming language Julia-CUDA is used to implement the FM-LBM code on a GPU.
Julia is a flexible dynamic language used for scientific computing, much like Python and MATLAB. However,
Julia boasts computational performance comparable to statically typed languages like C and Java, thanks to
its just-in-time compiler and high-performing type inference system [56]. Within Julia, the CUDA package can
be downloaded to enable CUDA programming through a Julia interface. The CUDA programming language,
extensively described in the theory section of this report, is used for parallel computing on a GPU.

There are several advantages to using Julia-CUDA for GPU computations over other programming languages.
Firstly, scientific programming languages are often favored over more complex languages like C and Java,
which require an intricate understanding of low-level programming concepts. Julia stands out as an ideal
choice because it offers computational performance on par with these advanced languages while maintaining
ease of implementation due to its high-level syntax. Additionally, Julia also offers a lot of flexibility and func-
tionality for handling GPU hardware. For example, Julia allows the user to assign variables to different levels
of memory within NVIDIA GPUs’ memory hierarchy. This increased flexibility results in better performance
and greater control over the computational tasks of a GPU. This combination of high performance, ease of
use, and GPU functionalities, makes Julia a great choice for scientific and parallel computing applications.

3.2.2. LBM Kernel Functions
GPU calculations within the CUDA framework are executed through kernel functions, which are small pieces
of code designed to run on each GPU core. In this research, six distinct kernel functions are introduced: an
initialization kernel, a propagation kernel, a boundary condition kernel, and three collision kernels—one for
each physical variable being solved (velocity, temperature, and precursor density). Along with these differ-
ent kernel functions, various levels of parallelization are introduced. For example, the propagation kernel is
parallelized across both the spatial and velocity dimensions. This is because the streaming step calculations
along different velocity directions are symmetrical, involving only the reading of distribution functions from
neighboring nodes. Additionally, the streaming steps for the velocity, temperature, and precursor distributions
are combined into a single kernel function due to their overlapping computations.

In contrast, the collision kernel is parallelized only over the spatial dimensions. This limitation arises because
the matrix multiplications within the collision steps utilize distribution function information across all velocity
directions, ruling out further parallelization. Moreover, the calculations for the collision steps vary significantly
between different types of distribution functions, necessitating separate kernel functions for the velocity, tem-
perature, and precursor fields. Although the collision steps for the temperature and precursor distributions are
potentially similar enough to be combined, they are still split into two distinct kernels. This is because, the pre-
cursor collision kernel is parallelized over both spatial dimensions and precursor families, as these calculations
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are identical for different precursor families. This additional parallelization layer ultimately enhances overall
performance, however, it requires separate implementations for the temperature and precursor collision steps.

Lastly, the boundary condition kernel is implemented similarly to the propagation kernel, with parallelization
across both spatial and velocity dimensions. It applies boundary conditions for the velocity, temperature, and
precursor distributions using overlapping code. This kernel function is the only one that performs calculations
on the ghost nodes, initializing the particle distributions that enter the fluid domain at these nodes before the
propagation kernel is executed. This ensures that the boundary nodes read the correct distribution function
values from the ghost nodes during the propagation step.

Figure 3.7 presents an overview of the complete GPU-accelerated FM-LBM code, detailing the sequence of
kernel function executions within each iteration. It also illustrates the standard parallel programming procedure
using CUDA, as outlined in the theory section. This process involves initializing the problem space on the CPU,
allocating GPU memory, transferring variables from CPU to GPU memory, executing kernel functions on the
GPU for simulations, and then transferring the results back to CPU memory.

Note that, in this figure, the number of time iterations for the FM-LBM algorithm is set to a fixed value, Nt.
When the iteration number t surpasses this value, the algorithm terminates and transfers the results back to
the CPU. However, for simulations of stable flows progressing toward a steady-state solution, the number of
iterations can be adjusted dynamically based on a convergence criterion, which will be discussed in the next
chapter.

Figure 3.7: Overview of the GPU-accelerated FM-LBM algorithm. The figure illustrates the communication
between the CPU and GPU, including the initialization of the problem space on the CPU, GPU memory allo-
cation, transfer of variables from CPU to GPU, execution of kernel functions on the GPU, and the return of
results to CPU memory. It also depicts the ordering of kernel functions within the main loop and the stopping
criterion, where the loop terminates after Nt time iterations.

3.2.3. Race Conditions
In parallel algorithm implementations, it is crucial to address race conditions. These occur when multiple
threads simultaneously access and modify the same memory address, potentially leading to corrupted sim-
ulation results without raising errors. This issue is particularly significant during the streaming step, where
distribution functions are transferred to neighboring nodes. Since each thread targets a neighboring node and
the warp scheduler’s execution order is unpredictable, threads may read from and write to the same memory
address in the array holding distribution function values. To prevent such race conditions in our code, we
introduce two copies of the array storing the distribution functions. During the streaming step, the first array,
f_pre, is read from, while the second array, f_post, is written to. Here, f_pre and f_post represent the pre-
and post-streaming distribution functions, respectively. After the collision step, these arrays must be synchro-
nized to ensure that f_pre at iteration t+1 matches f_post at iteration t. This synchronization is handled by
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the boundary condition kernel, which now serves a dual purpose: for ghost nodes, it initializes distribution
functions directed into the fluid domain, and for inner nodes, it updates the f_pre array to reflect the f_post
array. The latter is also depicted in Figure 3.7 in the boundary condition kernel.

Another source of race conditions in LBM computations arises from unsynchronized GPU nodes between
kernel launches. If the CPU initiates the next kernel launch before the previous one has finished, two kernels
might execute simultaneously on the same lattice points, causing race conditions as they access the same
variables. To avoid this, CUDA’s built-in synchronization function, CUDA.synchronize(), should be used after
each kernel launch to ensure the previous kernel has been completed before starting the next one.

3.2.4. Performance Gains
To fully leverage the GPU resources, several techniques have been introduced to the FM-LBM code to en-
hance its computational efficiency. Some of these techniques have already been discussed in the previous
sections, such as the definition of the number of threads per block being a multiple of 32, as discussed in
the theory section. But also introducing different levels of parallelization between kernel launches, as certain
simulation steps allow for higher-level parallelization. As Julia-CUDA is flexible enough to introduce different
numbers of blocks for different kernel launches, this differentiation in the level of parallelization allows for the
faster execution of some of the kernels. Lastly, to reduce computational effort, the boundary condition kernel
only considers particle densities moving into the fluid domain on the ghost nodes, disregarding other directions
on these nodes that are irrelevant to the simulation.

In addition to these improvements, further optimizations have been made. As explained by [6], it is more
efficient to store information in 1D arrays rather than multidimensional arrays, as 1D arrays incur less compu-
tational overhead on the GPU. Consequently, the 4D arrays containing the distribution functions and the 3D
arrays containing the macroscopic variables are converted into long 1D arrays. The indexation through these
arrays is facilitated by so-called index functions, which are defined as

3D to 1D conversion: idx = x+ yNx + zNxNy , (3.32)
4D to 1D conversion: idx = x+ yNx + zNxNy + qNxNyNz . (3.33)

Here, (x, y, z) denote the spatial coordinates of the lattice points in the grid, q labels the different velocity
directions of the scheme used, and Nx, Ny, Nz denote the number of lattice points in the x, y, z direction,
respectively. Note that, in the index function for the 4D conversion, the velocity index is placed after the
grid coordinates. This arrangement ensures that in a long 1D array, the distribution functions corresponding
to the same velocity direction are stored next to each other, as illustrated in Figure 3.8. This configuration
is implemented on purpose, as the ordering of the different distribution values in the 1D array affects the
simulation speed of theGPU. This specific ordering improves simulation speed due to a process calledmemory
coalescing within a GPU, where consecutive threads access consecutive memory addresses [24, 99]. By
storing the distribution functions in this manner, the collision kernel benefits from increased speed during
matrix multiplications, as consecutive threads handling adjacent lattice points in the domain simultaneously
request information on the same velocity direction during the matrix multiplication.

Figure 3.8: Illustration of the storage of particle distribution functions in 1D arrays. This specific ordering of
distribution functions, where distributions corresponding to the same velocity direction are stored next to each
other, optimizes GPU performance through memory coalescing.

Shared Memory
As already mentioned, the NVIDIA GPUs have a memory hierarchy, where memory closer to the individual
cores is faster at the cost of lower capacity and more restrictive access. Julia-CUDA allows for low-level
management of this memory, enabling the assignment of variables to either global memory or shared memory
(with register memory reserved for constants defined within kernel functions). This makes the option for the
usage of shared memory attractive, as it increases simulation speed. However, because lattice nodes are
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interconnected through the streaming step and shared memory is only accessible by threads within the same
block, finding effective use cases for shared memory can be challenging.

In this research, a notable use case for shared memory is identified in the collision kernel considering the
solution vector. Storing the complete solution vector for every lattice point is unnecessary. Instead, a solution
vector can be generated for each lattice point within a block through shared memory, which persists for the
duration of the kernel. This solution vector is employed in the filter matrix process of the collision step, which
involves three stages: constructing the solution vector from the pre-collision distributions via matrix multipli-
cation, transforming the solution vector, α−

k → α+
k , and finally calculating the post-collision distributions from

the transformed solution vector through another matrix multiplication. At the end of the kernel execution, only
the relevant information, such as the velocity field or temperature field, is stored in global memory, while the
remaining information of the solution vector is discarded. This approach has two key advantages. First, it
minimizes global memory storage by only storing relevant solution vector information, optimizing information
transfer as smaller arrays reduce latency in reading and writing. Second, it speeds up calculations within
the kernel function, as the GPU accesses shared memory rather than global memory whenever information
needs to be read from or written to the solution vector.

Moreover, the use of shared memory for the solution vector presents another opportunity for enhanced per-
formance of the collision kernel. This is a consequence of the fact that, in kernel programming, matrix multi-
plications must be written as two nested for-loops due to the absence of a standard vector algebra package
within the CUDA framework. In the collision kernel’s matrix multiplications, three types of arrays are involved:
the array containing the distribution functions for the entire problem space stored in global memory, the q × q
filter matrix array stored in global memory, and the solution vector array stored in shared memory for lattice
points within the same block. The latter is the quickest to access, given that it is stored in shared memory.
The nested loops can be organized in two ways: iterating through the filter matrix rows in the outer loop and
columns in the inner loop, or vice versa. Each method affects the constancy of the indices of the arrays being
read from or written to, which are, the distribution functions array and the solution vector array. Specifically,
for a q × q filter matrix, one index will iterate q2 times while the other will iterate only q times, meaning one
index remains constant more frequently than the other. This is illustrated in Figure 3.9.

Given that accessing the distribution function array in global memory is more costly than accessing the solu-
tion vector array in shared memory, the nested loops should be organized to minimize iterations through the
distribution function array. For the first matrix multiplication in the collision kernel, where the solution vector
is derived from the pre-collision distribution functions, α−

k =
∑

i Ekifi, the configuration on the left in Figure
3.9 is optimal. In this configuration, the outer loop iterates over the columns of the filter matrix, while the inner
loop iterates over its rows. This arrangement results in only q iterations through the distribution function array
(once per element) while iterating q2 times through the solution vector array (q times per element). Given that
information exchange with the solution vector array in shared memory is quicker, this configuration optimizes
the matrix multiplication.

Conversely, for the second matrix multiplication in the collision kernel, where the post-collision distribution
functions are derived from the transformed solution vector, f∗

i =
∑

k wiEikα
+
k , the configuration on the right

in Figure 3.9 should be used. In this case, the outer loop iterates over the rows of the filter matrix, while the
inner loop iterates over its columns. This again ensures that the distribution function array is accessed only
q times (once per element), while the solution vector array is accessed q2 times (q times per element). Again,
this configuration leverages the faster access to the solution vector array in shared memory, optimizing the
matrix multiplication.

Figure 3.9: Different configurations of nested for loops in matrix multiplication. The order of these loops affects which of the two
arrays is iterated over most frequently. When one array has higher access latency, it is more computationally advantageous to
use a configuration that minimizes iterations over that array.
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As a concluding remark, it is important to highlight that the performance gains achieved through the use of dif-
ferent levels of parallelization across various kernels, the application of shared memory for the solution vector
in the collision kernel, and the optimal configuration of matrix multiplications to minimize iterations through the
large distribution array stored in global memory are, as far as we are aware, unique to this research.

3.3. Neutronics Simulation
In addition to simulating thermal fluid dynamics, the neutronics of the reactor core must also be modeled
to capture the complete multiphysics behavior of an MSFR reactor core. While the FM-LBM algorithm can
simulate neutronics using the diffusion approximation [111, 112], this research takes a different approach by
directly solving the full NTE, without relying on the diffusion approximation. This is achieved through the use
of an in-house code, Phantom-SN , which solves the SN -equations via direct numerical simulation using a
discontinuous Galerkin finite element method (DG-FEM) approach [54]. Unlike the FM-LBM code, which is
implemented in Julia-CUDA and optimized for GPU execution, Phantom-SN is written in Fortran-90 [28] and
designed to run on a CPU.

3.3.1. SN-Equations
The SN -equations can be derived from the full formulation of the NTE, including delayed neutrons as given
in Equations 2.15, through a series of approximations that discretizes the equation. The following section
outlines the step-by-step derivation, adapted from [61].

First, the multigroup approximation is applied, where the energy variable is divided into G energy groups. The
NTE is then integrated over each energy group, resulting in G coupled equations, denoted as

1

vg

∂φg

∂t
+Ω · ∇φg +Σt,gφg =

G∑
g′=1

∫
4π

Σs,g′→g

(
Ω′ ·Ω

)
φg′dΩ′

+
(1− β)χp

g

4π

G∑
g′=1

ν̄g′Σf,g′ϕg′ +
χd
g

4π

∑
i

λiCi ,

(3.34)

where φg represents the angular neutron flux and ϕg denotes the scalar neutron flux for energy group g.
This formula is known as the multi-group neutron transport equation (MG-NTE), which represents G coupled
equations, one for each energy group g. The equations are coupled through the scattering term, where the
cross-section Σs,g′→g describes the probability of neutrons scattering from energy group g′ to energy group g.
Furthermore, the nuclear cross-sections are replaced with energy-group average values, which are calculated
using

Σx,g =

∫ Eg−1

Eg
Σx(E)φ(E)dE∫ Eg−1

Eg
φ(E)dE

. (3.35)

Here, Eg denotes the lower energy bound of the energy group g (Note, that the energy group index is reversed
by convention, meaning Eg−1 > Eg). Additionally, the discrete ordinates approximation is applied to the
angular variable to further discretize the MG-NTE. This means, the angular variable is discretized, limiting
the calculations to a discrete set of angles, denoted as {Ωn}. This allows the integration over the angular
directions to be replaced by a summation over the discrete ordinates, weighted by a factorwn for each ordinate∫

4π

f (Ω) dΩ ≈
N∑

n=1

wnf (Ωn) . (3.36)

Finally, the scattering term is discretized using functional expansion, which reformulates the it as a series of
spherical harmonics Yl,m(Ω), defined as

Yl,m(Ω) = Yl,m(θ, ϕ) =

√
(2l + 1)

4π
· (1−m)!

(1 +m)!
Pm
l (cos θ)eimϕ , (3.37)

with θ the polar and ϕ the azimuthal angle corresponding to the solid angle Ω, and Pm
l (x) the associated

Legendre polynomials. As a result, by including the discretization over the angular variable and the scattering
term, the MG-NTE can now be rewritten as
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1
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Here, Y ∗
l,m denotes the complex conjugate of Yl,m, defined as Y ∗

l,m = (−1)mYl,−m, and ϕ̃m
l,g denotes the

expansion coefficients, which can be related back to the angular neutron flux through the relation

ϕ̃m
l,g =

N∑
n′=1

wn′Yl,m(Ωn′)φn′,g . (3.39)

The expression formulated in Equation 3.38 are referred to as the SN -equations. This expression represents a
set of coupled equations corresponding to each combination of energy group g and angular ordinate n. These
equations serve as the foundation of the Phantom-SN algorithm.

3.3.2. Phantom-SN

Phantom-SN employs a DG-FEM algorithm to solve the SN -equations. This approach involves discretizing the
spatial variable using a mesh, where variables within each mesh element are approximated by a superposition
of linearly independent basis functions, denoted as hi(r). The angular flux - for each energy group and angular
ordinate - and the precursor density of species j within each mesh element can then be expressed as

φn,g(r) =
∑
i

φn,g
i hi(r) Cj(r) =

∑
i

Cj
i hi(r) , (3.40)

In this context, φn,g
i and Cj

i represent the coefficients associated with the basis functions. These coefficients
are uniquely defined for each mesh element and are the unknowns to be solved by the Phantom-SN algorithm.

By substituting the expressions from Equation 3.40 into the SN -equations and applying the Galerkin method,
the SN -equations are transformed into a set of coupled linear equations for each combination of energy group
and angular ordinate. When these equations are solved for a specific mesh order, the corresponding matrices
can be organized into a block lower triangular form. Stated more clearly, in this configuration, each block
corresponds to the unknowns within a single mesh element. If the unknowns of different mesh elements are
solved in a specific order— starting from the boundary elements and moving in the direction of the neutron flux
specified byΩn — the block lower triangular form naturally arises, due to boundary conditions being known for
incoming angular fluxes. Adopting this approach allows for an efficient solution of the system of coupled linear
equations, as the block lower triangular structure enables a step-by-step solution process, where each step
depends only on the results from previous steps. This sequential solving method is referred to as a transport
sweep. For a more detailed explanation of the Phantom-SN algorithm see [54, 57, 79].

3.4. Multiphysics Simulation Tool
In the current setup, the FM-LBM algorithm, implemented in Julia-CUDA, is used to solve for the velocity,
temperature, and precursor fields, while the Phantom-SN code, written in Fortran-90, calculates the neutron
flux shape. This coupling scheme is depicted in Figure 3.10, which is a modified version of Figure 2.1. The
updated figure includes labels that clearly indicate which part of the problem is simulated by the FM-LBM
algorithm and which is handled by the Phantom-SN algorithm. From the figure it is clear that some coupling
between the fields is already integrated into the FM-LBM algorithm. This includes the convection terms and
the buoyancy force, both incorporated within the collision kernel of the FM-LBM. Additionally, the figure high-
lights the remaining processes that couple the FM-LBM and Phantom-SN codes. These include the power
source and temperature feedback mechanisms, which couple the neutron flux to the temperature field, and
the precursor source (as a fission product) and delayed neutron source linking the neutron flux to the precursor
field.
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Figure 3.10: Extended schematic overview of key physical quantities
in MSFR reactor core simulations from Figure 2.1. This figure high-
lights which quantities are computed by the FM-LBM and Phantom-SN

codes, as well as the remaining processes that couple these codes.

Figure 3.11: Abstract overview of the cou-
pling between the FM-LBM and Phantom-SN

codes. This figure illustrates the information
that is transferred between the two codes. The
icons on the top right indicate the programming
language the two codes are written in, being
Fortran-90 and Julia.

3.4.1. Coupling Terms
Figure 3.11 provides a more abstract overview of the coupling between the FM-LBM and Phantom-SN codes.
It also outlines the variables exchanged between them, which are used to calculate the necessary coupling
terms shown in Figure 3.10. Below is a summary of how these coupling terms are derived from the respective
fields.

First, the precursor density generates a delayed neutron source in the NTE. In the code, this is managed by
transferring the precursor density, calculated by the FM-LBM algorithm, to the Phantom-SN code. Phantom-
SN then uses this density to compute the delayed neutron source as χd

4π

∑
i λiCi. Second, through fission

interactions, the neutron flux leads to the production of new precursors as a fission product. In the code, this
is handled by passing the scalar neutron flux to the FM-LBM code, after which the precursor source can be
calculated as

QCi
= βi

∑
g

νgΣf,gϕg . (3.41)

Additionally, the scalar flux can also be used to calculate the power source for the heat equation through

q = Efiss
∑
g

Σf,gϕg , (3.42)

where Efiss denotes the energy released from a single fission event. Lastly, the NTE couples back to the
temperature field by transferring the temperature field from the FM-LBM algorithm to Phantom-SN , which
uses it to incorporate temperature feedback effects by adjusting the nuclear cross-sections. These feedback
effects consist of two parts. First, the density feedback resulting from fuel salt expansion is modeled by scaling
the cross-sections as

Σx(T ) = Σx(Tref)
ρ(T )

ρ(Tref)
≈ Σx(Tref) [1− βth(T − Tref)] . (3.43)

Here, the latter formulation applies the same approximation as Equation 2.5, where density variations are
modeled using the reference density and a correction term that is linearly dependent on temperature. This
means, the parameter βth is the same thermal expansion coefficient used to compute the buoyancy force. The
second process involves Doppler effects, which broaden interaction peaks and subsequently modify nuclear
cross-sections. As described in [7, 108], when Doppler effects are also taken into account next to density
feedback, the combined feedback effect can be captured by adjusting the nuclear cross-sections according
to

Σx(T ) =

[
Σx(Tref) + βr ln

(
T

Tref

)]
ρ(T )

ρ(Tref)
. (3.44)

Here, βr is a feedback coefficient distinct from the thermal expansion coefficient βth.

3.4.2. Steady-State Simulation
The Phantom-SN algorithm performs steady-state calculations by solving a keff eigenvalue problem using the
power method [68, 105]. This section outlines the formulation of the keff eigenvalue problem, the workings
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of the power method, and its implementation in the current situation where neutronics and precursor flow
calculations a separated into two distinct algorithms.

By omitting the energy group and angle ordinate indexations and neglecting the time derivative of the angular
flux (as we focus on the steady-state solution), we can reformulate Equations 3.38 and 2.16 concisely using
operator notation as

At
φφφ = As

φφφ+Af
φφφ+AφCC , (3.45)

Au
CCCi = Af

Cφφ . (3.46)

Here, Equation 3.45 represents the NTE, while Equation 3.46 describes the precursor advection-convection
equation. The subscripts of the operators indicate interactions between the neutron flux and the precursor
fields, and the superscripts specify the type of process the operator is associated with (t = transport, s =
scattering, f = fission, u = advection/convection). As commonly described in the literature [30, 61], the keff
eigenvalue problem is obtained by dividing the fission terms by the eigenvalue keff. Using matrix notation,
Equations 3.45 and 3.46 can then be reformulated as[

At
φφ −As

φφ −AφC

0 Au
CC

] [
φ
Ci

]
=

1

keff

[
Af

φφ 0

Af
Cφ 0

] [
φ
Ci

]
. (3.47)

which can be written down concisely as
Mγ =

1

keff
Fγ . (3.48)

This formulation demonstrates that we are dealing with an eigenvalue problem, where keff is the eigenvalue
and γ = [φ Ci]

T is the eigenvector. Phantom-SN addresses this eigenvalue problem numerically using the
power method. This algorithm starts by initializing the eigenvalue k

(0)
eff and the solution vector on the RHS

of Equation 3.48, γ(0), with arbitrary values (or ideally values close to the actual solution). It then proceeds
iteratively, calculating the next solution vector γ(l+1) using the recurrence relation

Mγ(l+1) =
1

k
(l)
eff

Fγ(l) . (3.49)

After each iteration, the eigenvalue is updated according to

k
(l+1)
eff =

∥∥γ(l+1)
∥∥∥∥γ(l)
∥∥ , (3.50)

where ∥.∥ denotes the Euclidean L2 norm. The power method ensures that this iterative procedure eventually
converges to the eigenvector associated with the eigenvalue of largest magnitude [10]. In reactor physics, this
means that the calculated eigenvalue keff corresponds to the fundamental mode of the reactor core, which
is the dominant mode governing the overall behavior of the neutron population [30]. The question, however,
is how to solve Equation 3.49 for a given γ(l) and k

(l)
eff using the combined FM-LBM and Phantom-SN codes.

This process consists of three steps:

1. First, calculate C
(l+1)
i from γ(l) using the lower expression from Equation 3.47. This is done by export-

ing φ(l) from Phantom-SN to the FM-LBM code, calculating the precursor source term Af
Cφφ

(l), and
subsequently running the FM-LBM algorithm from Figure 3.7 until convergence is achieved. This step
basically calculates the steady-state solution of the advection-convection equation for the precursor field
for the given precursor source Af

Cφφ
(l).

2. The resulting precursor field C
(l+1)
i is transferred back to Phantom-SN and used to calculate the dealyed

neutron source (AφCC
(l+1)
i ) in the upper expression of Equation 3.47. Phantom-SN uses this information

to update the fission source (RHS) to φ(l) +AφCC
(l+1)
i .

3. Finally, Phantom-SN solves the upper equation of Equation 3.47, considering only the diagonal term
(At

φφ − As
φφ) in matrix M and using the updated fission source. This step basically corresponds to

solving the steady-state NTE for a fixed delayed neutron source AφCC
(l+1)
i .

After these steps, the new k
(l+1)
eff is calculated using Equation 3.50, and the power method proceeds to the

next iteration by updating γ(l) = γ(l+1). This step basically

It is important to emphasize that this discussion focuses solely on the information exchange between the two
codes concerning precursor transport. However, as illustrated in Figure 3.10, the coupling between the NTE
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and the temperature field must also be considered. This can be easily implemented by calculating the power
source alongside the precursor source when φ(l) is exported to the FM-LBM code. As the FM-LBM code runs
and solves for the velocity, temperature, and precursor fields, the power source directly influences the temper-
ature calculations. This, in turn, indirectly affects the precursor field calculations due to the interdependencies
within the FM-LBM algorithm. On the other hand, when the FM-LBM results are returned to Phantom-SN , the
algorithm provides not only the updated precursor field C

(l+1)
i but also the temperature field. This tempera-

ture field is then used to scale the nuclear cross-sections before Phantom-SN executes the final step (step 3).
Consequently, a two-way coupled system is established for both precursor and heat transport.

One final remark should be made concerning the current implementation of the power method in combination
with thermal hydraulics. In the current approach, the temperature and velocity fields, are solved alongside
the precursor field as part of the FM-LBM calculations. These results subsequently influence the precursor
transport and nuclear cross-sections within the power method calculations. As a consequence, the matrices
M and F of the eigenvalue problem defined in Equation 3.48 are effectively redefined at each iteration of
the power method (implying that these matrices should technically also include a superscript denoting the
iteration step). This means that during each iteration, only a single step of the power method is solved, after
which the eigenvalue problem is redefined. This approach works because the power method does not require
dependence between solution vectors across iterations. The method can begin with any initial solution vector,
and while convergence is achieved faster when the initial vector is closer to the true solution, each iteration
essentially ”forgets” the previous solution vector. In the current implementation, the eigenvalue problem is re-
defined at each iteration, and the power method restarts. As the initial solution vector of the redefined problem
becomes progressively closer to the true solution vector, eventually convergence is achieved within a single
iteration of the power method. An alternative method would involve introducing a second outer loop. In this
approach, the velocity and temperature fields are held constant during each iteration of the outer loop, allow-
ing the power method to solve the eigenvalue problem to full convergence. Subsequently, new temperature
and velocity fields are calculated in the next iteration of the outer loop, leading to a redefinition of the eigen-
value problem and restarting the power method. While this alternative ensures the matricesM and F remain
constant during each power method iteration, solving the full power method repeatedly is significantly more
computationally intensive. In our approach, where temperature and velocity are solved next to the precursor
fields, we essentially take a shortcut to accelerate progress toward the steady-state solution.

3.4.3. Transient Simulation
In transient simulations, the time derivative must be reintroduced into the NTE. In Phantom-SN , time discretiza-
tion is implemented using a backward differing scheme. For instance, when employing a first-order backward
differing scheme, Equation 3.45 is reformulated as

1

vg

φn+1 − φn

∆t
+At

φφφ
n+1 = As

φφφ
n+1 +Af

φφφ
n+1 +AφCC

n+1 . (3.51)

Here, n denotes the time index, and ∆t represents the time step. For a given delayed neutron source term,
AφCC

n+1, Phantom-SN solves the NTE using a similar approach to the steady-state case, but now includes
an additional source term, φn/(∆tvg), which depends on the neutron flux from the previous time step. For
higher-order backward differing schemes, this additional source term becomes more complex.

The transient simulation algorithm can now be summarized as follows. First, the neutron flux, φ0, is initial-
ized. From this initial condition, the algorithm iterates over time steps, performing the following steps in each
iteration:

1. Export the precursor source, Af
Cφφ

n, from Phantom-SN to the FM-LBM algorithm.

2. Compute the precursor density, Cn+1, for the next time step by iterating the FM-LBM algorithm Nt times.
The total simulation time of the FM-LBM algorithm corresponds exactly to the time step of Phantom-SN ,
such that ∆t = CtNt, where Ct is the time conversion factor described in Section 3.1.6.

3. Export the delayed neutron source, AφCC
n+1, back to the Phantom-SN algorithm.

4. Compute the neutron flux, φn+1, for the next time step using Equation 3.51.

These steps demonstrate that the simulation alternates between the FM-LBM and Phantom-SN algorithms.
Each algorithm advances the solution by a time step, ∆t, with the output of one algorithm serving as the
source term for the other in the subsequent iteration. Here, the time step ∆t specifically refers to the time
step used in the Phantom-SN algorithm. The corresponding number of LBM time steps, Nt, can be calculated
using the lattice conversion factor for time as Nt =

∆t
Ct
. To ensure consistency, the simulation parameters of
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the LBM algorithm should be chosen such that dividing the Phantom-SN time step by the lattice conversion
factor results in an integer number of LBM time steps.

Just as in the previous section, we have only described the coupling between the codes concerning precursor
transport. However, thermal coupling can be easily implemented by exchanging additional information when
the codes are switched. Specifically, in the FM-LBM algorithm, the power source is calculated from the neutron
flux alongside the precursor source. This power source is then used as a source term in the heat equation
during the FM-LBM simulations. Additionally, the FM-LBM algorithm exports the temperature field to the
Phantom-SN algorithm, which uses this information to update the nuclear cross-sections before solving for
the neutron flux in the next time step.

3.4.4. Galerkin Projection
Now that we understand what information is transferred between the FM-LBM and Phantom-SN codes, as
well as when it is transferred, we need to clarify how this transfer occurs. The primary reason we cannot
directly use the variable values exchanged between the two codes is that their spatial discretizations differ
significantly. As explained in Section 3.3, the Phantom-SN algorithm employs FEM discretization for the spatial
dimension. In this approach, the neutron flux values across the domain are determined by expressing them
as a linear combination of basis functions, with the coefficients for these functions calculated for each mesh
element, as detailed in Equation 3.40. In contrast, as detailed in Section 3.1, the FM-LBM algorithm considers
particle densities only at a specific set of lattice nodes. Consequently, macroscopic quantities are available
solely at these lattice points, which, in our implementation using link-wise boundary schemes, correspond
to the centers of the computational cells. To obtain values at other locations within the computational cells,
interpolation techniques must be applied between the lattice points.

This fundamental difference in handling the spatial variable poses no issue when transferring information from
Phantom-SN to the FM-LBM algorithm, as variables can be written out on the lattice points using the relations
in Equation 3.40. However, challenges arise when transferring variables from the FM-LBM algorithm back
to Phantom-SN . In this case, values at the lattice points must be transformed into coefficients of the basis
functions for each element. For the precursor densities calculated by the FM-LBM algorithm, this issue is
addressed using the Galerkin projection method [34], which is derived through

C(r) =
∑
i

Cihi(r) ,∫
Ve

C(r)hj(r)dr =

∫
Ve

∑
i

Cihi(r)hj(r)dr ,

∑
q

wqC(rq)hj(rq) ≃
∑
i

Ci

∫
Ve

hi(r)hj(r)dr .

(3.52)

In the first step the precursor field is expressed as a linear combination of basis functions hi(r) and corre-
sponding coefficients, just as in Equation 3.40. In the second step both sides of the equation are multiplied
with a different basis function hj(r) and both sides are integrated over the mesh volume. This corresponds to
a projection of the precursor field onto the basis functions hj(r). In the final step, Gaussian quadrature is em-
ployed to approximate the continuous integration over a mesh element on the LHS by summing the integrand
at specific quadrature points, rq, each multiplied by a corresponding weight, wq, unique to that quadrature
point. This approximation is analogous to the use of angular ordinates, where integrals are also replaced by
summations, as shown in Equation 3.36. When explicitly writing out both indexations i and j, the final line of
Equation 3.52 can be expressed as a matrix system, y = Ax, with the specific components given by

y =


∑

q wqC(rq)h1(rq)∑
q wqC(rq)h2(rq)

...∑
q wqC(rq)hN (rq)

 , A =


∫
Ve

h1(r)h1(r)dr
∫
Ve

h1(r)h2(r)dr . . .
∫
Ve

h1(r)hN (r)dr∫
Ve

h2(r)h1(r)dr
∫
Ve

h2(r)h2(r)dr . . .
∫
Ve

h2(r)hN (r)dr

...
...

. . .
...∫

Ve
hN (r)h1(r)dr

∫
Ve

hN (r)h2(r)dr . . .
∫
Ve

hN (r)hN (r)dr

 , x =


C1

C2

...
CN

 . (3.53)

Here, N denotes the number of basis functions per element, hi(r) are the basis functions,
∫
Ve

denotes the in-
tegration over a mesh element, and Ci are the coefficients of the precursor densities to be determined. Now,
Galerkin projection is performed as follows: For each element, the precursor density values are first deter-
mined at the quadrature points of that element through interpolation in the FM-LBM spatial grid as illustrated
in Figure 3.12. The interpolation techniques used will be discussed in the next section. With these interpolated
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Figure 3.12: Overview of the differential spatial discretization in the FM-LBM and Phantom-SN algorithms, along with the
interpolation process within the LBM lattice grid to determine the physical variables at the quadrature points of the FEM
mesh. When precursor densities are transferred from the FM-LBM algorithm to Phantom-SN , the precursor field is first
interpolated to compute the precursor densities at the quadrature points of each mesh element, denoted as C(rq). Using
this information, the vector y and matrix A, as defined in Equation 3.53, are constructed. The coefficients of the basis
functions for the FEM representation in Phantom-SN are then obtained by solving the matrix system y = Ax, where x
represents the vector containing the coefficients.

values, the vector y and the matrix A can be constructed. The coefficients Ci are then determined for each
element by solving for x in the matrix system y = Ax.

For the temperature field, a more straightforward approach is employed. Since the temperature field in the
Phantom-SN algorithm is used solely to adjust the nuclear cross-sections, there is no need to apply Galerkin
projection to transform the FM-LBM values into FEM coefficients. Instead, we write the temperature values at
the quadrature points through interpolation in the FM-LBM grid. The Phantom-SN algorithm then uses these
values to calculate the average temperature per mesh element as

Tavg =
1

Ve

∫
Ve

T (r)dr ≃ 1

Ve

∑
q

wqT (rq) , (3.54)

where Ve denotes the volume of the mesh element. This approach eliminates the need for all the FEM co-
efficients of the temperature field. This does mean, however, that nuclear cross-sections are not adjusted
continuously throughout the spatial dimension. Instead, they are adjusted on a per-mesh-element basis.

3.4.5. B-Spline Interpolation
As explained in the previous section, the variables exported from the FM-LBM algorithm to Phantom-SN must
be written out on the quadrature points of the FEM mesh elements. Since these points do not coincide with
the lattice grid of the FM-LBM algorithm, interpolation of the FM-LBM results is necessary to extract values at
the quadrature points. To accomplish this interpolation, this research employs B-spline functions.

B-splines are piece-wise polynomial functions consisting of a series of base functions. More specifically, a
B-spline of order p is defined as a linear combination of basis functions Bi,p of degree p [42]. These basis
functions are recursively defined through the zero-order basis functions, which in the case of a 1D application
are defined as

Bi,0(t) =

{
1 if ti ≤ t < ti+1

0 otherwise.
. (3.55)

Here, {ti} denotes the spline knots, which indicate the intervals of the piece-wise polynomial. This means
within these knots, the polynomial is a continuous function. The basis functions of higher-order B-splines can
be defined recursively from lower-order base functions through

Bi,p(t) =
t− ti

ti+p − ti
Bi,p−1(t) +

ti+p+1 − t

ti+p+1 − ti+1
Bi+1,p−1(t) . (3.56)

Figure 3.13 gives an overview of the zero-order, first-order, and second-order base functions in 1D, which are
used for the creation of constant, linear, and quadratic splines. Spline functions are constructed by taking a
linear combination of these basis functions with corresponding weights, resulting in a piecewise polynomial
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Figure 3.13: 1D zero-order, first-order, and second-order base functions for B-spline functions. These base functions are con-
structed using the expressions in Equations 3.55 and 3.56, and by using integer values as spline knots. This figure is adapted
from from [31].

function. For a B-spline function of order p ≥ 1 these piece-wise polynomials intersect at the knot points.
Moreover, the derivatives of the piecewise polynomial up to order p− 1 are also equal at the knots [23].

In the context of interpolation on a lattice grid, B-splines can be utilized to fit a continuous function between
the lattice points. This is achieved by placing the knots of the B-splines on the lattice nodes and selecting
appropriate weights to ensure that the piecewise polynomial passes through all function values on the lattice
grid. This method can also be extended to 2D and 3D by using basis functions appropriate for those dimen-
sions. Figure 3.14 illustrates such interpolation using B-splines for both 1D and 2D. It is important to note that
when zero-order splines are employed, the interpolation function returns the value of the nearest neighbor.
In contrast, for higher orders, such as cubic splines (p = 3), the function between the lattice points becomes
increasingly smooth. In this research, the Interpolations package created by [52] is used to implement the
B-spline interpolation in Julia.

Figure 3.14: Illustration of interpolation in the FM-LBM scheme using B-splines for both 1D and 2D cases.
The order of the basis functions determines the interpolation scheme, zero-order basis functions yield nearest
neighbor interpolation, while higher-order basis functions produce smoother functions between the grid points
of the lattice. This figure is obtained from [101].

3.4.6. Software Coupling
The previous sections outlined the interaction between the FM-LBM and Phantom-SN algorithms, detailing
what information is exchanged, when it is exchanged, and how the differences in their spatial discretizations
are addressed. However, this discussion does not cover the specifics of their communication at the software
level, particularly since the FM-LBM code is implemented in Julia, while the Phantom-SN code is written in
Fortran-90.

In our code implementation, Phantom-SN is designated as the master operator. The primary reason for this
is that the outer loop of the power method had already been implemented in Phantom-SN at the start of this
project. As a result, Phantom-SN initiates and manages the execution of the FM-LBM algorithm. This is ac-
complished in Fortran-90 by making system calls to the Julia executable via the command line interface. Each
time Julia is invoked, the Fortran-90 environment pauses and waits for the FM-LBM code to fully complete,
ensuring that Phantom-SN resumes operation only once the FM-LBM algorithm has finished running.

Furthermore, the exchange of information between the two codes is facilitated through I/O operations, where
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relevant data, such as variable values at quadrature points, is communicated via reading and writing to simple
files. After each invocation of the FM-LBM algorithm, Julia saves the entire computational domain, including
all distribution functions and macroscopic variables. This allows the full domain to be reloaded in subsequent
iterations for continued flow development when an updated flux shape is provided by the Phantom-SN code.

Lastly, all computations in this research were carried out on the DelftBlue supercomputer [1]. The DelftBlue su-
percomputer features both NVIDIA Tesla V100S GPU cores with 32 GB of video RAM and NVIDIA A100 GPU
coress with 80 GB of video RAM, which were used for GPU accelerated FM-LBM algorithm. All performance
results that will be mentioned for the FM-LBM algorithm were specifically measured using the NVIDIA A100
GPUs. Furthermore, all Phantom-SN calculations were performed on the Intel Xeon CPU cores, supported
by 250 GB of RAM, also available on the DelftBlue supercomputer.



4
Validation of Thermal Flow Simulation

Before testing the multiphysics coupling between the FM-LBM and Phantom-SN codes, it is essential to first
validate the accuracy of the FM-LBM code in simulating thermal flows. This intermediate benchmarking serves
as a precautionary measure, ensuring that any errors encountered during multiphysics simulations are less
likely to originate from the FM-LBM algorithm itself and more likely from the coupling between the two codes.

To validate the FM-LBM thermal flow code, we simulate the standard case of a side-heated 2D cavity, where
natural convection drives the flow. In this validation case, only the precursor transport within the FM-LBM
algorithm is excluded from testing. However, since the precursor transport is implemented in a manner almost
identical to heat transport, we can reasonably assume the FM-LBM code functions correctly if it accurately
simulates thermally driven flows.

Section 4.1 provides background on the benchmark setup, detailing the problem geometry, input parameters,
and convergence criteria. Section 4.2 discusses the simulation results and compares them with established
benchmark data. Finally, Section 4.3 includes a brief note on the performance of the FM-LBM code in terms
of simulation speed.

4.1. Benchmark Setup
The simulation of natural convection in a side-heated 2D cavity is a well-established benchmark problem.
In this study, the results obtained using our FM-LBM simulation tool are compared to those of [102], which
employed a traditional finite difference method to solve the Boussinesq equations, as well as [122] and [11],
who both utilized an FM-LBM algorithm. The benchmark geometry consists of a two-dimensional square
cavity filled with air. No-slip boundary conditions are applied to the velocity field on all four walls. Furthermore,
the left wall is cooled to a temperature TCold < Tref, while the right wall is heated to THot > Tref. Here, Tref
represents the reference temperature, which is equal to (TCold + THot)/2. Finally, the top and bottom walls are
adiabatic, meaning Neumann boundary conditions are applied to the temperature field. Figure 4.1 provides a
schematic overview of the fluid domain and the associated boundary conditions.

Figure 4.1: Problem domain of a side-heated 2D square cavity. No-slip boundary conditions are applied to
the velocity field at all four walls. For the temperature field, Neumann boundary conditions are applied at the
top and bottem walls, while the left wall is cooled to a temperature TCold, and the right wall is heated to a
temperature THot. This figure is obtained from [122].

37
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In the case of natural convection within a side-heated cavity, the flow behavior is entirely governed by the
Prandtl number (Pr) and the Rayleigh number (Ra), as defined in Table 2.1. Since air is the working fluid, the
Prandtl number is fixed at Pr = 0.71. In the benchmark, the Rayleigh number is varied across three values,
Ra = 104, 105, and 106, to analyze different temperature and velocity fields. By selecting the number of lattice
pointsN (in anN×N grid), the viscosity ν∗, and the wall temperatures T ∗

Cold and T ∗
Hot, the remaining simulation

parameters can be derived using the definitions of the dimensionless numbers provided in Table 2.1.

Table 4.1 presents an overview of the simulation parameters used in this research to replicate the benchmark
results. Note that the parameter βthg

∗ denotes the product of the thermal expansion coefficient and the
gravitational constant in lattice units. Since these terms only appear in the buoyancy force term, a single
value is determined for their product based on the definition of the Rayleigh number.

Table 4.1: Overview of the FM-LBM parameters used for the simulation of
a side-heated 2D square cavity along with the values in lattice units. The
problem is fully defined by the Pr and Ra numbers. By selecting the num-
ber of lattice points along each axis, the temperatures of the walls, and the
kinematic viscosity of the fluid, the remaining parameters can be calculated
using the definitions of the dimensionless numbers given in Table 2.1.

Parameter Simulation parameter Unit
Ra 104, 105, 106 −
Pr 0.71 −
N 101− 501 ls
T ∗
Hot 20.0 lT

T ∗
Cold 1.0 lT
ν∗ 1.85 · 10−2 ls2lt
α∗ 2.61 · 10−2 ls2lt

βthg
∗ 0.25 ·RaN−3 ls lt−2lT−1

The FM-LBM algorithm is typically a transient solver. However, for simulations of stable flows progressing
toward a steady-state, the number of iterations can also be determined based on a convergence criterion.
The convergence criterion determines when the simulation has converged to the steady-state solution by
comparing the fields at different time instances, and if so, terminates the simulation. In this benchmark study,
we follow the criterion introduced by [122], in which the steady-state solution is achieved when

max
i

{
∥u(xi, t)− u(xi, t− 500∆t)∥

∥u(xi, t)∥
,

√∣∣∣∣T (xi, t)− T (xi, t− 500∆t)

T (xi, t)

∣∣∣∣
}

< 10−6 . (4.1)

Here, xi represents an arbitrary location on the lattice grid,∆t is the LBM time step, and ∥.∥ is the Euclidean L2

norm. This criterion implies that every 500 iterations, the macroscopic variables are calculated and compared
to their values from 500 iterations earlier. If, at any lattice point, the relative change in these variables exceeds
the threshold of 10−6, the program has not yet fully converged.

4.2. Benchmark Results
Before comparing the full velocity and temperature fields with the benchmark studies, the grid dependence of
the simulation results is examined. This is done using a similar approach to [122], where the Nusselt number
at the cold boundary is analyzed with respect to the number of grid points used in the simulation. The Nusselt
number at the cold boundary is calculated as

Nu0 = − 1

∆T

∫ H

0

∂T

∂x

∣∣∣∣
x=0

dy , (4.2)

where, ∆T represents the temperature difference between the cold and hot walls. The second component of
the state vector for the temperature field, as described in Equation 3.20, is used to compute the temperature
gradient. The trapezoidal rule is then applied to numerically integrate this gradient.

Figure 4.2 illustrates the calculated Nusselt number at the cold wall for Ra = 104, 105, and 106 using various
grid resolutions in the thermal flow simulations. The results reveal a clear grid dependence when the number
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of lattice points is insufficient. In this study, simulations were performed using grid sizes ranging from 101×101
to 501 × 501, with increments of 20 points along each axis between successive runs. Although the Nusselt
number continues to decrease slightly for grid sizes larger than 501 × 501, indicating that the problem is not
fully spatially converged, the relative change betweenNu0(N = 501) andNu0(N = 481) was found to be less
than 0.05% across all Ra values. This level of precision is considered sufficient to minimize grid dependence
and produce results that are consistent with benchmark data.

Figure 4.2: This figure illustrates the grid dependence of the simulation results for the side-heated square cavity. It does so by
computing the Nusselt number at the cold wall using Equation 4.2 for various grid sizes. It is assumed that the Nusselt number
converges for all Ra values when a grid size of 501× 501 is used, thereby eliminating grid dependence from the simulation results.

Figure 4.3 presents the simulation result for the velocity and temperature fields for different values of Ra
using a lattice grid of 501 × 501. The plots show that the simulated results qualitatively align well with those
from the benchmark studies. However, a quantitative comparison is needed to fully evaluate the agreement
between our simulation and the benchmarks. To enable this comparison, the velocity and spatial dimensions
are rescaled to dimensionless values based on the simulation parameters, according to

ū =
Nu∗

α∗ , x̄ =
x∗

N
. (4.3)

Using these rescaled variables, Table 4.2 summarizes the maximum horizontal velocity along the vertical cen-
terline along with its corresponding y-coordinate, the maximum vertical velocity along the horizontal centerline
along with its corresponding x-coordinate, and the Nusselt number at the cold wall. These values are directly
compared to those reported in the benchmark studies.

Table 4.2 shows a strong agreement between the simulation results and the benchmark values, with relative
errors below 1% for most parameters. Only the Nusselt number and the ȳmax parameter exhibit relative errors

Table 4.2: Quantitative comparison between simulation results and benchmark results of the side-heated 2D square cavity using
a lattice grid of 501 × 501. This table shows the Nusselt number at the cold wall computed using Equation 4.2, the maximum
horizontal velocity along the vertical centerline along with its corresponding y-coordinate, and the maximum vertical velocity
along the horizontal centerline along with its corresponding x-coordinate. The table shows good aligment between simulation
and benchmark results, with discrepancies for most parameter under 1%.

Study Nu0 ūx,max ȳmax ūy,max x̄max

Ra = 104 [102] 2.238 16.178 0.177 19.617 0.881
[122] 2.245 16.183 0.178 19.627 0.882
[11] 2.232 16.189 0.175 19.631 0.880
Current 2.260 16.189 0.177 19.637 0.881
Error [%] 0.66 - 1.24 0.00 - 0.07 0.00 - 1.13 0.03 - 0.10 0.00 - 0.11

Ra = 105 [102] 4.509 34.73 0.145 68.59 0.934
[122] 4.521 34.74 0.144 68.62 0.935
[11] 4.543 34.74 0.147 68.55 0.933
Current 4.556 34.84 0.145 68.62 0.935
Error [%] 0.29 - 1.03 0.29 - 0.32 0.00 - 1.38 0.00 - 0.10 0.00 - 0.21

Ra = 106 [102] 8.817 64.63 0.150 219.36 0.962
[122] 8.819 64.91 0.148 220.20 0.960
[11] 8.890 65.05 0.150 220.54 0.963
Current 8.901 64.87 0.151 220.56 0.963
Error [%] 0.12 - 0.94 0.06 - 0.37 0.66 - 1.98 0.01 - 0.54 0.00 - 0.31
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Figure 4.3: Simulation results of the side-heated 2D square cavity. This figure shows a streaming plot for the velocity field along
with a heat map of the temperature field for each simulated Ra number. Additionally, all results are obtained using a Pr number
of 0.71.
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exceeding 1%. In the case of ȳmax, the discrepancy arises from the small absolute value of the coordinate
itself, with the absolute error being comparable to that of x̄max, and deviations appearing only at the third
decimal place. For the Nusselt number, the simulation results consistently overshoot the benchmark values.
This discrepancy can likely be attributed to the Nusselt number not being fully converged. As illustrated in
Figure 4.2, using even larger grid sizes would likely yield results that more closely approximate the benchmark
values.

4.3. Performance Analysis
A common practice in the field of LBM research to assess the simulation speed of an algorithm is to measure
the number of cell evaluations per second, more commonly referred to as the number of lattice updates per
second (LUPS). Due to the substantial size of these numbers, it is often more convenient to express this metric
in terms of millions of lattice updates per second (MLUPS), which is defined as

MLUPS =
NGridNT

T
× 10−6 . (4.4)

Here, NGrid denotes the number of grid points, NT represents the number of LBM time iterations performed
in simulation, T is the total simulation time, and the factor 10−6 scales the value from LUPS to MLUPS. As
indicated by the formula, a lattice update involves the complete execution of all simulation steps (propagation,
collision, etc.) for a single LBM time iteration at a single lattice point.

Figure 4.4 shows the simulation speed of the FM-LBM algorithm for thermal fluid computation, comparing
the performance of single versus double precision floating-point numbers. As outlined in Section 3.4.6, these
measurements were conducted using an NVIDIA A-100 GPU. For clarity, a three-dimensional cubic problem
domain was used in these measurements, meaning the total domain consists of N3 lattice points. In this
setup, the additional axis has periodic boundary conditions, effectively simulating the side-heated 2D square
cavity problem but with an added computational load.

Figure 4.4: Simulation speed of the thermal FM-LBM algorithm, expressed in MLUPS, comparing
performance between single and double precision floating-point numbers. Note that, in this context,
a lattice update refers to the complete execution of all kernel functions for both the temperature and
velocity fields at a single lattice point during one LBM time iteration. Furthermore, the simulation speeds
are measured for different cubic domain sizes, where N represents the number of lattice nodes along
a single axis (e.g., N = 200 corresponds to a total of 2003 lattice points).

Figure 4.4 shows that our simulations achieve approximately 390MLUPSwhen using double precision floating-
point numbers. When compared to studies optimizing the LBM algorithm using similar methods (excluding
multi-GPU implementations such as [116]), our performance is within a reasonable range. For instance, [98,
99] report simulation speeds up to 1200 MLUPS using a D3Q19 scheme. However, their studies focus solely
on the velocity field, while our results include computations for both the velocity and temperature fields, ef-
fectively doubling the computational load. Additionally, those studies use a simpler SRT approach for the
collision step with the BGK operator, whereas our research employs the FM-LBM algorithm. This method is
significantly more computationally intensive due to the matrix multiplications involved in the collision kernel,
further explaining the difference in performance.
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Two additional observations can be made from Figure 4.4. First, switching from double precision to single
precision floating-point numbers yields less performance improvement than expected. Since double precision
calculations typically require approximately twice the resources and computing power, one might anticipate a
near twofold increase in performance. However, the number of MLUPS only increases from around 390 to
530 for the maximum domain size of N3 = 2003. Second, the number of MLUPS rises with domain size. In
principle, the computation time for a single LBM iteration should remain constant, irrespective of the number of
lattice points, due to the GPU’s parallel processing capabilities. However, this scaling behavior has its limits.
Beyond a certain point, the GPU’s theoretical advantage diminishes, and increasing the number of lattice
points no longer results in higher MLUPS. This limitation primarily stems from the finite memory bandwidth
of the GPU, which governs the data transfer rate between global memory and processing cores. As more
processing cores attempt to access the memory simultaneously, the bandwidth eventually becomes saturated.

As described by [103], the finite memory bandwidth imposes an upper limit on the achievable lattice evalua-
tions per second. This theoretical maximum can be calculated by dividing the memory bandwidth of the GPU
with the number of reads and writes to memory per lattice node per LBM time iteration as

MLUPSth =
B

106 · 8 · n
. (4.5)

Here, MLUPSth is the theoretical upper limit of MLUPS, B denotes the memory bandwidth of the GPU in
bytes per second, 106 scales LUPS to MLUPS, 8 represents the byte size of double precision floating-point
numbers, and n is the number of reads and writes per lattice node per iteration. For the NVIDIA A100 GPU,
the reported memory bandwidth is approximately 2 TB/s [76]. In our implementation of the FM-LBM algorithm
for both velocity and temperature fields, the total number of reads and writes to global memory per iteration
is approximately 400. Substituting these values, the theoretical maximum MLUPS we can achieve in our
implementation is MLUPSth = 625 for double precision computations. It is important to note that this upper limit
accounts only for the finite bandwidth of global memory and excludes other factors. For instance, the number
of reads and writes to shared memory, estimated at 1500, is not considered. Furthermore, overheads from the
CPU, are also neglected. These include the time it takes to perform kernel launches, and the delay time from
the synchronization of the CUDA cores between consecutive kernel launches. Nonetheless, the calculated
upper limit illustrates that we are in reasonable range with our realized number of MLUPS. Furthermore, it
explains the stagnation of MLUPS with increasing domain size and why MLUPS approaches a constant value
at large domain sizes.

Figure 4.5: Execution time of various kernel functions for simulating both velocity and temperature fields, comparing single and
double precision floating-point numbers. The execution times are measured for different cubic domain sizes, whereN represents
the number of lattice nodes along a single axis (e.g., N = 200 corresponds to a total of 2003 lattice points).

The effect of memory bandwidth saturation is further demonstrated in Figure 4.5, which presents the average
execution times of various kernel functions for different grid sizes. The execution times increase with domain
size, following a cubic relationship. This scaling behavior is expected, as doubling the number of lattice nodes
along each axis results in an eightfold increase in total lattice nodes, thereby necessitating a proportional
increase in global memory reads and writes. Since the finite memory bandwidth is likely the bottleneck for
simulation speed in our case, this cubic scaling is reflected in Figure 4.5. Additionally, the figure highlights
that the collision kernel is the most computationally demanding part of the simulation. This is attributed to
the two matrix multiplications performed within the kernel, which are resource-intensive for CUDA cores. In
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contrast, the propagation and boundary condition kernels primarily involve reading neighboring node values,
making them less demanding. Furthermore, the collision kernel accounts for the highest number of memory
operations, including all 1500 shared memory reads and writes and approximately half of the global memory
reads and writes.



5
Validation of Steady-State Multiphysics

Coupled Simulation

Having confirmed that the FM-LBM algorithm accurately models thermal flows, the next step is to validate its
multiphysics coupling with the Phantom-SN algorithm. To benchmark the fully coupled system, the Tiberga
benchmark case [96] is employed. This benchmark study simulates the behavior of a fuel salt within a 2D
lid-driven square cavity. The process begins by simulating individual variables independently, followed by
progressively increasing the degree of coupling between the variables. This step-by-step approach helps
isolate and identify potential errors within specific components of the multiphysics simulation tool.

Section 5.1 provides an overview of the benchmark study and includes a brief explanation of the convergence
criteria employed. Section 5.2 details the methods used to quantify simulation errors and explains how sim-
ulation results are compared to the benchmark results. Sections 5.3 to 5.5 focus on steps 0.1 to 0.3 of the
benchmark study, where the velocity, temperature, and neutron flux fields are solved independently. Sections
5.6 to 5.9 then cover steps 1.1 to 1.4, where these fields are progressively coupled, culminating into a fully
coupled system at step 1.4. Finally, Section 5.10 provides a remark on the convergence speed of power
method used in steady-state simulation.

It is important to note that throughout steps 0.1 to 1.4, all simulations are carried out using the power method
described in Section 3.4.2. This means the results presented in this chapter correspond to steady-state con-
ditions. In the next chapter, transient simulations will be carried out and compared to the benchmark results.

5.1. Benchmark Setup
Figure 5.1 illustrates the problem space of the benchmark, which consists of a two-dimensional, lid-driven
square cavity measuring 2 m by 2 m. The velocity field is subject to no-slip boundary conditions on all four
walls, with only the top wall moving at a non-zero velocity, denoted as Ulid. For both the temperature and
precursor fields, von Neumann boundary conditions are applied at all four walls. A vacuum boundary condition
is imposed on the neutron flux at each wall. Only density feedback effects are considered in the coupling
between temperature and neutron flux, which means Doppler feedback effects are ignored. The cavity is
filled with a LiF -BeF2-UF4 fuel salt. The properties of this salt are assumed to be uniform and temperature-
independent throughout the domain. The atomic composition of the fuel salt is provided in Table 5.1. To
facilitate the cooling of the salt, a volumetric heat sink is introduced, defined as

q(r) = γ(Tref − T (r)) , (5.1)

where γ represents the volumetric heat transfer coefficient, and Tref = 900K is the reference temperature.
The flow properties of this benchmark case are characterized by the Reynolds number (Re), Prandtl number
(Pr), and Schmidt number (Sc) as defined in Table 2.1. Throughout the study, a Reynolds number of 40 is

Table 5.1: Atomic composition of the LiF - BeF2 - UF4 fuel salt used in the Tiberga benchmark study [96].

Isotope 6Li 7Li 9Be 19F 235U

Atomic fraction (%) 2.11488 26.0836 14.0992 56.3969 1.30545

44
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Figure 5.1: Problem domain of the Tiberga benchmark study. The domain consists of a lid-driven cavity that mea-
sures 2 m by 2 m. No-slip boundary conditions are applied to the velocity field on all four walls, with the top wall
moving at a constant velocityUlid. Von Neumann boundary conditions are imposed on the temperature and precursor
fields at all four walls, while vacuum boundary conditions are applied to the neutron flux. Physical variables along
centerlines AA’ and BB’ are analyzed to validate simulation results against the benchmark data [96].

maintained. The Prandtl number and Schmidt number are set to exceptionally high values of 3.075 · 105 and
2.0 · 108, respectively. As will be discussed later, these values are significantly reduced in this application to
reduce the computational effort of the FM-LBM code.

For the neutron calculations, the JEFF-3.1 library [53] is employed at a reference temperature Tref = 900 K,
with neutronics data generated through the use of Serpent [60]. A comprehensive overview of the nuclear
cross-sections and other relevant nuclear parameters from the benchmark is provided in Appendix A. The
neutron flux is categorized into six energy groups, the upper energy bounds of which are specified in Table
5.2. Additionally, the precursor calculations incorporate eight precursor families. Their respective fractions
and decay constants are detailed in Table 5.3 [96] .

Table 5.2: Upper bounds of the six
energy groups as used in the Tiberga
benchmark study [96] .

Group g EB (MeV)
1 2.000 · 101

2 2.231 · 100

3 4.979 · 10−1

4 4.479 · 10−2

5 5.531 · 10−3

6 7.485 · 10−4

Table 5.3: Fractions and decay constants of the eight precursor fam-
ilies as used in the Tiberga benchmark study [96].

Family i λi (sec−1) βi (-)
1 1.24667 · 102 2.33102 · 104

2 2.82917 · 102 1.03262 · 103

3 4.25244 · 102 6.81878 · 104

4 1.33042 · 101 1.37726 · 103

5 2.92467 · 101 2.14493 · 103

6 6.66488 · 101 6.40917 · 104

7 1.63478 · 100 6.05805 · 104

8 3.55460 · 100 1.66016 · 104

Since the benchmark study also includes results generated with the Phantom-SN algorithm for neutron flux
simulation, the exact code specifications for Phantom-SN are replicated from the benchmark case. Thismeans
the neutron flux is computed on a 50 × 50 structured square mesh, with a polynomial order of p = 1 for the
basis functions. Additionally, the angular variable is discretized into six ordinates in each quadrant of the 2D
problem space, meaning the S6 equations are solved.

Finally, for convergence toward the steady-state solution, two distinct convergence criteria need to be defined.
The first is for the power method, which serves as the outer loop in steady-state simulations. As explained
in Section 3.4.2, the solution vector γ(l), which contains the coefficients for the neutron flux and precursor
densities at power iteration l, converges to the true solution in the limit. In this research, the iterative process
is terminated when ∥∥γ(l+1) − γ(l)

∥∥∥∥γ(l+1)
∥∥ < 10−4 , and

∣∣∣∣∣k
(l+1)
eff − k

(l)
eff

k
(l+1)
eff

∣∣∣∣∣ < 10−6 . (5.2)
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This indicates that the relative changes in the solution vector and the effective multiplication factor are less
than 10−4 and 10−6, respectively.

Additionally, within the outer loop of the power method, the FM-LBM algorithm is called at each iteration. The
simulations carried out by this algorithm also progress toward a steady-state solution for the given precursor
and power sources. Therefore, a convergence criterion must also be defined for the FM-LBM algorithm. This
is done by extending the convergence criterion given in Equation 4.1 to include the eight precursor densities
as

max
i,j

{
∥u(xi, t)− u(xi, t− 500∆t)∥

∥u(xi, t)∥
,

√∣∣∣∣T (xi, t)− T (xi, t− 500∆t)

T (xi, t)

∣∣∣∣,
√∣∣∣∣Cj(xi, t)− Cj(xi, t− 500∆t)

Cj(xi, t)

∣∣∣∣
}

< 10−4
. (5.3)

Note that the threshold of the FM-LBM algorithm has been slightly relaxed from 10−6, as specified in Equation
4.1, to 10−4. This adjustment was implemented to reduce the computation time required for the complete
simulation tool to achieve a steady-state solution, without losing accuracy. Further explanations regarding
this choice are provided in Section 5.10.

5.2. Error Quantification
To compare the simulation results with those of the benchmark, various quantities are evaluated along the
horizontal and vertical centerlines, labeled AA’ and BB’ in Figure 5.1. For a consistent comparison of neutron
flux in steady-state computations, the final neutron flux is normalized to a reference power of Pref = 1 GW.

The Tiberga benchmark is a collaborative effort involving researchers from four different universities, each
developing their own multiphysics simulation tools for MSFR core simulations. As a result, the benchmark
includes the outcomes from four distinct simulation codes, enabling a comparative analysis of their outputs.
In this study, the simulation results are assessed against the benchmark by analyzing the discrepancy in
simulation variables, defined as

εQ =

√√√√∑Np

i=1(Qc(xi)−Qavg(xi))2∑Np

i=1 Q
2
avg(xi)

. (5.4)

In this equation, Np represents the number of evaluation points for the variable Q being compared to the
benchmark. Qc(xi) denotes the results from the current simulation tool at evaluation point xi, while Qavg(xi)
represents the average results from the benchmark study at evaluation point xi, calculated as the mean of
the outputs from the various benchmark codes. When the evaluation points of the benchmark results do not
align with the lattice grid, cubic B-spline interpolation, as described in Section 3.4.5, is applied.

5.3. Step 0.1: Velocity field
The first step of the benchmark is to simulate the velocity field independently of the other fields. Since the
velocity field is driven by the upper lid, no external input is required for this simulation. Although this step
may appear somewhat redundant, given that our FM-LBM has already demonstrated its ability to accurately
simulate flow, it is still included for completeness.

The parameters relevant to the simulation of the velocity field are presented in Table 5.4 in both physical and
LBM units. The conversion from physical to LBM units was performed using the LBM conversion factors as
outlined in Section 3.1.6.

Table 5.4: Simulation parameter used for the computation of step 0.1 of the Tiberga benchmark case, which involves the
independent simulation of the velocity field in the lid-driven square cavity. The parameters are given in both physical and LBM
units, where the conversion factors described in Section 3.1.6 are used to transform the physical values to the LBM values.

Parameter Physical value Physical unit LBM value LBM unit
Re 40 − 40 −
L 2.0 m 501 ls
ρ 2.0 · 103 kg m−3 1.00 lm ls−2

ν 2.5 · 10−2 m2s−1 0.63 ls2lt−1

Ulid 0.5 m s−1 0.05 ls lt−1
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Before presenting the simulation results, the grid dependence is first analyzed by evaluating the discrepancy
with the benchmark results as a function of grid size. As described in the previous section this is done by
comparing the velocity field on the horizontal (AA’) and vertical (BB’) centerlines to the benchmark results,
where the discrepancies are quantified using Equation 5.4. Figure 5.2 illustrates the average discrepancy with
the benchmark as a function of the number of grid points N per dimension, where the full domain consists of
N ×N lattice nodes in total.

Figure 5.2: Average discrepancies of the horizontal and vertical components of the simulated velocity field along the horizontal and
vertical centerlines as a function of grid size. The x-axis shows the number of gridpoints N along a single dimension, where in total
there are N × N lattice points. The discrepancies are calculated by comparing our simulation results with the average The left plot
includes the results from the PSI benchmark code, while they are omitted in the right plot due to deviations in these results with respect
to the other benchmark codes. The discrepancies are determined by comparing our simulated velocity field to the ensemble mean
velocity field, calculated by averaging the results from the various benchmark codes, as explained in Section 5.2.

Figure 5.2 contains two plots showing the discrepancy as a function of grid size: one with (left) and one without
(right) the results from the PSI code in the benchmark. The PSI results are excluded in the second plot as
they tend to deviate, particularly for the uy variable along the vertical centerline, causing a slight increase in
εuy

beyond N = 201, as seen in the left plot of Figure 5.2. In the right plot, the discrepancies converge at a
grid size of 501× 501, indicating that grid dependence has diminished from the simulation results beyond this
point.

Figures 5.3 and 5.4 present the simulation results for the horizontal and vertical components of the velocity
field, respectively, for a grid size of 501 × 501. Both figures compare the simulation results with benchmark
data from various codes and illustrate the velocity field along the horizontal and vertical centerlines. Our
simulation results show strong agreement with the benchmark data, with average discrepancies of 0.10% for
ux along AA’, 0.26% for ux along BB’, 0.42% for uy along AA’, and 0.43% for uy along BB’.

Figure 5.3: Simulation results of step 0.1 form the Tiberga benchmark. This figure shows the horizontal component of the velocity
field along the horizontal and vertical centerlines along with the benchmark data. The results from this research are obtained using
the FM-LBM algorithm on a simulation grid of 501× 501.
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Figure 5.4: Simulation results of step 0.1 form the Tiberga benchmark. This figure shows the vertical component of the velocity field
along the horizontal and vertical centerlines along with the benchmark data. The results from this research are obtained using the
FM-LBM algorithm on a simulation grid of 501× 501.

5.4. Step 0.2: Neutron flux
In step 0.2 of the Tiberga benchmark, the neutron flux shape is calculated independently from all other fields.
As mentioned in the previous section, the benchmark study includes results generated with the Phantom-SN

algorithm. Specifically, the TUD-S6 results apply the same specifications used in this research, where the
S6-equations are solved. The primary objective of this step is to accurately replicate the TUD-S6 benchmark
results. Given that Phantom-SN is a sophisticated code with various configurations and use cases, success-
fully reproducing these results ensures that the code is being used correctly.

The relevant parameters for simulating the neutron flux are listed in Table 5.5. These parameters are provided
in physical units only, as Phantom-SN operates with SI units. The temperature is uniformly set to the reference
value, resulting in constant nuclear cross-sections throughout the domain. Additionally, the neutron flux is
normalized at the end of the power iteration such that the total reactor power matches its reference value.

Table 5.5: Simulation parameter used for the computation of step 0.2 of
the Tiberga benchmark case, which involves the independent simulation of
the neutron flux in the square cavity, with a uniform temperature distribution
equal to the reference temperature.

Parameter Physical value Physical units
Pref 1.0 · 109 W

T = Tref 900 K

Figure 5.5 shows the simulated fission rate density along the horizontal centerline AA’, derived from the neutron
flux, alongside the benchmark results. Due to the problem’s symmetry, the results along the vertical centerline
are identical. The results obtained in this research are in exact agreement with the TUD-S6 benchmark results.
Specific fission rate density values at key coordinates, as documented in the benchmark study, match those
simulated here. These values are presented in Table 5.6 for completeness. Moreover, the same reactivity of
ρ = 578.1 pcm observed in the TUD-S6 benchmark is reproduced in this study. As a result, we can conclude
that the neutronics simulations successfully replicates the benchmark results in the absence of flow, confirming
the correct operation of the Phantom-SN code.

5.5. Step 0.3: Temperature field
In step 0.3 of the Tiberga benchmark, the temperature field is simulated independently from the other fields.
To facilitate thermal convection, the velocity field simulated in step 0.1 is imposed as a fixed velocity field.
Additionally, the neutron flux shape calculated in step 0.2 is used to calculate a power source through Equation
3.42, which is also held constant throughout the simulation.

Although the code has already demonstrated its ability to simulate thermal flows, this step is again included
for completeness. It also serves as the initial test to ensure the correct transfer of data from Phantom-SN
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Coordinate
∫
E ΣfΦdE (m−2s−1)

(0.00, 1.00) 6.833 · 1017

(0.25, 1.00) 7.463 · 1018

(0.50, 1.00) 1.300 · 1019

(0.75, 1.00) 1.667 · 1019

(1.00, 1.00) 1.796 · 1019

(1.25, 1.00) 1.667 · 1019

(1.50, 1.00) 1.300 · 1019

(1.75, 1.00) 7.463 · 1018

(2.00, 1.00) 6.833 · 1017

Table 5.6: Fission rate density at key coordinates
along the AA’ centerline calculated using the sim-
ulated neutron flux from step 0.2 of the Tiberga
benchmark case. These results exactly match
those from the TUD-S6 benchmark results.

Figure 5.5: Simulated fission rate density along the horizontal cen-
terline from Step 0.2 of the Tiberga benchmark case, alongside the
benchmark results. In this step, the neutron flux is calculated inde-
pendently of all other fields.

to the FM-LBM algorithm, as the neutron flux must be translated from the FEM basis function coefficients to
values on the FM-LBM grid using the expressions in Equation 3.40.

The relevant parameters for simulating the temperature field are listed in Table 5.7. The thermal diffusivity, α,
is calculated using the Pr number and the fluid properties detailed in Table 5.4. The reference temperature
is copied from Table 5.5 and is included to provide its corresponding LBM value.

Table 5.7: Simulation parameter used for the computation of step 0.3 of the Tiberga benchmark case, which involves the
independent simulation of the temperature field in the lid-driven square cavity. The parameters are given in both physical and
LBM units, where the conversion factors described in Section 3.1.6 are used to transform the physical values to the LBM values.
Note the reduction of the Prandtl number in our FM-LBM simulations compared to the benchmark value. This reduction leads
to a different physical value for the thermal diffusivity.

Parameter Physical value Physical unit LBM value LBM unit
Pr 3.075 · 105 - 1000 -
γ 1.0 · 106 W m−3K−1 7.17 · 10−3 lm ls−1lt−3lT−1

Cp 6.15 · 106 J m−3K−1 1.10 · 102 lm ls−1lt−2lT−1

Tref 900 K 1.0 lT

α
Benchmark: 8.13 · 10−8

Reduced Pr: 2.50 · 10−5
m2s−1 6.27 · 10−4 ls2lt−1

As indicated in Table 5.7 and discussed earlier in Section 5.1, the Prandtl number has been significantly
reduced compared to the value used in the benchmark case. This adjustment is made as a Prandtl number
of 3.075 · 105 is unrealistically high for an MSFR core, which typically operates within a range of 1 to 35 [4].
But more importantly, these high Prandtl values significantly increase the computational effort of the FM-LBM
algorithm. Higher Prandtl numbers demand increased viscosities (ν∗) to maintain stability in LBM simulations.
In turn, this requires a larger simulation grid to preserve a constant Reynolds number, greatly increasing
computational costs. Additionally, larger grids slow the convergence to steady-state solutions, making high
Prandtl number simulations even more computationally intensive.

To understand the impact of reducing the Prandtl number on the simulation results, we must understand
the meaning of the Prandtl number. This can be achieved by non-dimensionalizing the heat equation from
Equation 2.4 as

PrRe[ũ · ∇̃T̃ ] = −∇̃2T̃ +K(GrPr)1/4(1− T̃ ) . (5.5)

In this equation,K is a constant related to the Nusselt number, which represents the ratio of total heat transfer
to heat transfer via conduction, and Gr is the Grashof number, characterizing the ratio of buoyancy forces to
viscous forces in the fluid. The tilde notation denotes non-dimensionalized variables, scaled to their charac-
teristic values as outlined in Section 2.1.3.
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From Equation 5.5, it is evident that increasing the Prandtl number enhances the relative influence of the
convection and heat sink terms over diffusion. This implies that, for the high Prandtl number used in the
benchmark case, diffusion effects can essentially be neglected. However, in our system, we already expect
diffusion to be minimal due to relatively small temperature gradients in the domain, which is a result of the
volumetric heat sink distributed uniformly throughout the domain. Therefore, it is expected that, even with
lower Prandtl numbers, the convection and heat sink terms will dominate. As a result, further increasing the
Prandtl number is unlikely to significantly affect the temperature field, as the diffusion term is already negligible.
The only notable temperature variations are expected to arise from the shape of the power source, as depicted
in Figure 5.5. However, beyond a certain Prandtl number, even the diffusion effects from these gradients will
become negligible.

To validate our assumption that reduced Prandtl numbers can yield similar simulation results compared to the
benchmark, the left graph in Figure 5.6 shows the average discrepancy in the simulated temperature along the
centerlines for different Prandtl numbers on a 501× 501 lattice grid. Additionally, the right graph of Figure 5.6
illustrates the grid dependence of the simulation results, similar to Figure 5.2, this figure shows the average
discrepancy plotted against the number of grid points.

Figure 5.6: Average discrepancy with benchmark results from step 0.3 as a function of Prandtl number (left) and grid size (right). In
the left figure, the simulation where performed using a grid size of 501× 501. In the right figure, the simulation where performed using
a Prandtl number of 1000. Furthermore, in the right plot, the x-axis denotes the number of lattice nodes per dimension, which means
the total grid consists of N × N lattice points. The discrepancies are determined by comparing our simulated velocity field to the
ensemble mean velocity field, calculated by averaging the results from the various benchmark codes, as explained in Section 5.2.

Figure 5.6 shows that the grid dependency has diminished for simulations using a grid size of 501× 501 and
higher. Additionally, the average discrepancy does not decrease further when Prandtl numbers greater than

Figure 5.7: Discrepancy per evaluation point with benchmark results from step 0.3 as a function of Prandtl number. The left figure
shows the discrepancy along the horizontal centerline, while the right figure shows the discrepancy along the vertical centerline. In
both figures, the simulation where performed using a lattice grid of 501× 501. The discrepancies are determined by comparing our
simulated velocity field to the ensemble mean velocity field, calculated by averaging the results from the various benchmark codes,
as explained in Section 5.2.
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1000 are used. This confirms our assumption that the benchmark results can be accurately reproduced with
reduced Prandtl numbers. To further analyze the effect of reduced Prandtl numbers on simulation errors,
Figure 5.7 presents the average discrepancy at each evaluation point along the horizontal (left) and vertical
(right) centerlines for various Prandtl values. These figures show that the average discrepancy is highest near
the boundaries, which is a consequence of the temperature gradients being the steepest at the boundary due
to the Neumann boundary conditions. Consequently, the approximation of using a reduced Prandtl number
performs less effectively at the boundaries. Moreover, the figures also indicate that increasing the Prandtl
number only slightly reduces simulation errors near the boundaries, while further from the boundary, the
solution has already converged for relatively small Prandtl values.

Finally, Figure 5.8 presents the resulting temperature field along the horizontal (left) and vertical (right) cen-
terlines for a simulation grid of 501× 501 with a Prandtl number of 1000, compared to the benchmark results.
The figure demonstrates good alignment between the current implementation and the benchmark data, with
average discrepancies of 0.18% along the AA’ centerline and 0.18% along BB’.

Figure 5.8: Simulated temperature field along the horizontal (left) and vertical (right) centerlines in step 0.3 of the Tiberga benchmark
case for a simulation grid of 501 × 501 with a Prandtl number of 1000, compared to the benchmark results. The label FM-LBM 501
+ Phantom-SN indicates that the simulations are performed using the FM-LBM algorithm on a 501 × 501 lattice grid with the power
source being generated by Phantom-SN .

5.6. Step 1.1: Circulating fuel
Step 1.1 of the Tiberga benchmark addresses precursor transport due to circulating fuel. In this step, the first
coupling is established between neutronics and flow calculations. To simplify the problem, the velocity field
remains fixed based on the results from step 0.1, and temperature effects are disregarded. This means, a
uniform temperature field at the reference temperature is assumed across the domain, leading to constant
nuclear cross-sections. As a result, this step only simulates neutron flux and precursor transport under the
imposed velocity field. The primary objective of this step is to assess the reactivity change resulting from
precursor transport. Additionally, it offers the first opportunity to test the two-way coupling between the FM-
LBM code and the Phantom-SN code for precursor transport.

The relevant parameters for simulating precursor transport are provided in Table 5.8. These should be com-
plemented with the parameter listed in Table 5.4 and 5.5 for the velocity and neutron fields, respectively.

Table 5.8: Simulation parameter used for the computation of step 1.1 of the Tiberga benchmark case, which involves the
simulation of precursor transport due to circulating fuel. The parameters are given in both physical and LBM units, where the
conversion factors described in Section 3.1.6 are used to transform the physical values to the LBM values. These parameter
should be complemented with the parameter listed in Table 5.4 and 5.5 for the velocity and neutron fields to obtain the full list
of parameters used in this simulation step. Note the reduction of the Schmidt number in our FM-LBM simulations compared to
the benchmark value. This reduction leads to a different physical value for the molecular diffusivity.

Parameter Physical value Physical unit LBM value LBM unit
Sc 2.0 · 108 - 1500 -

D
Benchmark: 1.25 · 10−10

Reduced Sc: 1.67 · 10−5
m2s−1 4.18 · 10−4 ls2lt−1
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Similar to the Prandtl number adjustment in step 0.3, the Schmidt number is also significantly reduced, as
shown in Table 5.8. This reduction follows the same rationale as for the Prandtl number: higher Schmidt
numbers require larger viscosity values (ν∗) to maintain numerical stability, which in turn necessitate larger
simulation grids to preserve a constant Reynolds number. The grid sizes associated with these very high
Schmidt values lead to computational costs that are impractical for this research. Consequently, the Schmidt
number is significantly lowered.

The impact of this reduced Schmidt number can again be analyzed through a non-dimensional approach, this
time focusing on the advection-diffusion equation for precursor transport. By disregarding the fission source
term in Equation 2.16, we can reformulate the advection-diffusion equation as

ScRe[ũ · ∇̃C̃i] = ∇̃2C̃i −DaC̃i . (5.6)

Here,Da represents the Damköhler number, which relates the diffusion timescale to the decay rate of the pre-
cursors and increases with the Schmidt number. The tilde notation indicates non-dimensionalized variables,
scaled by their characteristic values. As with the Prandtl number, increasing the Schmidt number amplifies
the effects of the convection and the sink terms over diffusion. This implies that high Schmidt values, as in
the benchmark case, effectively ignore diffusion effcts. Given the small precursor gradients observed in our
simulations, diffusion effects are expected to be already small, hence, even with a reduced Schmidt number,
convection and sink terms can dominate. As a result, we expect that further increasing the Schmidt number
is therefore unlikely to notably impact the precursor field.

For simplicity, this non-dimensional analysis excludes the fission source term in Equation 2.16. Including this
term would introduce a second Damköhler number that relates the diffusion timescale to the rate of precursor
production from fission events, which also increases with the Schmidt number. However, this does not alter
the conclusion that high Schmidt numbers effectively allow diffusion effects to be neglected.

Figure 5.9: Average discrepancy with benchmark results from step 1.1 as a function of Schmidt number (left) and grid size (right).
In the left figure, the simulation where performed using a grid size of 501 × 501. In the right figure, the simulation where performed
using a Schmidt number of 1500. Furthermore, in the right plot, the x-axis denotes the number of lattice nodes per dimension, which
means the total grid consists of N ×N lattice points. The discrepancies are determined by comparing our simulated velocity field to
the ensemble mean velocity field, calculated by averaging the results from the various benchmark codes, as explained in Section 5.2.

To validate our assumption that a reduced Schmidt number yields simulation results comparable to the bench-
mark, the left graph in Figure 5.9 presents the average discrepancy in the simulated delayed neutron source,
calculated as

∑
i λiCi, along the centerlines for various Schmidt numbers on a 501×501 lattice grid. This figure

shows that a Schmidt number of 1500 results in an average discrepancy of approximately 0.5% on both cen-
terlines, and further increasing the Schmidt number does not improve accuracy, confirming our assumption.
Additionally, the right graph in Figure 5.9 illustrates the grid dependency of the simulation results, displaying
the average discrepancy as a function of grid size. This figure illustrates that grid dependency diminishes for
simulations with grid sizes of 501× 501 and larger.

Similarly to step 0.3, Figure 5.10 presents the average discrepancy of the delayed neutron source at each
evaluation point along the horizontal (left) and vertical (right) centerlines for various Schmidt numbers to iden-
tify where simulation errors are largest. These figures again show that the average discrepancy is highest
near the boundaries, which is a consequence of the precursor gradients being the steepest at the boundary
due to the Neumann boundary conditions. Consequently, using a reduced Schmidt number is less effective
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Figure 5.10: Discrepancy per evaluation point with benchmark results from step 1.1 as a function of Schmidt number. The left figure
shows the discrepancy along the horizontal centerline, while the right figure shows the discrepancy along the vertical centerline. In
both figures, the simulation where performed using a lattice grid of 501× 501. The discrepancies are determined by comparing our
simulated velocity field to the ensemble mean velocity field, calculated by averaging the results from the various benchmark codes,
as explained in Section 5.2.

near the boundaries. Furthermore, the figures demonstrate that increasing the Schmidt number only slightly
reduces simulation errors near the boundaries, while further from the boundaries, the solution has already
converged for relatively small Schmidt values.

Figure 5.11 presents the simulated delayed neutron source along the horizontal (left) and vertical (right) cen-
terlines for a simulation grid of 501× 501 with a Schmidt number of 1500, compared to the benchmark results.
The figure demonstrates good alignment between the current implementation and the benchmark data, with
average discrepancies of 0.65% along the AA’ centerline and 0.48% along BB’.

Figure 5.11: Simulated delayed neutron source along the horizontal (left) and vertical (right) centerlines in step 1.1 of the Tiberga
benchmark case for a simulation grid of 501× 501 with a Schmidt number of 1500, compared to the benchmark results.

Finally, the impact of precursor transport on reactivity is evaluated. In the benchmark study, this is done by
calculating the reactivity difference between the current simulation and the simulation result from step 0.2,
in which where the flux shape is computed independently of the flow field. Table 5.9 presents the effective
multiplication factor, reactivity, and reactivity change relative to step 0.2, as calculated in this study, alongside
benchmark values for comparison. The results demonstrate strong agreement with the benchmark, particu-
larly in the reactivity change values relative to step 0.2. This agreement arises because the reactivity change
metric inherently accounts for differential handling in the neutronics calculations. As previously discussed, the
TUD code is the only simulation tool in this benchmark that solves the full NTE without relying on the diffusion
approximation. Consequently, if diffusion-based codes introduce an error in the simulated reactivity compared
to transport-based codes, this error is effectively canceled when calculating reactivity differences with respect
to step 0.2. This error cancellation explains the greater consistency observed in the benchmark results for the
reactivity change, ρ1.1 − ρ0.2, compared to the absolute reactivity values of this simulation step. Furthermore,
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it also explains why our findings show the closest alignment with results from the TU-S6 simulation code. This
is due to the identical handling of the neutronics calculations, in which the Phantom-SN algorithm solves the
full NTE, without relying on the diffusion approximation, as the other simulation tools do.

Table 5.9: Effective multiplication factor, reactivity (in per cent mille), and reactivity change
relative to step 0.2, as calculated in this study for step 1.1 of the Tiberga benchmark case,
shown alongside benchmark values for comparison.

Code keff ρ (pcm) ρ1.1 − ρ0.2 (pcm)
FM-LBM 501 + Phantom-SN 1.00516126 513.5 -64.7
CNRS-SP1 1.00350021 348.8 -62.5
CNRS-SP3 1.00291950 291.1 -62.6
PoliMi 1.00360495 359.2 -62.0
PSI 1.00349920 348.7 -63.0
TUD-S2 1.00422377 420.6 -62.0
TUD-S6 1.00520091 517.4 -60.7

5.7. Step 1.2: Power coupling
In step 1.2 of the Tiberga benchmark case, the coupling between thermal hydraulics and neutronics calcula-
tions is further enhanced. In addition to precursor transport, power coupling is now achieved. This means
that the power output from the neutronics calculations is used as a source term in the heat equation, while the
temperature field is used to adjust the nuclear cross-sections according to Equation 3.43. Consequently, this
step achieves full two-way coupling between our FM-LBM algorithm and the Phantom-SN code for both power
and precursor flow. For simplicity, buoyancy effects are disregarded, and the imposed velocity field from step
0.2 is maintained in this step, isolating any potential errors in the simulation results to the power coupling.
The primary objective of this step is to evaluate the reactivity change resulting from the combined coupling of
the temperature field and neutron flux, in addition to the precursor coupling. The parameters relevant to this
simulation step can be compiled from the parameters of the previous steps provided in Tables 5.4, 5.5, 5.7,
and 5.8.

From this point on, given the findings in Figures 5.6 and 5.9, it is assumed that simulations converge for grid
sizes of 501× 501, a Prandtl number of 1000, and a Schmidt number of 1500 in the current benchmark setup.
Consequently, in the remaining steps these values will be used, and no analysis will be performed on grid
dependence and the convergence of the simulation results with respect to the Prandtl and Schmidt number.

Figure 5.12: Simulated temperature field along the horizontal (left) and vertical (right) centerlines in step 1.2 of the Tiberga benchmark
case for a simulation grid of 501×501 with a Prandtl number of 1000 and Schmidt number 1500, compared to the benchmark results.

The observables that will be compared to the benchmark results in this step are the temperature field, shown
in Figure 5.12, and the differential fission rate density between the current simulation of the neutron flux and
the results from step 0.2, shown in Figure 5.13. These results align well with the benchmark studies, showing
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Figure 5.13: Differential fission rate density with the simulation result of step 0.2 along the horizontal (left) and vertical (right) center-
lines in step 1.2 of the Tiberga benchmark case for a simulation grid of 501×501 with a Prandtl number of 1000 and Schmidt number
1500, compared to the benchmark results.

average discrepancies of 0.18% along AA’ and 0.19% along BB’ for the temperature field, and 3.49% along
AA’ and 1.23% along BB’ for the differential fission rate density relative to step 0.2.

An important observation from Figure 5.13 is the ridged shape of the differential fission rate density. This
pattern arises from the Phantom-SN algorithm, which adjusts cross-sections based on average temperature
values per element, unlike other codes that use a point-wise approach. As a result, this pattern is also seen in
the TU Delft results, as these results also make use of the Phantom-SN algorithm. The reason why this ridged
shape is so clearly visible is because the differences in neutron flux shape between the current simulation
and step 0.2 are relatively small, effectively providing a close-up view of the results from the Phantom-SN

algorithm. In contrast, the neutron flux shapes themselves are two orders of magnitude larger, forming an
overall smooth curve. This ridged shape also accounts for the relatively high discrepancy observed in the
differential fission rate density compared to previously reported discrepancies. This is consistent with findings
from the benchmark study, which also reports larger discrepancies among different benchmark codes for the
differential fission rate density.

Similar to step 1.1, Table 5.10 presents the reactivity change resulting from the combined effects of precursor
and power coupling on the simulation results. It includes the effective multiplication factor, reactivity, and reac-
tivity change relative to step 1.1, as calculated in this study, alongside the benchmark values for comparison.
The simulated results show strong agreement with the benchmark, particularly for the reactivity change. As
explained in the previous section, the greater consistency between benchmark results and our results for the
reactivity change compared to the absolute reactivity, is due to the fact that this metric corrects for the differ-
ences in neutronics simulation. Where we acknowledge that our simulation tool and the TUD simulation code
solve the full NTE, whereas the other simulation tools rely on the diffusion approximation. This also explain
why our results most closely align with those of the TUD-S6, given the identical treatment of the neutronics
calculations.

Table 5.10: Effective multiplication factor, reactivity (in per cent mille), and reactivity change
relative to step 1.1, as calculated in this study for step 1.2 of the Tiberga benchmark case,
shown alongside benchmark values for comparison.

Code keff ρ (pcm) ρ1.2 − ρ1.1 (pcm)
FM-LBM 501 + Phantom-SN 0.9940334 -600.2 -1113.7
CNRS-SP1 0.9920320 -803.2 -1152.0
CNRS-SP3 0.9914576 -861.6 -1152.7
PoliMi 0.9920458 -801.8 -1161.0
PSI 0.9920035 -806.1 -1154.8
TUD-S2 0.9928061 -724.6 -1145.2
TUD-S6 0.9939903 -604.6 -1122.0
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5.8. Step 1.3: Buoyancy
In step 1.3 of the Tiberga benchmark case, the fully coupled system, now including buoyancy effects, is
examined under the simplest conditions, specifically with Ulid = 0.0. This means that the imposed velocity
field from step 0.1 is removed, and all fields are now solved in the simulation, subject to all coupling processes.
Since the full coupling between thermal hydraulics and neutronics has already been validated in step 1.2, any
discrepancies in the simulation results compared to the benchmark codes at this stage can be attributed to
the inclusion of buoyancy effects in the thermal hydraulics code. This step represents the first opportunity
to evaluate the performance of the complete multiphysics tool developed in this research. The parameters
relevant to this simulation step are compiled by combining those provided in Tables 5.4, 5.5, 5.7, and 5.8,
along with the parameters specifically associated with buoyancy effects given in Table 5.11.

Table 5.11: Simulation parameter used for the computation of step 1.3 of the Tiberga benchmark case, which involves the
simulations using the full coupled system also including buoyancy effects. The parameters are given in both physical and LBM
units, where the conversion factors described in Section 3.1.6 are used to transform the physical values to the LBM values.
These parameters should be complemented with the parameters given in Tables 5.4, 5.5, 5.7, and 5.8 to obtain the full list of
parameters used in this simulation step.

Parameter Physical value Physical unit LBM value LBM unit
βth 2.0 · 10−4 K−1 1.80 · 10−1 lT−1

g 9.81 m s−2 3.91 · 10−4 ls lt−2

Figures 5.14, 5.15, 5.16, and 5.17 present the simulation results for the horizontal and vertical components
of the velocity field, the temperature field, and the delayed neutron source along the horizontal and vertical
centerlines, respectively. These results correspond to a simulation grid of 501× 501, with a Prandtl number of
1000 and a Schmidt number of 1500. The simulation shows strong agreement with the benchmark results with
average discrepancies of 0.51% along AA’ for the horizontal velocity component, 0.76% along AA’ and 0.17%
along BB’ for the vertical velocity component, 0.14% along AA’ and 0.20% along BB’ for the temperature field,
and 0.90% along AA’ and 1.01% along BB’ for the delayed neutron source. While the discrepancies for the
delayed neutron source appear relatively large compared to the others reported, this level of discrepancy is
also observed in the benchmark study between the different benchmark codes. This can also be observed from
the results presented in Figure 5.17, where the differences in the delayed neutron source results across the
various benchmark codes are more clearly visible compared to other observables presented in this simulation
step.

Finally, analogous to steps 1.1 and 1.2 of the Tiberga benchmark case, Table 5.12 presents the simulated
effective multiplication factor, reactivity, and reactivity change relative to step 0.2, alongside the benchmark
values. Just as in the previous steps, we observe particularly good alignment with the benchmark results for
the reactivity change, as this observable accounts for the differential handling of the neutronics calculations
(as explained in section 5.6). For the reactivity itself, the results align most closely with those of the TUD-S6

benchmark code, as this is the only code that also considers neutron transport calculations, whereas the other
benchmark codes rely on the neutron diffusion approximation.

Figure 5.14: Simulated horizontal velocity component along the horizontal (left) and vertical (right) centerlines in step 1.3 of the
Tiberga benchmark case for a simulation grid of 501 × 501 with a Prandtl number of 1000 and Schmidt number 1500, compared to
the benchmark results.
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Figure 5.15: Simulated vertical velocity component along the horizontal (left) and vertical (right) centerlines in step 1.3 of the Tiberga
benchmark case for a simulation grid of 501 × 501 with a Prandtl number of 1000 and Schmidt number 1500, compared to the
benchmark results.

Figure 5.16: Simulated temperature field along the horizontal (left) and vertical (right) centerlines in step 1.3 of the Tiberga benchmark
case for a simulation grid of 501×501 with a Prandtl number of 1000 and Schmidt number 1500, compared to the benchmark results.

Figure 5.17: Simulated delayed neutron source along the horizontal (left) and vertical (right) centerlines in step 1.3 of the Tiberga
benchmark case for a simulation grid of 501 × 501 with a Prandtl number of 1000 and Schmidt number 1500, compared to the
benchmark results.
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Table 5.12: Effective multiplication factor, reactivity (in per cent mille), and reactivity change
relative to step 0.2, as calculated in this study for step 1.3 of the Tiberga benchmark case,
shown alongside benchmark values for comparison.

Code keff ρ (pcm) ρ1.3 − ρ0.2 (pcm)
FM-LBM 501 + Phantom-SN 0.9940039 -603.2 -1181.4
CNRS-SP1 0.9919730 -809.2 -1220.5
CNRS-SP3 0.9914045 -867.0 -1220.7
PoliMi 0.9920064 -805.8 -1227.0
PSI 0.9919858 -807.9 -1219.6
TUD-S2 0.9927933 -725.9 -1208.5
TUD-S6 0.9939735 -606.3 -1184.4

5.9. Step 1.4: Full coupling
Step 1.4 is the final step of the Tiberga benchmark study that focusses on steady-state simulations. In this
step, the same setup as in the previous step is used, where all fields are simulated with all coupling processes
applied. However, this time the simulation is performed for different values of Ulid (> 0.0) and Pref. Rather than
comparing the various observables fields along the centerlines AA’ and BB’ for all combinations of Ulid and
Pref, the benchmark study only reports the reactivity changes compared to the simulation results from step
0.2 for the different benchmark codes. In total, 30 different combinations of Ulid and Pref are considered in the
benchmark study.

In this research, a selection of 4 combinations ofUlid and Pref are chosen from the 30 reported in the benchmark
study, corresponding to Ulid ∈ {0.3 ms−1, 0.5 ms−1}, and Pref ∈ {0.6 GW, 1.0 GW}. The simulated reactivity
and reactivity changes for these combinations are presented in Table 5.13, alongside the values reported
in the benchmark study. Additionally, the observables along the vertical and horizontal centerlines for the
simulation with Ulid = 0.5 ms−1 and Pref = 1.0 GW are provided in Appendix B for completeness.

Table 5.13: Reactivity (in per cent mille) and reactivity change relative to step 0.2 for different values of
Ulid and Pref, as calculated in step 1.4 of the Tiberga benchmark case, which considers the fully coupled
multiphysics system. The results are presented alongside the values reported in the benchmark study
for comparison.

Code Pref (GW)

Ulid (ms−1) 0.6 1.0 0.6 1.0
ρ (pcm) ρ1.4 − ρ0.2 (pcm)

FM-LBM 501 + Phantom-SN -134.6 -595.0 -712.7 -1173.1
CNRS-SP1 -323.9 -800.8 -735.2 -1212.1
CNRS-SP3 -381.6 -858.7 -735.3 -1212.4
PoliMi -312.8 -797.8 -734.0 -1219.0
PSI 0.3 -323.9 -795.1 -735.6 -1206.8
TUD-S2 -245.1 -717.6 -727.7 -1200.2
TUD-S6 -135.1 -598.3 -713.2 -1176.4

FM-LBM 501 + Phantom-SN -130.8 -586.7 -708.9 -1164.8
CNRS-SP1 -321.6 -793.5 -732.9 -1204.8
CNRS-SP3 -379.3 -851.5 -733.0 -1205.2
PoliMi -315.8 -792.8 -737.0 -1214.0
PSI 0.5 -321.4 -788.1 -733.1 -1199.8
TUD-S2 -242.6 -710.4 -725.2 -1193.0
TUD-S6 -132.7 -591.6 -710.8 -1169.7
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Table 5.13 demonstrates strong alignment between our simulation results and the benchmark data. It shows
that the quality of our simulation results is consistent across the different values of Ulid and Pref. Just as in
previous steps, we observe that our simulated reactivity aligns most closely with the TUD-S6 results, as this
is the only benchmark code that accounts for neutron transport effects. Furthermore, the reactivity change
relative to step 0.2, as calculated in this research, shows closer alignment with all benchmark studies, not
just the TUD-S6 results. As explained in section 5.6, this is because the reactivity change controls for the
differential handling of the neutronics simulation across the various benchmark codes.

Step 1.4 of the Tiberga benchmark case completes the validation of the full multiphysics simulation tool under
steady-state conditions. Overall, our code demonstrates strong alignment with the simulation results from
the benchmark studies. In all benchmark steps, the observables compared along the horizontal and vertical
centerlines show average discrepancies of less than one percent compared to the benchmark studies, except
for the differential fission rate density shown in Figure 5.13. As explained, this discrepancy is due to the mesh-
based approach used in Phantom-SN for handling temperature feedback effects on the nuclear cross-sections.
Finally, the simulated reactivities in each benchmark step consistently aligned closely with the TUD-S6 results,
given that this simulation tool also solves the complete NTE without relying on the diffusion approximaion.
Furthermore, the reactivity changes with respect to the independent calculation of the neutron flux in step
0.2, showed great consistency across all benchmark results. As explained in section 5.6, this agreement in
reactivity changes between all benchmark results, including those solving the neutron diffusion equations, are
due to this metric effectively accounting for the differential handling of the neutronics calculations between
the codes. Based on these findings, we can conclude that the multiphysics simulation tool developed in this
research yields satisfactory results under steady-state conditions.

5.10. Convergence Speed
All steady-state simulations from steps 1.1 to 1.4 used the power method to solve the complete system. Within
this framework, the Phantom-SN algorithm is used to solve the neutron flux, while the FM-LBM algorithm is
responsible for solving the remaining fields. This setup involves a nested loop structure, with both loops requir-
ing convergence criteria. The power method, serving as the outer loop, converges when the relative changes
in the solution vector γ(l) and the effective multiplication factor k(l)eff satisfies the convergence criteria specified
in Equation 5.2. The FM-LBM algorithm operates as the inner loop, advancing the velocity, temperature, and
precursor fields over several LBM time steps until these fields reach convergence, which is based on their
relative changes, as defined in Equation 5.3.

To optimize computational efficiency, an appropriate combination of thresholds for these convergence criteria
must be selected. The power method’s convergence criteria ultimately determine the accuracy of the simu-
lation results and must therefore be set to ensure the desired accuracy. However, the convergence criterion
of the FM-LBM algorithm also plays a critical role, as this criterion directly influence the number of iterations
required for the power method to achieve convergence. Setting a strict convergence threshold for the FM-
LBM algorithm ensures that the velocity, temperature, and precursor fields reach a steady state solution within
each iteration of the power method. This minimizes the number of power method iterations required to reach
full convergence of the system. Conversely, relaxing the FM-LBM convergence criterion introduces small
errors due to partially converged fields, requiring additional power method iterations to compensate. This is
because the power method relies on the previous iteration’s partially converged solution vector. In such cases,
the FM-LBM algorithm is invoked more times, allowing it to advance the fields toward their true steady-state
solutions.

The main point to be made here, is that within these steady-state simulations, the FM-LBM algorithm proved
to be the most time consuming to reach steady-state. Particularly during the first few iterations of the power
method, the FM-LBM algorithm required significantly more time to converge to a threshold of 10−6 than a
threshold of 10−4. To address this, a trade-off can be made by relaxing the FM-LBM convergence criteria.
A relaxed threshold results in fewer LBM time steps per power method iteration, thereby reducing the com-
putation time of the FM-LBM algorithm for each power iteration. However, this comes at the expense of
introducing additional power method iterations to achieve overall steady-state convergence. The challenge
lies in selecting an FM-LBM convergence criterion that balances the computational time of the FM-LBM al-
gorithm per power iteration with the number of additional power iterations required, ultimately minimizing the
total simulation time for the entire multiphysics tool.

In our simulations, a threshold of 10−4 for the FM-LBM algorithm was found to be the most effective choice.
This threshold was determined through trial and error, where different configurations were tested, and the
one providing the most acceptable simulation time was selected. It is important to note, however, that this
threshold may not always represent the optimal value. Multiple other simulation parameters also affect this
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choice, such as the LBM parameters that influences the convergence time of the FM-LBM algorithm. With that
said, the LBM parameters should also be chosen most favorably, such that, for a given grid size, the FM-LBM
algorithm also reaches steady-state solutions in the shortest time possible, while maintaining both numerical
stability and accuracy.



6
Validation of Transient Multiphysics

Coupled Simulation

Having confirmed the successful coupling between the FM-LBM algorithm for thermal hydraulics and the
Phantom-SN algorithm for neutronics, as well as the capability of our multiphysics simulation tool to produce
accurate steady-state solutions, the next step is to validate its performance under transient conditions. This
validation step builds on the results from the previous chapter, as we continue benchmarking our simulation
results against those presented in the Tiberga benchmark study [96].

Section 6.1 outlines the benchmark setup from the Tiberga study in the case of transient simulations. Section
6.2 presents our simulation results and compares them with the benchmark data. Section 6.3 analyzes the
computational performance of the overall multiphysics system and its components.

6.1. Benchmark Setup
In the last step of the Tiberga benchmark case, the transient behavior of the simulation tools are tested. This
step essentially builds upon the steady-state simulation results of step 1.4, which considers the full coupled
system with Ulid = 0.5 ms−1 and Pref = 1.0 GW, whose results can be found in Appendix B. This means the
complete setup described in Section 5.1 for the steady state simulations stays the same. The problem is then
made transient by imposing a perturbation in the frequency domain, specifically by oscillating the heat transfer
coefficient through time. This means the new time dependent heat transfer coefficient is given by

γ(t) = γ0 [1 + 0.1 sin (2πfpertt)] , (6.1)

where γ0 denotes the reference heat transfer coefficient equal to the heat transfer coefficient used in the
steady state simulations, and fpert denotes the perturbation frequency. The perturbation in the frequency
domain basically means that the transient simulation is initialized with the steady state solution calculated in
step 1.4 of the benchmark study, and from that point immediately starts with the oscillation of the heat transfer
coefficient through time.

In response to the time dependent variation of the heat transfer coefficient we expect an oscillating motion
in the power output of the simulation due to the negative density feedback coefficient. To measure whether
the system response is consistent across the different simulation tools, the benchmark study reports the
normalized power gain and phase-shift between the heat transfer coefficient and the power output, where the
normalized power gain is defined as

Gain =
(Pmax − Pavg)/Pavg

(γmax − γavg)/γavg
. (6.2)

Here, the denominator will correspond to the amplitude of γ(t), Pavg will equal the initial reference power of
1 GW, and Pmax is the maximum power output measured during the transient simulation. Furthermore, the
phase-shift is calculated by comparing the times at which different maxima and minima occur between heat
transfer coefficient and the power output. Specifically, the phase-shift is calculated using

Phase-shift = 2π · f

2N

{
N∑
i=1

[
tiγmax − tiPmax

]
+

N∑
i=1

[
tiγmin − tiPmin

]}
. (6.3)
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Here, a total of N maxima and minima are compared, which excludes the first two maxima and minima. This
exclusion is intentional to ensure the system has reached a quasi-equilibrium state, where the oscillatory
motion remains consistent across different oscillations. It is important to note that this omission of the first two
maxima is also applied when determining Pmax for the calculation of the power gain.

In the benchmark, the phase-shift and the power gain are calculated for a total of 7 different perturbation
frequencies corresponding to fpert ∈ {0.0125, 0.025, 0.05, 0.1, 0.2, 0.4, 0.8}. Following the setup used in the
TUD-S6 code from the benchmark study, the timesteps for the Phantom-SN algorithm are set to 1/200 of
the perturbation period associated with each frequency. Additionally, the number of FM-LBM timesteps is
determined by using the time unit conversion factor to ensure that the total physical time simulated by the
FM-LBM algorithm matches the timestep of the Phantom-SN algorithm.

A remark must be made regarding the determination of the FM-LBM timesteps. Since the transient simulations
begin from the steady-state results of step 1.4, they are inherently constrained by a specific time conversion
factor determined by the LBM simulation parameters used in step 1.4. This constraint has two key implications.
First, as the perturbation frequency increases, the Phantom-SN timesteps decrease, which in turn reduces the
number of FM-LBM timesteps per Phantom-SN timestep. One way to address this issue is to perform multiple
steady-state simulations with LBM parameters chosen such that, in transient simulations, the number of FM-
LBM timesteps per Phantom-SN timestep remains constant across all perturbation frequencies. However, this
approach was not adopted in this work for two reasons. Firstly, the transient simulations already demonstrated
satisfactory results, making it unnecessary to generate steady-state results with different time conversion
factors that would lead to more FM-LBM timesteps per Phantom-SN . Secondly, steady-state simulations with
the required parameters would take an unfeasibly long time to converge.

The second implication is that for higher perturbation frequencies, the number of FM-LBM timesteps corre-
sponding to one Phantom-SN timestep not always resulted an integer number. Since the FM-LBM algorithm
cannot simulate a fractional number of timesteps, this posed a challenge. This issue was resolved by con-
ducting additional steady-state simulations with slight variations in the LBM viscosity parameter. These adjust-
ments where chosen in such a way, that the time conversion factor ensured the number of FM-LBM timesteps
per Phantom-SN timestep in transient simulations was an integer number. For completeness, Table 6.1 pro-
vides an overview of the number of FM-LBM timesteps per Phantom-SN timestep for the different perturbation
frequencies.

Table 6.1: Overview of the number of FM-LBM timesteps per Phantom-SN timestep for various perturbation frequencies. When
the time conversion factor from the steady-state simulations led to a non-integer number of FM-LBM timesteps, additional steady-
state simulations were conducted with slightly adjusted LBM viscosity values. These adjustments produced a time conversion
factor that ensured an integer number of FM-LBM timesteps in the transient simulations.

Perturbation frequency (s−1) Phantom-SN timestep (s) Number of FM-LBM timesteps (lt)
0.0125 0.4 1002
0.025 0.2 501
0.05 0.1 250
0.1 0.05 125
0.2 0.025 63
0.4 0.0125 31
0.8 0.00625 16

6.2. Benchmark Results
Before comparing our simulation results to the benchmark data, Figure 6.1 first gives a snapshot of the oscillat-
ing motion of the heat transfer coefficient and the power output in the transient simulation for two perturbation
frequencies 0.0125 and 0.2 by displaying the normalized deviations of γ(t) and P (t), defined as

γ̃(t) =
γ(t)− γavg

γavg
, P̃ (t) =

P (t)− Pavg

Pavg
. (6.4)

Here, γavg is equal to γ0 and Pavg is equal to the reference power of 1 GW. These figures clearly illustrate how
the power output oscillates as a result of the perturbation in the heat transfer coefficient. Furthermore, we see
how the different frequencies of the perturbation affect this power response, where the phase-shift becomes
larger and the gain becomes smaller for higher perturbation frequencies, which is a result of the response
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time of the system being to large to capture the rapid variations in the salt cooling. Snapshots of the transient
simulations from the other perturbation frequencies can be found in Appendix C.

Figure 6.1: Snapshots of the normalized deviations of the heat transfer coefficient and the resulting power output in the transient
simulations for two different frequencies fpert = 0.0125 (left) and fpert = 0.2 (right). These figure illustrate the system response of
the output power to the perturbation on the heat transfer coefficient in the frequency domain.

To compare the response of the system to the perturbation in the heat transfer coefficient to the benchmark
codes, Figure 6.2 shows the phase shift and the normalized power gain corresponding to the different per-
turbation frequencies in Bode plots. The left figure shows that there is not a lot of deviation in the calculated
power gain between the different benchmark codes, and that the power gain calculated using our simulation
tool shows good alignment with these values. The right figure, however, illustrates that the corresponding
values for the phase-shift is somewhat scattered between the different benchmark codes. In the benchmark
study the average discrepancies between the benchmark codes for the phase-shifts is calculated as 2.2 %
which they considered acceptable. Our results follow the same general shape of the phase-shift with respect
to the perturbation frequency and shows a similar order of discrepancy with the other benchmark results.

From the Bode plots in Figure 6.2 it can be concluded that the system response to a perturbation in the
frequency domain correctly matches those found in the benchmark study. As a result, we can conclude
that the multiphysics simulation tool developed in this research is also able to accurately simulate transient
behaviour next to steady-state solutions, thereby completing the Tiberga benchmark case.

Figure 6.2: System response to a perturbation in the frequency domain on the heat transfer coefficients illustrated with the use of
Bode plots. The plots show the power gain (left) and the phase-shift (rigth) between the oscillating variations of the heat transfer
coefficient and the resulting power output.

6.3. Performance Analysis
Now that the multiphysics simulation tool has been successfully completed and demonstrated to provide sat-
isfactory results under both steady-state and transient conditions, we move to evaluating its performance.



6.3. Performance Analysis 64

This evaluation focuses exclusively on the FM-LBM algorithm, which encompasses the thermal hydraulics
and precursor transport. The performance of the Phantom-SN code is not assessed in this research, as our
contributions to it were limited to adding code to facilitate its coupling with the FM-LBM algorithm. The core
functionality of Phantom-SN , which involves solving the NTE using DG-FEM, was neither designed nor imple-
mented by us. As a result, decisions related to its implementation and potential performance optimizations
is not of interest to this research. Remarks on the performance of Phantom-SN and possible improvements
can be found in [92]. Additionally, the performance impact of the coupling between the algorithms is also
not included in this assessment. It should be noted, however, that the process of exchanging variables be-
tween the thermal hydraulics and neutronics codes via plain file I/O, combined with restarting the Julia code
during each iteration, is highly time-consuming and significantly affects overall performance. These inefficien-
cies arise from implementing the thermal hydraulics code and the neutronics code in different programming
languages. The Julia language was selected for the FM-LBM code to leverage its extensive GPU functionali-
ties, especially regarding memory management, while Phantom-SN was already implemented in Fortran-90.
These limitations could be addressed by developing a unified codebase that integrates both Phantom-SN and
FM-LBM in a single programming language. However, rewriting the Phantom-SN code into Julia code would
be an extremely time-intensive task and falls outside the scope of this project due to the substantial complexity
of the existing code.

Analogous to section 4.3 the performance of the FM-LBM algorithm is addressed by evaluating the number
of cell evaluations per second in terms of million lattice updates per second (MLUPS), as defined in Equation
4.4. Figure 6.3 illustrates the amount of MLUPS as a function of domain size, comparing the performance of
single versus double precision floating-point numbers. Note that the x-axis in Figure 6.3 denotes the number
of lattice points along a single axis, while in reality the total domain consists of N2 lattice nodes. The figure
illustrates a maximal performance of around 57 MLUPS for double precision floating-point numbers and 70
MLUPS for single precision floating-point numbers for the full FM-LBM algorithm including precursor transport.

Two observations can be made regarding Figure 6.3. First, the number of cell evaluations per second for
double precision floating-point numbers does not appear to follow a smooth function with domain size. This
behavior especially stands out when compared to the single precision floating-point results or the functions
presented in Figure 4.4, where smooth, stagnating functions are observed for both single and double pre-
cision floating-point numbers. When comparing to the other functions, the double precision floating-point
performance in the current simulation tool seem to exhibit a noticeable drop around N = 450 and N = 500.
These inefficiencies can be attributed to the behavior of the warp scheduler. In the current complex setup, with
multiple distribution functions, a variety of kernel functions, and different levels of parallelization across these
kernel functions, it is impossible to say what the warp scheduling process actually looks like. As described in
Section 2.4.5, the warp scheduler allocates full blocks at once. It is plausible that domain configurations of
4502 and 5002 result in suboptimal block allocation, leading to inefficiencies in the warp scheduling process
and, consequently, a reduction in the number of lattice evaluations per second.

Figure 6.3: Simulation speed of the FM-LBM algorithm including precursor transport expressed in MLUPS, com-
paring performance between single and double precision floating-point numbers. Note that, in this context, a lattice
update refers to the complete execution of all kernel functions for both the velocity, temperature, and precursor fields
at a single lattice point during one LBM time iteration. Furthermore, the simulation speeds are measured for different
square domain sizes, where N represents the number of lattice nodes along a single axis (e.g., N = 200 corre-
sponds to a total of 2002 lattice points).
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The second notable observation concerns the performance of the current simulation results compared to the
results presented in Chapter 4 for the FM-LBM algorithm applied to thermal fluid simulation without precursor
transport, as shown in Figure 4.4. For both single and double precision floating-point calculations, the num-
ber of MLUPS decreases by approximately a factor of 7 compared to these results. This performance drop
exceeds expectations, considering that the computational load only increases by a factor of 5 when introduc-
ing 8 precursor distribution functions in addition to the distribution functions for velocity and temperature, as
now the total number of distribution functions increases from 2 to 10. Given that the number of reads and
writes to both global and shared memory scales proportionally with the number of distribution functions, the
theoretical upper limit, as defined in Equation 4.5, should decrease by a factor of 5. This suggests that the ob-
served performance degradation, which is greater than 5, cannot be solely attributed to oversaturated memory
bandwidth. Instead, it indicates the presence of additional performance limitations. Potential bottlenecks can
include increased CPU overhead due to the need to launch a greater number of kernel functions or excessive
demand for shared and register memory. The latter could lead to memory overspill, where excess memory
allocations are redirected to the slower global memory rather than the faster, intended memory tiers. How-
ever, accurately identifying these additional performance constraints, beyond the finite memory bandwidth
of the GPU, requires further investigation into this specific implementation of the FM-LBM algorithm and its
associated performance issues.

Nevertheless, the maximum performance of 57 MLUPS for double precision floating-point numbers is still
deemed satisfactory, particularly when compared to serial implementations of NTH tools using LBM. For in-
stance, in a similar study, [80] employed a serial implementation of the LBM algorithm to simulate both thermal
hydraulics with precursor transport and neutronics. In the final step of the Tiberga benchmark study, they re-
ported a simulation time of 23 hours for a transient simulation involving 100,000 time steps on a 50 × 50
lattice grid using double precision floating-point numbers, corresponding to a performance of approximately
0.03 MLUPS. Even if we conservatively double this performance to account for the additional computational
load of simulating neutronics fields, the GPU-accelerated LBM approach still achieves a performance gain of
nearly 1000 times. This significant improvement underscores the efficiency and strength of GPU-accelerated
LBM in NTH tools.



7
Advancing Towards Actual Molten Salt

Fast Reactor Core Simulations

At this stage, we have developed a multiphysics simulation tool that couples thermal hydraulics simulations
with neutronics simulations, and we have demonstrated that this simulation tool produces satisfactory results
under both steady-state and transient conditions. In some respects, the simulation tool represents significant
advancements over other solutions presented in the literature, such as the inclusion of neutron transport ef-
fects, thereby eliminating the need for the diffusion approximation in neutronics calculations. However, in
other aspects, the simulation tool meets only minimal requirements for simulating the multiphysics within an
MSFR reactor core. For example, we have thus far only considered laminar flow conditions and reduced prob-
lem spaces by simulating in a 2D square geometry. This chapter provides a forward-looking discussion on
the necessary extensions and improvements required for the multiphysics tool to achieve accurate and com-
prehensive modeling of a realistic MSFR reactor core, moving beyond the simplified conditions and reduced
problem spaces thus far employed.

Section 7.1 discusses the extension of the simulation tool to three-dimensional problem spaces. Furthermore,
Section 7.2 provides a short background in turbulent modeling and explains how this can be incorporated
into the LBM framework. Lastly, Section 7.3 explores the implementation of the MSFR core geometry and its
implications for the boundary condition schemes of the LBM algorithm.

7.1. 3D Modeling
Thus far, the NTH tool has been used exclusively for simulations in two-dimensional problem spaces. How-
ever, to perform calculations in realistic MSFR geometries, it is necessary to extend these simulations to
three-dimensional spaces. Fortunately, Phantom-SN is designed to handle both 2D and 3D problem geome-
tries, enabling three-dimensional neutronics simulations simply by implementing a three-dimensional mesh
and running Phantom-SN in “3D mode”. Moreover, the FM-LBM algorithm developed in this research is also
fully implemented in 3D. This means, the D3Q19 simulation scheme, as shown in 3.1, was used for all 2D
calculations. However, these simulations were modeled using a single layer of lattice nodes along the ad-
ditional axis. A periodic boundary condition along this axis was applied to effectively reduce the domain to
two dimensions. This approach is feasible because the 2D and 3D implementations of the LBM algorithm are
fundamentally the same. The only difference is that the kernel functions iterate over additional directions in
3D schemes, whereas the underlying collision and propagation computations remain unchanged. Finally, the
coupling mechanism between Phantom-SN and FM-LBM is designed to support both 2D and 3D simulations.
During 2D simulations, dummy values are assigned to the third coordinate, which are replaced by actual data
in 3D simulations. Furthermore, Galerkin projection and B-Spline interpolation are both implemented to han-
dle both 2D and 3D cases. As a result, while the benchmark problems presented in this work showcase only
two-dimensional results, the framework is fully prepared for three-dimensional applications.

To illustrate the capability of the NTH tool to perform simulations in three-dimensional space, we conducted
steady-state simulations of a molten salt in a cubic box. In these simulations we use the same property
characteristics of the fuel salt, and nuclear data as given in the Tiberga benchmark problem. Furthermore,
we examine two scenarios: First, a purely buoyancy-driven flow, and second, a buoyancy-driven flow with
an induced shear momentum source. In both cases, we apply no-slip boundary conditions for the velocity
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field, adiabatic boundary conditions for the temperature field, vacuum boundary conditions for the neutron
flux, and Neumann boundary conditions for the precursor densities on all six walls. In the second scenario
we introduce a fixed velocity Uwall directed along ŷ at the plane x = L, which generates a shear momentum
source in addition to the buoyancy force. Finally, just as in the the Tiberga benchmark case, we facilitate salt
cooling by introducing a volumetric heat sink, and we model temperature feedback effects on the neutronics
only through density feedback, meaning we ignore doppler feedback. As a consequence, the same simulation
parameters as presented in Chapter 5 will be used.

7.1.1. Pure Buoyancy-Driven Flow
First we discuss the pure buoyancy-driven flow in which we do not include a momentum source at the side
of the cube. Table 7.1 provides an overview of the simulation parameters used with their values presented
in both physical and LBM units. Note that a few changes have been made on the values of a few of these
parameters compared to the two dimensional cases presented in Chapter 5. First of all, the value of the
volumetric heat transfer coefficient, γ, is reduced to 1.0 · 105, this is because with the added space resulting
from simulation in 3D, the original value of 1.0 ·106 removed so much heat, that there was barely any deviation
in the temperature field left. Furthermore, the number of lattice nodes along a each dimension is reduced
to 101, resulting in 1013 lattice nodes in total. This is mainly done to reduce the computational effort of the
three-dimensional simulation. As a result, the almost all parameters also change their value in LBM units,
given that the LBM unit conversion factors are interrelated, as described in Section 3.1.6.

Table 7.1: Simulation parameter used for the simulation of a molten salt in a cubic box in steady state conditions. Here we
assume a pure buoyancy-driven flow, with the same property characteristics of the fuel salt, and nuclear data as given in the
Tiberga benchmark problem. The parameters are given in both physical and LBM units, where the conversion factors described
in Section 3.1.6 are used to transform the physical values to the LBM values.

Parameter Physical value Physical unit LBM value LBM unit
L 2.0 m 101 ls
ρ 2.0 · 103 kg m−3 1.0 lm ls−3

g 9.81 m s−2 1.94 · 10−3 ls lt−2

ν 2.5 · 10−2 m2s−1 1.26 · 10−1 ls2 lt−1

α 2.5 · 10−5 m2 s−1 1.26 · 10−4 ls2 lt−1

D 1.67 · 10−5 m2 s−1 8.42 · 10−5 ls2 lt−1

βth 2.0 · 10−4 K−1 1.80 · 10−1 lT−1

γ 1.0 · 105 W m−3K−1 1.76 · 10−2 lm ls−2 lt−3 lT−1

Cp 6.15 · 106 J m−3K−1 5.48 · 102 lm ls−2 lt−2 lT−1

Tref 900 K 1.0 lT
Pref 1.0 · 109 W 2.53 · 104 lm ls2 lt−3

Pr 1000 - 1000 -
Sc 1500 - 1500 -

Figure 7.1 presents the simulation results for the temperature field and the delayed neutron source using heat
maps across five equally spaced horizontal cross-sections of the cubic box. Additionally, Figure 7.2 illustrates
the resulting velocity field using a three-dimensional stream plot. The results demonstrate that the highest
heat and precursor generation occurs at the center of the domain. This is expected, given that the neutron
density is highest in this region. This heat production induces an upward motion of the fuel salt at the center
of the domain due to buoyancy forces, as can be seen from the velocity field. By comparing the heat maps at
L = 0.5 m and L = 1.5 m, we observe how this upward motion drives convection, transporting heat from the
middle plane upwards. Although less pronounced, a similar convective effect is also evident in the delayed
neutron source field, given that the precursors are also carried along with the fluid motion.

The simulation results give an effective multiplication factor of keff = 0.9610244, resulting in a reactivity of
ρ = −4055.6. This reactivity which is lower compared to the situation in which we simulate the neutron flux
independent of all other fields, where we observed a reactivity of ρ0 = −3967.1. Finally, we observe that all
simulated fields are fully symmetric with respect to the x = y and x = −y planes. This symmetry arises as
there is no physical processes or force introduced that preferentially affects the molten salt in either of x or y
directions over the other.
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Figure 7.1: Temperature field (left) and delayed neutron source (right) from three dimensional steady-state simulation of a pure
buoyancy-driven molten salt. This figure illustrates the scalar variables using heat maps across five equally spaced horizontal cross-
sections of the cubic domain. The colorbars indicate the magnitude of the scalar fields in K (left) and m−3s−1 (right).

Figure 7.2: Velocity field from the three dimensional steady-state simulation of a pure buoyancy-driven molten salt. This
figure illustrates the direction of the velocity field using a three-dimensional streamplot. Furthermore, magnitude of the
velocity field is illustrated using the colors and the corresponding colorbar indicating the velocity in ms−1.

Finally, next to the heat maps presented in Figure 7.1 and the three-dimensional streamplot presented in
Figure 7.2, we also included one-dimensional cross-section plots of the different variables in Appendix D.
These figures show more details of the simulated fields, and can be used as benchmark data, whereas the
figures presented in this chapter are only useful for illustration purposes.

7.1.2. Buoyancy-Driven Flow With Shear Momentum Source
In the second scenario, a momentum source is introduced into the problem domain by imposing a fixed velocity,
Uwall, directed in the positive y direction at the plane x = L. This shear momentum source breaks the symmetry
observed in the pure buoyancy-driven flow case with respect to the x = ±y planes. The simulation parameters
for this scenario, presented in both physical and LBM units, are summarized in Table 7.2. As in the previous
case, the volumetric heat transfer coefficient, γ, is reduced compared to the Tiberga benchmark case to
stimulate greater temperature variations. Additionally, the velocity Uwall is significantly lowered from its value
in the Tiberga benchmark case. This reduction ensures a balance between the competing effects of buoyancy
forces, which mostly act in the center of the cubic domain, and the shear momentum introduced at the domain
boundary, leading to complex three-dimensional flow patterns.
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Table 7.2: Simulation parameter used for the simulation of a molten salt in a cubic box in steady state conditions. Here we
assume a buoyancy-driven flow with a shear momentum source, with the same property characteristics of the fuel salt, and
nuclear data as given in the Tiberga benchmark problem. The parameters are given in both physical and LBM units, where the
conversion factors described in Section 3.1.6 are used to transform the physical values to the LBM values.

Parameter Physical value Physical unit LBM value LBM unit
L 2.0 m 101 ls

Uwall 2.5 · 10−2 ms−1 2.5 · 10−3 ls lt−1

ρ 2.0 · 103 kg m−3 1.0 lm ls−3

g 9.81 m s−2 1.94 · 10−3 ls lt−2

ν 2.5 · 10−2 m2s−1 1.26 · 10−1 ls2 lt−1

α 2.5 · 10−5 m2 s−1 1.26 · 10−4 ls2 lt−1

D 1.67 · 10−5 m2 s−1 8.42 · 10−5 ls2 lt−1

βth 2.0 · 10−4 K−1 1.80 · 10−1 lT−1

γ 1.0 · 105 W m−3K−1 1.76 · 10−2 lm ls−2 lt−3 lT−1

Cp 6.15 · 106 J m−3K−1 5.48 · 102 lm ls−2 lt−2 lT−1

Tref 900 K 1.0 lT
Pref 1.0 · 109 W 2.53 · 104 lm ls2 lt−3

Re 2 - 2 -
Pr 1000 - 1000 -
Sc 1500 - 1500 -

Figure 7.3 presents the simulation results for the temperature field and delayed neutron source, visualized
as heat maps across five equally spaced horizontal cross-sections of the cubic domain. Additionally, Figure
7.4 depicts the simulated velocity field using a three-dimensional streamplot. The temperature and delayed
neutron source fields show minimal changes compared to the pure buoyancy-driven case. Heat convection
and precursor transport are still visible in the center of the domain, driven by the upward motion of the fuel
salt in this region due to buoyancy forces. However, some asymmetry arises in the heat maps within the xy-
plane, particularly near the moving wall at x = L. The primary difference with the pure buoyancy-driven case,
however, lies in the velocity field. The streamplot clearly demonstrates how the molten salt flow is influenced
not only by buoyancy effects but also by the fixed velocity Uwall imposed at the x = L plane. This external
momentum source disrupts the spatial symmetry, introducing more complex three-dimensional flow patterns.
As mentioned before, the velocity of the wall is chosen in such a way that the momentum source it creates
competes with that of the buoyancy force, leading to these asymmetric flow structures. This asymmetry in
the velocity field propagates to the other simulated variables due to interaction between the fields, leading to
asymmetric results in all simulated variables. This three-dimensional asymmetry highlights the capability of
the NTH simulation tool to simulate three-dimensional problem spaces.

The simulation including the shearmomentum source yields an effectivemultiplication factor of keff = 0.9610203,
corresponding to a reactivity of ρ = −4056.1. This value closely aligns with the reactivity obtained in the pure
buoyancy-driven case.

Figure 7.3: Temperature field (left) and delayed neutron source (right) from three dimensional steady-state simulation of a buoyancy-
driven molten salt with shear momentum source. This figure illustrates the scalar variables using heat maps across five equally spaced
horizontal cross-sections of the cubic domain. The colorbars indicate the magnitude of the scalar fields in K (left) and m−3s−1 (right).
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Figure 7.4: Velocity field from the three dimensional steady-state simulation of a buoyancy-driven molten salt with shear
momentum source. This figure illustrates the direction of the velocity field using a three-dimensional streamplot. The
magnitude of the velocity field is illustrated using the colors and the corresponding colorbar indicating the velocity in ms−1.

Finally, just as in the pure buoyancy-driven case, next to the heat maps presented in Figure 7.3 and the three-
dimensional streamplot presented in Figure 7.4, we also included one-dimensional cross-section plots of the
different variables in Appendix D for benchmark purposes.

7.2. Turbulence Modeling Using LBM
The second major improvement that needs to be made to the NTH simulation tool in order to move towards
more realistic MSFR core simulations, is the inclusion of turbulence modeling to the FM-LBM thermal hy-
draulics code. At this point, the simulation tool is only able to perform NTH simulations in laminar conditions,
while in reality turbulent effects play a role in MSFR reactor core physics.

In the turbulent regime, the non-linear convective term in the NSE, represented by the second term in Equation
2.3, becomes sufficiently significant that even the slightest perturbations in the initial conditions or the fluid’s
properties lead to entirely different outcomes in the flow field, resulting in a seemingly random and chaotic
behavior of the simulated fluid [14]. The turbulent regime is closely associated with high Reynolds numbers, as
illustrated by the non-dimensional analysis of the NSE in Equation 2.8, where the convective term dominates
the diffusive term at high Reynolds numbers. In practice, perturbations in initial conditions and fluid properties
are unavoidable, meaning new modeling approaches are required to capture this non-linear behavior inherent
to high Reynolds number flows. One such approach is Large Eddy Simulation (LES), which is particularly
relevant to this research due to its relatively straightforward implementation within the LBM framework.

7.2.1. Energy Cascade
Turbulent flows consists of eddies of different sizes, which can be regarded as a vortex shaped motion. These
eddies can be characterized by their length scale l or their wavenumber k related to each other through

k =
2π

l
. (7.1)

The biggest eddies are directly driven by the external forces acting on the fluid and have a length scale, l0,
of comparable size to the characteristic length of the problem space. Due to their unstable nature, these
eddies initialize a so-called energy cascade, where bigger eddies collapse into smaller eddies, thereby trans-
ferring their energy. This cascade continuous until the smallest eddies, with a length scale η, dissipate there
energy into heat due to viscous forces. This energy cascade is summarized in Figure 7.5, which illustrates
the energy distribution of the turbulent eddies as a function of the wavenumber. Energy is transferred from
low-wavenumber (large-scale) eddies to high-wavenumber (small-scale) eddies. The largest eddies, which
contain the most energy, are driven by external forces and thus exhibit a directional preference during their
collapse. This behavior places them within the anisotropic range. As the energy cascade progresses and
the eddies become smaller, they eventually lose this directional preference due to the dominance of viscous
forces. At this stage, they enter the isotropic range, where their behavior becomes directionally independent.
The isotropic range is further divided into the inertial subrange and the dissipation range. The latter contains
the smallest eddies, where energy is ultimately converted into heat [14].
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Figure 7.5: Illustration of the energy cascade in turbulent flows, showing the energy distribution of turbulent eddies
as a function of the wavenumber. The figure highlights that the largest eddies, driven by external forces acting on
the fluid, contain the most energy. These larger eddies transfer their energy by breaking down into progressively
smaller eddies. Eventually, the eddies reach a scale where viscous forces dominate, leading to the dissipation of
their energy as heat [14].

Following the Kolmogorov’s first similarity hypothesis, the smallest scale eddies and the large scale eddies
can be related to each other using the Reynold number, where their ratio follows the scaling law [14]

η

l0
∼ Re−3/4 . (7.2)

When solving the NSE in the turbulent regime using Direct Numerical Simulation (DNS), the spatial discretiza-
tion must be fine enough to resolve the smallest eddies. However, as predicted by Kolmogorov’s hypothesis,
the size of these smallest eddies decreases with increasing Reynolds numbers, necessitating progressively
finer grid spacing for higher Reynolds number flows. This requirement makes DNS computationally infeasible
for many practical applications. As a consequence, alternative modeling approaches are needed that remain
computationally feasible while still accurately capturing the physics of high Reynolds number flows.

7.2.2. Large Eddy Simulation
In LES, the turbulent eddy scales are separated into large-scale eddies and sub-grid eddies. In this technique,
all eddies up to a certain cut-off length∆ are resolved using the complete equations of motion while a different
sub-grid model is used to calculate a combined contribution of the remaining sub-grid eddies [39]. Conceptu-
ally, this is equivalent to applying a high-pass spatial filter to the scalar fields. If we define ϕ̃ as the resolved
part of the complete scalar field ϕ, a convolution kernel G, associated with the cut-off length∆, can be defined
such that

ϕ̃(x) =

∫ ∞

−∞
G(ξ)ϕ(x− ξ)dξ . (7.3)

By requiring that this filter should be consistent, linear, and commute with differentiation, specific character-
istics for the filter can be derived. These properties enable the filter to be applied directly to the governing
equations [37], leading to the Filtered Navier-Stokes Equations (FNSE), defined as

ρ
∂ũi

∂t
+ ρ

∂ũiũj

∂xj
= ρfi +

∂

∂xj

[
p̃δij + µ

∂ũi

∂xj
− ρτRij

]
. (7.4)

This equation illustrates that the FNSE for the resolved fields is similar to that of the normal NSE, with the
addition of a correction term, ρτRij , known as the sub-grid stress tensor. This term captures the combined
effect of the sub-grid scales that are omitted by the high-pass spatial filter [14]. As a consequence, LES is
associated with modeling the flow field of the turbulent eddies up to a certain cut-off length using the standard
NSE, subsequently a so-called sub-grid scale (SGS) model is applied to simulate the correction term ρτRij .

One commonly applied class of SGS models, known as Eddy-Viscosity Models, simulate the sub-grid stress
tensor through the eddy-viscosity, νt, related to the sub-grid stress tensor via the relationship [14]

−ρτRij = ρνt

(
∂ũi

∂xj
+

∂ũj

∂xi

)
− 1

3
ρτRkkδij . (7.5)
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These Eddy-Viscosity Models provide approximate solutions for the eddy viscosity based on the resolved
fields of the FNSE. They are particularly advantageous for LBM simulations, as the calculated eddy viscosity
can be directly incorporated into the LBM framework.

7.2.3. LES-LBM
LES is a specifically attractive turbulence model approach when using LBM for fluid simulation. First of all,
the cut-off length ∆ is naturally implied by the spacing of the lattice grid. This means the grid acts as an
implicit filter where only eddies with a characteristic length larger than the grid spacing are resolved using
LBM. Secondly, the LBM algorithm allows for the direct incorporation of eddy viscosity into the framework by
defining an effective viscosity, νe, defined as

νe = ν0 + νt , (7.6)

where ν0 denotes the molecular viscosity, normally used in LBM simulations. This effective viscosity is then
used in the collision step of the LBM algorithm [121].

The challenge, however, lies in determining the eddy viscosity from the resolved fields using Eddy-Viscosity
Models. The Smagorinsky model [85], one of the earliest and most widely applied models, simulated the eddy
viscosity as

νt = C2
S∆

2
∣∣∣S̃ij

∣∣∣ , (7.7)
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)
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Here, CS denotes the Smagorinsky constant which has values generally ranging from 0.05 to 0.16 [115]. The
tilde notation indicates that the eddy viscosity is computed using the resolved velocity fields from the FNSE.
Due to its simplicity and ease of implementation, the Smagorinsky model is a popular choice in LES research.
For instance, Wang et al. [110] use the Smagorinsky model in their LBM-NTH simulation tool, where they
implement both thermal hydraulics and neutronics into the LBM framework. However, its simplicity comes
at a cost, when turbulent fields are calculated using the Smagorinsky model, they generally show an overly
dissipative nature near walls [107]. To address this limitation, more advanced Eddy-Viscosity Models have
been developed, such as the Vreman model [106] and the Wall-Adapting Local Eddy (WALE) model [73].
Similar to the Smagorinsky model, these models calculate eddy viscosity from the resolved velocity fields but
use more sophisticated formulations to improve accuracy. As a result, they provide a better representation
of turbulent behavior near walls. These advanced models have also found successful implementations in
LES-LBM studies. For example, Zhou et al. [121] utilize the Vreman model in combination with LES-FM-LBM
to simulate turbulent channel flows, while Zhang et al. [120] apply the WALE model in LES-LBM to investigate
turbulence in electrohydrodynamics simulations.

7.3. MSFR Core Geometry Implementation
The third and final significant improvement required for the simulation tool to advance toward actual MSFR
simulations is the incorporation of the MSFR core geometry into the NTH tool. Although the current simulation
tool can perform 3D simulations, it is limited to Euclidean geometries. This limitation stems from the boundary
condition schemes implemented in the FM-LBM algorithm, which are restricted to problem boundaries that
align precisely with the Euclidean lattice grid. However, real-world geometries, such as those of an MSFR
reactor core, introduce complex boundary shapes that do not necessarily conform to this grid. To address this
challenge, advanced boundary condition techniques must be integrated into the FM-LBM algorithm in order
to handle these types of complex geometries.

Before examining potential LBM boundary schemes for complex boundary shapes, we first define the ge-
ometry of the MSFR reactor core to be simulated. As described in the introduction section of this report,
the MSFR core features a toroidal shape with 16 segments of heat exchangers and pumps symmetrically
arranged around the core. This symmetry enables the use of angular periodicity, allowing simulations to fo-
cus on a single segment of the MSFR core while applying periodic boundary conditions along the azimuthal
boundaries to effectively replicate the behavior of the entire domain. Tiberga [92] demonstrated that this can
be accomplished by simulating a ”pizza-slice” of the full domain, encompassing one group of heat exchangers
and pumps. This approach captures 1/16th of the entire problem domain and is illustrated in Figure 7.6.

In this section, we address the implementation of the MSFR core geometry, as depicted in Figure 7.6, within
the NTH simulation tool. It is important to emphasize that the focus is not on the Phantom-SN algorithm,
as it already incorporates the MSFR core geometry. This is achieved through the application of an adaptive
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Figure 7.6: Problem geometry of an MSFR core segment for numerical simulation. This geometry represents a
single segment of the full reactor core, containing one group of heat exchangers and pumps. It leverages the an-
gular periodicity of the MSFR to simulate the entire reactor core by applying periodic boundary conditions along the
azimuthal boundaries. The figure also highlights additional components relevant to the reactor core, such as the
fertile blanket and neutron reflectors, as described in Figure 1.1 [92].

mesh in the DG-FEM algorithm, along with reflective boundary conditions on the sides of the problem domain
and vacuum boundary conditions elsewhere [92]. Instead, the discussion focuses on the implementation of
the reactor segment geometry within the LBM framework, particularly exploring boundary schemes to handle
complex boundary shapes. First, we will examine the implementation of periodic boundary conditions on
the sides of the reactor segment. Subsequently, we will address bounce-back methods for enforcing no-
slip boundary conditions on complex-shaped boundaries. The latter boundary schemes can be applied to
other parts of the reactor segment, such as the pump, heat exchanger, reflector, and fertile blanket. Lastly,
this section will not delve into additional implications of these components, such as the momentum source
introduced by the pump or heat removal by the heat exchangers.

7.3.1. Periodic Boundary Conditions
Symmetry allows us to simulate only 1/16th of the entire problem domain by introducing periodic boundaries at
the sides of the segment. These periodic boundaries ensure that molten salt exiting one side of the segment
reenters the domain at the opposite side. However, implementing this symmetry within the LBM algorithm
in the current situation presents challenges due to the angle 1

16 · 2π associated with the simulated segment.
This angle results in boundaries that are positioned differently with respect to the Euclidean lattice grid across
different ghost domains connected to the simulated domain. The primary issue arises because particle distri-
butions leaving the domain on one side must be rotated by this angle before reentering on the opposite side to
maintain angular symmetry. This rotation, however, causes the reentering particle distributions to correspond
to lattice sides and directions that do not align with the lattice grid. This problem is illustrated in Figure 7.7
using a simplified domain projected on the xy-plane. The figure shows how the lattice grid orientation differs
between the simulated domain and a ghost domain. Furthermore, it shows how a horizontally entering particle
distribution on one side corresponds to an exiting particle distribution on the other side that is rotated by 1

16 ·2π.
The exiting particle density, however, no longer corresponds to a valid lattice side in the Euclidean lattice grid,
due to the different orientation of the lattice grid in the ghost domain.

There are multiple ways to tackle this problem. One option is to simulate a quarter of the problem domain,
meaning we simulate four out of the sixteen segments. In this setup, particle distributions leaving the domain
are rotated 90 degrees before reentering on the opposite side. As a result, the particle distributions align
with the lattice grid again, due to the Euclidean grid’s symmetry under a 90-degree rotation. The obvious
drawback of this approach is that it does not fully exploit the symmetry of the problem domain. By simulating
four segments instead of one, we effectively quadruple the computational effort, which is highly undesirable
in large three-dimensional simulations.

A second option is to transform the LBM into curvilinear space, as demonstrated by [117]. In this approach,
a cylindrical coordinate system is applied to the lattice grid. This allows the number of lattice nodes along
the azimuthal axis to be chosen such that the physical boundaries corresponding to the sides of the seg-
ment align perfectly with the lattice grid. Consequently, particle distributions can move seamlessly between
neighboring lattice nodes across the periodic boundaries. While this approach appears to be an ideal solution
for implementing periodic boundary conditions along the sides of the domain, it introduces significant chal-
lenges for other boundaries, such as the channel containing the pump and heat exchangers, which require
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Figure 7.7: Visualization of the challenge in implementing periodic boundary conditions along the sides of a segment
of the MSFR core problem domain. The figure illustrates how the orientation of the square lattice grid differs between
the simulated domain and a ghost domain. It also depicts how a horizontally entering particle distribution on one side
corresponds to an exiting particle distribution on the other side that is rotated by 1

16
· 2π. The exiting particle density,

however, no longer corresponds to a valid lattice side in the Euclidean lattice grid, due to the different orientation of
the lattice grid in the ghost domain.

no-slip conditions. These boundaries will not align with the cylindrical lattice grid, making it impossible to
apply straightforward bounce-back methods. Instead, specialized boundary schemes must be developed to
handle these complex boundary geometries. However, as will be discussed in the next section, even in sim-
ple Euclidean lattice grids, addressing such boundaries poses challenges and requires advanced numerical
techniques. Extending these methods to cylindrical coordinates will further complicate the implementation
of bounce-back boundary conditions. Moreover, transforming the LBM algorithm into curvilinear space com-
promises one of its key advantages: its simplicity. In curvilinear space, additional corrections are required
to address issues such as the apparent anisotropy of diffusion introduced by the coordinate transformation.
Furthermore, managing memory storage for lattice information becomes more complex. For example, main-
taining the relationships between neighboring nodes in cylindrical coordinates complicates the use of square
arrays in memory. These considerations make the curvilinear approach less practical for the current problem.

A final solution that avoids both the expansion of the simulated domain and the transformation of the lattice
grid involves the use of interpolation techniques to calculate the exiting particle distributions on one side
that correspond to the incoming particle distributions on the other side. In Figure 7.7, this approach entails
using interpolation to determine the exiting particle distribution function moving at an angle, which is then
equated to the horizontally incoming particle distribution function on the opposite side. Various methods can
be employed to perform this interpolation. One option is to directly interpolate the particle distribution functions,
as demonstrated by [119], who applied second-order upwind interpolation to the particle distribution functions.
Alternatively, macroscopic quantities can be interpolated instead of the particle distributions themselves. This
can be achieved using conventional techniques, such as B-Spline interpolation, as discussed in Section 3.4.5.
The interpolated macroscopic quantities can then be rotated to preserve angular symmetry and subsequently
decomposed back into particle distribution functions. In either case, interpolation need only be applied to a
finite number of points, corresponding to the amount of particle distributions entering the domain on the other
side. Consequently, the computational effort remains minimal, while the simplicity of the LBM algorithm is also
preserved by avoiding transformations of the lattice grid.

7.3.2. No-Slip Boundary Conditions
In addition to the periodic boundary conditions applied to the sides of the domain, no-slip boundary conditions
must be imposed on the remaining boundaries. These boundaries are located along the reflectors, the fertile
blanket, and the channel containing the heat exchanger and the pump. Similar to the sides of the segment,
these boundaries will not align with the square lattice grid. Consequently, specialized numerical techniques
are required to implement no-slip conditions on these complex-shaped boundaries. In this section, we discuss
three possible numerical schemes based on the bounce-back method for applying no-slip boundary conditions
to such boundaries. These techniques can be directly applied to the remaining boundaries of the problem
domain.
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Staircase Approximation
One of the most popular methods for implementing complex boundaries within the LBM framework is through
the usage of the staircase approximation. This approach involves overlaying the problem geometry onto a
square lattice grid, where lattice nodes inside the problem domain are designated as inner nodes (or fluid
nodes), and those outside the domain are classified as outer nodes (or solid nodes). The numerical boundary
is then defined as the halfway point between consecutive inner and outer lattice nodes, resulting in the physical
boundary being approximated by a staircase-like shape. Figure 7.8 illustrates the staircase approximation for
a circular geometry. Note that the number of lattice points in this example is deliberately kept very low for
illustration purposes, in practice such a resolution would be insufficient for accurate simulations.

Figure 7.8: Illustration of the staircase approximation for a circular domain. The staircase approximation
defines the lattice node falling inside the circle as inner (fluid) nodes, while the other lattice nodes as defined
as outer (solid) nodes. The numerical domain is defined by halfway points between consecutive inner and
outer nodes, leading to the staircase-shaped numerical domain, illustrated by the gray area in the figure [55].

The no-slip boundary condition is implemented by combining the staircase approximation with the standard
bounce-back method described in Equation 3.23. In this method, particle distribution functions leaving the
approximated domain are reflected back into the problem domain by reversing their propagation direction
at the boundary. This approach is commonly referred to as the Simple Bounce-Back (SBB) method, which
for most applications is shown to be first-order accurate with respect to the lattice grid spacing. Its primary
advantages include ease of implementation and exact mass conservation, regardless of the shape of the
boundary geometry. The latter property is particularly significant, as it is often violated by most higher-order
accurate boundary condition methods [40]. The main drawback of the SBB method is that it approximates the
physical boundary with a staircase shape, which prevents the no-slip boundary condition from being precisely
applied at the physical boundary. Consequently, this approximation introduces artificial slip at the physical
boundary, leading to inaccuracies in the results [55].

In essence, the SBB method is identical to the standard bounce-back scheme, except that it is applied to a
rectangular boundary that approximates the physical boundary. However, more advanced boundary schemes
have been proposed in the literature that modify not only the boundary approximation but also the numerical
computations of the bounce-back method itself. These schemes provide higher-order accuracy compared to
the SBB method and should be considered if the SBB method does not yield satisfactory results. Two such
advanced bounce-back methods are discussed next. However, the LBM literature also proposes additional
approaches, including ghost methods and immersed-boundary methods. For a comprehensive overview of
these additional techniques, we refer to the book of Krüger et al. [55].

Interpolated Bounce-Back
Given that the numerical boundary condition is defined at the halfway point between consecutive inner and
outer lattice nodes, the numerical boundary rarely coincides precisely with the physical boundary. Most of
the time, the physical boundary is positioned at some other point between these two lattice nodes. This
discrepancy is the main limitation of the SBB scheme, which approximates the physical boundary with a
staircase-like shape. The concept behind Interpolated Bounce-Back (IBB) methods is to address this error by
incorporating additional information about the position of the physical boundary within the lattice grid [55].
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One such IBB method, introduced by Bouzidi et al. [12], defines the bounce-back scheme as

fī (xb, t+∆t) =

{
2qf∗

i (xb, t) + (1− 2q)f∗
i (xf , t) q ≤ 1

2
1
2qf

∗
i (xb, t) +

2q−1
2q f∗

ī
(xb, t) q ≥ 1

2

. (7.9)

Here, ī represents the direction opposite to i, f∗
i and fi denote the pre- and post-streaming distribution func-

tions, xb is the boundary lattice node within the fluid domain, indicating that the physical boundary lies between
xb and the consecutive solid node xs outside the domain. Additionally, xf refers to the nearest fluid node be-
yond xb within the domain. The parameter q represents the normalized distance of the physical wall and is
defined as q = d/(ci∆t), where d is the distance between xb and the physical boundary.

The IBB scheme operates under the principle that particle distribution functions travel a distance of |ci|∆t in
each time step and are reflected at the problem boundaries. However, when the physical boundary is not
exactly halfway between two consecutive lattice nodes, particle distributions may end up at an intermediate
position within the lattice grid. The IBB method addresses this by interpolating the pre-streaming particle distri-
butions within the grid, ensuring that after streaming and reflection at the physical wall, the particle distributions
end up exactly on the boundary lattice node. This is illustrated in Figure 7.9, where an interpolated particle
distribution function is located between xf and xb, ultimately arriving at xb after streaming. It is worth noting
that Equation 7.9 simplifies to the SBB scheme when the physical boundary is positioned precisely halfway
between two consecutive lattice nodes. This result is intuitive, as in such a scenario, the particle distributions
naturally return to the boundary node after traveling a distance of |ci|∆t.

Figure 7.9: Visual representation of the IBB boundary scheme. Here, an interpolated
post-streaming particle distribution function is found between xf and xb such that, the
particle distribution arrives exactly at xb after streaming [55].

The IBB scheme introduced by Bouzidi et al. achieves second-order accuracy, significantly reducing themodel
error compared to the first-order accuracy of the SBB method. However, similar to SBB, the IBB scheme still
introduces artificial slip near the boundary. Additionally, as previously mentioned, the IBB boundary method
is not mass-conserving due to the interpolation inherent to the IBB scheme. Therefore, one should assess
whether the improvements in modeling accuracy outweigh potential errors resulting from the loss of mass-
conservation [12].

Partially Saturated Bounce-Back
Another alternative to the SBB method is the Partially Saturated Bounce-Back (PSBB) boundary method. In
this scheme, lattice nodes represent computational cells that can exhibit a mixture of fluid and solid properties.
This concept is illustrated in Figure 7.10, where a nodal fluid/solid fraction, ϵ, determines the extent to which
a cell is fluid or solid. Specifically, ϵ = 0 corresponds to a pure solid, while ϵ = 0 indicates a pure fluid. As a
consequence, partially saturated cells emerge at the boundary, with the solid/fluid fraction taking intermediate
values 0 < ϵ < 1, depending on the proportion of the lattice cell volume that falls within the problem domain
defined by the physical boundary. To accommodate partially saturated cells, the LBM equation, as given in
Equation 3.1, is modified into

fi(x+ ci∆t, t+∆t)− fi(x, t) = ∆t [ (1−B(ϵ))Ωi(f) +B(ϵ)Ωs
i (f)] . (7.10)

Here, B(ϵ) is a constant related to the solid/fluid fraction of the lattice cell, and Ωs
i is the collision operator for

solid nodes, defined as

Ωs
i (f) =

(
fī(x, t)− feq

ī
(ρ,u)

)
− (fi(x, t)− feq

i (ρ,u)) . (7.11)

The PSBB scheme operates as follows: for pure fluid nodes, the LBM scheme performs the standard collision
step. Conversely, for partially saturated cells, the collision operator is applied only to the fluid fraction, while a
bounce-back scheme is used for the solid fraction. Specifically, the bounce-back scheme implemented within
the solid collision operator, Ωs

i , and acts only on the non-equilibrium component of the distribution functions.

The PSBB boundary method offers several advantages over the previously discussed boundary schemes.
First, it provides enhanced accuracy compared to SBB, resulting in significantly smoother fluid motion, as
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Figure 7.10: Visual representation of the PSBB boundary method. Boundary nodes are considered partially
saturated cells whose fluid/solid fraction determines the extent to which a cell corresponding to a node is solid
or fluid. By extending the LBM scheme, PSBB applies normal collision to the fluid fraction of the boundary
cell, while a bounce-back scheme is performed on the non-equilibrium part of the distribution functions for the
solid fraction [55].

demonstrated by [88]. The exact order of accuracy, however, is strongly influenced by the precision in de-
termining the fluid/solid fractions. Additionally, in contrast to the IBB boundary scheme, the PSBB method is
exactly mass-conserving, given that the PSBB scheme is essentially a more sophisticated staircase approx-
imation. However, despite these advantages, the PSBB scheme does not fully eliminate the introduction of
artificial slip near boundaries. Since it still relies on the staircase approximation, it cannot fully capture the
true geometry of the boundary.

The PSBB boundary method can be employed when neither the SBB nor the IBB boundary conditions yield
satisfactory results. However, two critical challenges must be addressed in this context: the determination of
the constant B(ϵ) and the accurate computation of ϵ. For the standard BGK implementation of the LBM, the
constant B(ϵ) is defined in the literature as

B(ϵ, τ) =
ϵ(τ − 1/2)

(1− ϵ)− (τ − 1/2)
, (7.12)

where τ denotes the relaxation time of the BGK operator. In the case of an FM-LBM implementation, this
parameter must instead correspond to the relaxation time embedded within the filter matrix, necessitating
the redefinition of B(ϵ). Additionally, a robust method is required to determine the solid/fluid fractions for
the boundary lattice cells, given that the accuracy of the PSBB scheme heavily depends on these fractions.
Notably, these fractions only need to be calculated once, at the start of the simulation, given that we are dealing
with a static problem domain. As a result, sophisticated methods, such as, sub-cell or cut-cell approaches as
proposed in the literature can be used to achieve this [21, 45].



8
Conclusion and Recommendations

This research focused on the development of a novel NTH simulation tool to model the multiphysics behavior
of an MSFR reactor core. The designed tool integrates a GPU-accelerated FM-LBM algorithm, employed for
thermal fluid and precursor transport simulations, with the existing transport code Phantom-SN for neutronics
calculations. This coupled system has produced a fully functional multiphysics simulation framework tailored
for MSFR analyses. This chapter presents the conclusions drawn from this work, structured into six sections.
Sections 8.1 to 8.4 address each of the research goals outlined in Section 1.3. Following this, Section 8.5
provides an overall conclusion regarding the integration of GPU-accelerated FM-LBM techniques within MSFR
core simulation tools. Lastly, Section 8.6 offers recommendations for future research, providing guidance for
further advancements in the development of the NTH simulation tool.

8.1. FM-LBM Model Development
The first part of this research focused on developing a GPU-accelerated FM-LBM algorithm to simulate thermal
hydraulics and precursor transport. This algorithm employs a double distribution function approach, where
separate distribution functions are defined for the velocity and temperature fields. This concept was extended
further by incorporating additional distribution functions for the different precursor families. The algorithm
operates through an alternation of propagation and collision steps on a lattice grid for each distribution function.
Interactions between the different fields occur during the collision steps, either through convective terms in
the filter matrix multiplications or via source terms. This approach simulates the evolution of the thermal fluid,
which, under stable conditions, converges to the steady-state solution after a sufficient number of simulation
steps.

The FM-LBM algorithm’s symmetric calculations during propagation and collision steps on each lattice node
make it an ideal candidate for parallel computation usingGPUs. Consequently, the algorithmwas implemented
using the Julia-CUDA framework, enabling efficient utilization of NVIDIA GPUs for simulation tasks. In this
setup, simulation steps are executed through kernel functions, which define operations at individual lattice
sites and are performed concurrently across GPU cores. The CPUmanages the execution by launching kernel
functions on the GPU and ensuring proper synchronization of the entire lattice domain between successive
kernel launches. For the implementation of the algorithm, the Julia-CUDA framework was specifically chosen
due to its high-level syntax, superior computational performance compared to other high-level languages
such as Python, and the flexibility it offers for GPU programming. This flexibility facilitated the optimization of
GPU performance through low-level memory management, leveraging the hierarchical memory architecture of
NVIDIA GPUs. For example, the localized but faster shared memory was employed to store the solution vector
during the collision kernel, significantly reducing memory access latency. Additionally, large multidimensional
arrays stored in global memory were transformed into one-dimensional arrays with carefully structured data
ordering. This transformation improved memory coalescence during matrix multiplications within the collision
kernel, further enhancing computational efficiency. As a result, a highly optimized GPU-accelerated FM-LBM
algorithm was developed, with its computational performance benchmarked against other studies focusing on
GPU-optimized LBM algorithms, as will be further elaborated on in Section 8.4.
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8.2. Coupling Mechanism
The second part of this research focused on integrating the newly developed FM-LBM simulation tool with
the existing Phantom-SN algorithm for neutronics simulation, creating a fully integrated framework for MSFR
reactor core simulations that captures both thermal hydraulics, precursor transport, and neutronics. How-
ever, significant disparities between the two algorithms in terms of computational frameworks, mathematical
approaches, and physical modeling posed numerous challenges to their integration.

The first challenge was combining the two algorithms into a single codebase, given that the Phantom-SN

algorithm is written in Fortran-90, while the FM-LBM algorithm is written in Julia. This challenge was addressed
by leveraging the built-in functionality of Fortran-90 to perform system calls via the command-line interface.
Phantom-SN was designated as the master operator, making periodic system calls to the Julia executable.
During these calls, the FM-LBM algorithm executes, and Fortran automatically waits for its completion before
continuing. Moreover, data exchange between the two codes was facilitated through simple I/O operations,
where relevant data, such as variable values at lattice nodes, was communicated via plain text files.

A further challenge arose from the differing spatial discretizationmethods used by the two algorithms. Phantom-
SN employs a DG-FEM approach, where the spatial domain is subdivided into mesh elements, and variables
within each element are expressed as linear combinations of basis functions and their coefficients. In con-
trast, FM-LBM describes physical fields on its lattice nodes. Consequently, transferring information between
the two algorithms required translating lattice node variables into coefficients of the DG-FEM basis functions.
This was achieved using Galerkin projection. Physical variables were first interpolated on the LBM lattice
grid using B-spline interpolation to extract physical quantities at the quadrature points of the DG-FEM mesh
elements. Subsequently, by approximating integrals over mesh elements with weighted summations of the
integrand at quadrature points, the physical fields were transformed into the coefficients of the basis functions
using Galerkin projection.

Finally, the sequence in which the two algorithms perform calculations and exchange information had to be
carefully determined based on simulation conditions. For steady-state simulations, the keff eigenvalue prob-
lem was solved using the power method. This iterative algorithm dictated when the NTE was solved using
Phantom-SN and when precursor transport was calculated using FM-LBM. It also fixes how information must
be transferred between the two algorithm, such as using the delayed neutron source from the precursor calcu-
lations to transform the fission source term of the NTE on the right hand side. Inherent to this method is that
both algorithms operate in steady-state, requiring the FM-LBM algorithm to run until convergence. Conversely,
transient simulations were more straightforward to implement, with both algorithms performing calculations
for a single time step in sequence. This setup resulted in a simple alternation between the two codes, where
the output of one code served as the input for the other via source terms.

8.3. Comparison to Benchmark
This research benchmarked the NTH simulation tool against existing literature in three distinct stages. First,
the FM-LBM algorithm for thermal hydraulics was validated separately by simulating a side-heated square
cavity. This initial benchmarking ensured that the FM-LBM algorithm produced satisfactory results before ad-
vancing to its coupling with the Phantom-SN algorithm. In the second stage, the full multiphysics simulation
tool under steady-state conditions was validated using the Tiberga benchmark case. This study examines
the fully coupled NTH solution within a lid-driven square cavity and compares simulation results among four
different multiphysics simulation tools developed by various universities and institutions. In their study, the
coupling process is executed incrementally, enabling the identification and resolution of potential errors within
specific components of the multiphysics simulation tool. Finally, the same Tiberga benchmark was utilized to
validate the transient multiphysics simulations, analyzing system responses in power output due to perturba-
tions in frequency domain on the heat sink term. In all three stages of validation, the algorithm demonstrated
satisfactory alignment with results from the literature.

The side-heated square cavity case is a well-established benchmark problem, with many studies reporting
maximum horizontal and vertical velocity values along the centerlines of the square domain. Our simulation
results were compared to a few of these studies, revealing strong agreement with average relative discrepan-
cies under 1%, confirming the FM-LBM algorithm’s capability for accurate thermal fluid simulations.

The Tiberga benchmark study, however, poses greater sensitivity to modeling approaches. That is why, rather
than reporting singlemaximum values, this benchmark study compares entire variable fields, including velocity,
temperature, fission rate density, and delayed neutron source, along the horizontal and vertical centerlines of
the square domain for steady-state simulations. To facilitate quantitative comparisons, average discrepancies
were computed by comparing physical field values from the benchmark codes and our simulation at 200
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evaluation points along the centerlines. For all but one step of the benchmark problem, the discrepancies
across different fields exhibited average relative errors below 1%. The exception was the differential fission
rate density reported in step 1.2 of the benchmark, however, this is consistent with findings from the benchmark
study, which also reports larger discrepancies among the different benchmark codes for this field.

Two notable observations emerged from the steady-state results of the Tiberga benchmark. First, our simula-
tion results aligned most closely with the TUD-S6 results, as this was the only benchmark code that also solves
the complete NTE without relying on the neutron diffusion approximation. This alignment was particularly evi-
dent in the reactivities reported with each benchmark step. Here, we observed significant deviations between
our results and those of the benchmark codes, except for TUD-S6 results. The benchmark study addressed
this by also reporting differential reactivity, which measures reactivity differences between simulations with and
without additional features like precursor transport or power coupling. By focusing on these differences, this
metric essentially controls for the different handling of the neutronics simulations. Consequently, agreement
was found with all benchmark codes for the reported differential reactivities.

The second point concerns the use of very high Prandtl and Schmidt numbers in the benchmark study, which
effectively ignore diffusion effects. These high values creates challenges for LBM simulations, as maintaining
stability requires a very fine lattice grid. This greatly increases the computational cost, making LBM simula-
tions infeasible. However, since diffusion effects are alreadyminor for small temperature and precursor density
gradients, we found that the benchmark results could be approximated using lower Prandtl and Schmidt num-
bers. With a Prandtl number of 1000 and a Schmidt number of 1500, our simulation tool already produced
satisfactory results without requiring excessive computational resources. The only noteworthy discrepancies
compared to the benchmark appeared near the domain boundaries, which can be attributed to the larger tem-
perature and precursor density gradients in these areas. Additionally, we show that further increasing these
values does not offer significant improvements in the simulation results.

Finally, in the transient case of the Tiberga benchmark study, the power output of the simulation tool in re-
sponse to heat sink perturbations in the frequency domain was analyzed. The study reported normalized
gains and phase shifts in power output across a range of perturbation frequencies in the heat sink term. Our
simulation results demonstrated satisfactory agreement with the benchmark data, confirming that the fully
coupled NTH tool provides accurate simulations for both steady-state and transient scenarios.

8.4. Computational Performance
This research also evaluated the computational performance of the simulation tool, with a particular focus
on the FM-LBM algorithm. This focus is justified for several reasons. First, this research did not directly
contribute to the development of the Phantom-SN codebase. Instead, we only implemented code to facilitate
its coupling with the FM-LBM framework, without making any efforts to optimize the performance of the DG-
FEMmethod used in Phantom-SN . Second, the coupling mechanism itself significantly impacts computational
performance. This is primarily due to the differences in programming languages, which results in the overhead
associated with the reading and writing to plain text files, and the startup time of the Julia code. These
performance bottlenecks could potentially be addressed in future research by re-implementing Phantom-SN

in Julia to leverage its GPU capabilities. However, this was beyond the scope of the current work. Finally,
we specifically investigated the GPU implementation of FM-LBM to achieve superior performance compared
to serial implementations. Moreover, Julia-CUDA was specifically chosen to exploit GPU functionalities, as
it offers better performance compared to other scientific programming languages, such as Python, that also
support CUDA. This makes it particularly relevant to compare the performance of our FM-LBM implementation
with existing literature.

In the side-heated cavity benchmark case, the FM-LBMalgorithm achieved a peak performance of 390MLUPS
using double-precision floating-point numbers. Compared to studies focused on optimizing GPU-accelerated
LBM implementations (excluding multi-GPU setups), this performance is within a reasonable range. These
studies report peak simulation speeds of up to 1200 MLUPS but use more simplified problem settings. For
instance, they typically simulate only the velocity field, whereas the side-heated cavity benchmark in this
research includes both velocity and temperature fields, effectively doubling the computational workload. Ad-
ditionally, these studies employ the BGK collision operator, which is computationally less demanding than the
filter matrix collision operator used in this work. The filter matrix collision operator involves double matrix multi-
plications, making it the most computationally intensive task in our simulations. This explains why the collision
kernel’s computation time is approximately three times that of the propagation and boundary condition kernels
combined.

In the Tiberga benchmark case, we further increased the computational load by including eight additional dis-
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tribution functions for the different precursor families, resulting in a fivefold increase in computational require-
ments. Under these conditions, the FM-LBM algorithm achieved a performance of 57 MLUPS with double-
precision floating-point numbers. This represents a performance drop by a factor of approximately seven
compared to the side-heated cavity benchmark case instead of five. While performance losses up to a factor
five can be attributed to the finite memory bandwidth of the GPU, the additional drop in performance stem
from other performance bottlenecks. Potential issues are increased CPU overhead and memory overspill,
where excess demands on shared and register memory redirect allocations to slower global memory. De-
spite this drop, the observed performance of 57 MLUPS for the full FM-LBM implementation is still considered
satisfactory, particularly when compared to serial implementations of NTH tools using LBM methods. When
corrected for the fact that our tool does not incorporate neutronics in LBM, we observe a simulation speedup
of approximately 1000 times in terms of MLUPS compared to the serial implementation described by [80],
which applied LBM to both thermal hydraulics and neutronics in a two-dimensional NTH tool.

8.5. GPU-Accelerated FM-LBM in MSFR Core Simulation Tools
As a final conclusion, it is yet to be seen whether the integration of a GPU-accelerated FM-LBM algorithm for
thermal hydraulics simulation into a multi-physics simulation tool for MSFR core simulations is the right choice.
The main motivation behind using lattice Boltzmann techniques over other numerical techniques for thermal
hydraulics simulation is the possibility to parallelize its computations, which in turn can lead to computational
gains. Up till this point, however, we have only simulated relatively simple, and small problem geometries. For
these problem spaces, the FM-LBM algorithm reaches accurate results in an acceptable number of time steps.
This means, GPU-implementations of the FM-LBM algorithm lead to relatively fast thermal hydraulics results
within the complete simulation tool. For larger problem domains required in realistic MSFR core simulations,
however, this advantage may diminish. Particularly in steady-state simulations, the use of large lattice grids
leads to significant computational demands, with the algorithm requiring substantial time to converge to steady-
state solutions. Even with GPU acceleration, such simulations may become impractical within acceptable
timeframes. A potential solution could involve implementing a multi-GPU version of the FM-LBM algorithm.
While this approach could establish the FM-LBM as a viable candidate for thermal-hydraulics simulations in
MSFR core analysis, it would result in considerable costs for acquiring the necessary hardware.

Additionally, one of the major limitations of the FM-LBM framework is its implementation in complex geome-
tries. As discussed in Section 7.3, incorporating complex boundary shapes into the Euclidean LBM grid is a
challenging task. It requires precise documentation of physical boundary locations relative to lattice nodes,
resulting in a framework that lacks flexibility. In contrast, mesh-based algorithms for thermal-hydraulics sim-
ulations, such as those described by Tiberga et al. [94], can easily use conformal meshes that align with the
complex geometry shape of the reactor core.

In conclusion, further research is needed to evaluate the real advantage of LBMmethods over other simulation
techniques in terms of computation time in realistic MSFR geometries, and whether this is worth the investment
over other simulation techniques such as FEM implementations that offer better compatibility with complex
geometries.

8.6. Recommendations for Future Research
As discussed in Chapter 7, the simulation tool developed in this research meets only the minimal require-
ments for simulating the multiphysics phenomena within an MSFR reactor core. Therefore, we have already
proposed several extensions necessary for advancing towards more realistic modeling of an actual MSFR.
These include performing simulations in three-dimensional space, incorporating turbulence, and adapting the
simulation to an MSFR core geometry by modeling a segment of a cylinder. Beyond these significant ad-
vancements, several smaller adjustments and extensions could further improve the simulation tool for MSFR
reactor core simulations. These improvements are listed below.

• In this research, not all physical processes within an MSFR reactor core have been considered. For
example, we have only included density feedback effects on the nuclear cross-sections, while ignoring
Doppler shifts, which also influence the temperature dependence of nuclear cross-sections. Additionally,
decay heat generated by fission products has not been accounted for. Incorporating these effects would
enhance the realism of the multiphysics simulation tool, making it better suited for studying MSFR core
behavior.

• When incorporating the heat exchanger and pump into the simulation geometry, further research should
consider modeling phase transitions of the fuel salt within the LBM framework. Given the high melting
point of the fuel salt, the molten salt mixture is prone to solidification during salt cooling. This behavior
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is particularly relevant within the heat exchanger, where the fuel salt is actively cooled to extract energy
from the system. Addressing this phenomenon would provide a more accurate representation of the
MSFR reactor core.

• When implementing turbulence effects using LES-LBM techniques, future research should consider
adding grid refinement strategies to the LBM algorithm. Turbulent eddies have smaller length scales
near walls, so refining the grid in these regions would reduce the cutoff length, capturing more complex
turbulence near boundaries. Additionally, grid refinement can improve accuracy in areas with steep tem-
perature or precursor density gradients, which currently exhibit the highest relative errors in simulations.

• Finally, further efforts should focus on enhancing the computational performance of the algorithms to
make simulations of three-dimensional geometries with fine grid spacing feasible. As previously sug-
gested, a major computational gain can be achieved by integrating both the FM-LBM algorithm and
Phantom-SN into a single programming language, reducing the overhead associated with coupling. Be-
yond integration, optimizing the algorithms themselves should also be considered. For Phantom-SN ,
this could involve implementing more parallelized code, such as concurrent computation of sweeps
over angular ordinates or independent parts within a sweep. For the FM-LBM algorithm, a multi-GPU
implementation could be explored, as it has been shown in the literature to significantly accelerate cal-
culations. This improvement would be particularly beneficial for steady-state simulations in the power
method, where the FM-LBM algorithm must converge in every iteration. For large problem domains, this
requires simulating a significant number of LBM timesteps.
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A
Neutronics Data From The Tiberga

Benchmark Case

Table A.1: Average total number of neutrons emitted per fission event per group, prompt and delayed fission spectra, average
energy emitted per fission event per group, and inverse neutron group velocities.

Group, g νtot,g χp,g χd,g Efiss (J) 1/vg(sec cm−1)
1 2.85517 3.53812 · 10−1 4.30325 · 10−3 3.240722 · 10−11 4.00367 · 10−10

2 2.54532 5.23642 · 10−1 3.87734 · 10−1 3.240722 · 10−11 7.39846 · 10−10

3 2.43328 1.21033 · 10−1 5.81848 · 10−1 3.240722 · 10−11 2.61748 · 10−9

4 2.43127 1.35457 · 10−3 2.27947 · 10−2 3.240722 · 10−11 6.69270 · 10−9

5 2.43330 1.51226 · 10−4 2.89130 · 10−3 3.240722 · 10−11 1.55845 · 10−8

6 2.43330 7.37236 · 10−6 4.28935 · 10−4 3.240722 · 10−11 4.24462 · 10−8

Table A.2: Total and fission cross-sections per energy group.

Group, g Σt,g(cm−1) Σf,g(cm−1)
1 1.65512 · 10−1 1.11309 · 10−3

2 2.17253 · 10−1 1.08682 · 10−3

3 3.18009 · 10−1 1.52219 · 10−3

4 2.42093 · 10−1 2.58190 · 10−3

5 2.50351 · 10−1 5.36326 · 10−3

6 2.72159 · 10−1 1.44917 · 10−2
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Table A.3: P0 scattering cross sections.

Σs,0,g′→g(cm−1)
Group g

Group, g′ 1 2 3 4 5 6
1 1.08476 · 10−1 5.23316 · 10−2 4.01805 · 10−3 1.09869 · 10−4 2.53290 · 10−5 3.78334 · 10−6

2 0 1.83666 · 10−1 3.19138 · 10−2 2.34218 · 10−5 2.25259 · 10−6 2.00405 · 10−7

3 0 0 2.98293 · 10−1 1.63470 · 10−2 1.70575 · 10−5 1.24625 · 10−6

4 0 0 0 2.17472 · 10−1 1.90243 · 10−2 1.36858 · 10−8

5 0 0 0 0 2.27173 · 10−1 1.05885 · 10−2

6 0 0 0 0 0 2.37826 · 10−1

Table A.4: P1 scattering cross sections.

Σs,1,g′→g(cm−1)
Group g

Group, g′ 1 2 3 4 5 6
1 5.02479 · 10−2 5.31822 · 10−3 4.77967 · 10−4 3.40533 · 10−5 8.93761 · 10−6 1.34789 · 10−6

2 0 3.78784 · 10−2 6.77085 · 10−3 1.92591 · 10−6 6.99121 · 10−8 1.59216 · 10−8

3 0 0 2.42287 · 10−2 5.13491 · 10−3 8.27643 · 10−7 3.25237 · 10−8

4 0 0 0 1.75032 · 10−2 5.64363 · 10−3 5.05232 · 10−10

5 0 0 0 0 1.49908 · 10−2 3.22691 · 10−3

6 0 0 0 0 0 1.17041 · 10−2

Table A.5: P2 scattering cross sections.

Σs,2,g′→g(cm−1)
Group g

Group, g′ 1 2 3 4 5 6
1 2.92625 · 10−2 1.42924 · 10−3 8.34387 · 10−5 1.81137 · 10−5 4.60830 · 10−6 7.72548 · 10−7

2 0 1.34479 · 10−2 1.08011 · 10−4 1.22275 · 10−7 1.36245 · 10−8 5.37827 · 10−9

3 0 0 3.26562 · 10−3 2.07083 · 10−4 2.24708 · 10−7 5.79136 · 10−8

4 0 0 0 7.74424 · 10−4 4.07402 · 10−4 2.06625 · 10−9

5 0 0 0 0 5.04809 · 10−4 1.82238 · 10−4

6 0 0 0 0 0 3.21414 · 10−4

Table A.6: P3 scattering cross sections.

Σs,3,g′→g(cm−1)
Group g

Group, g′ 1 2 3 4 5 6
1 1.43002 · 10−2 1.47138 · 10−3 1.41136 · 10−5 4.86683 · 10−6 1.18151 · 10−6 1.98042 · 10−7

2 0 2.82616 · 10−3 1.27263 · 10−4 2.35861 · 10−8 2.87008 · 10−10 7.05060 · 10−9

3 0 0 2.81143 · 10−4 1.40428 · 10−4 4.64989 · 10−8 6.27160 · 10−8

4 0 0 0 1.23373 · 10−5 8.90726 · 10−6 3.97151 · 10−10

5 0 0 0 0 3.24220 · 10−6 6.27731 · 10−7

6 0 0 0 0 0 8.75552 · 10−6



B
Simulated Observables for Step 1.4 of The

Tiberga Benchmark

Figure B.1: Simulated horizontal velocity component along the horizontal (left) and vertical (right) centerlines in step 1.4 of the
Tiberga benchmark case for a simulation grid of 501× 501 with a Prandtl number of 1000 and Schmidt number 1500.

Figure B.2: Simulated vertical velocity component along the horizontal (left) and vertical (right) centerlines in step 1.4 of the Tiberga
benchmark case for a simulation grid of 501× 501 with a Prandtl number of 1000 and Schmidt number 1500.
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Figure B.3: Simulated temperature field along the horizontal (left) and vertical (right) centerlines in step 1.4 of the Tiberga benchmark
case for a simulation grid of 501× 501 with a Prandtl number of 1000 and Schmidt number 1500.

Figure B.4: Simulated delayed neutron source along the horizontal (left) and vertical (right) centerlines in step 1.4 of the Tiberga
benchmark case for a simulation grid of 501× 501 with a Prandtl number of 1000 and Schmidt number 1500.



C
Snapshots of Transient Simulation

Results

Figure C.1: Power response to the perturbation of the heat trans-
fer coefficient in the frequency domain with fpert = 0.025.

Figure C.2: Power response to the perturbation of the heat trans-
fer coefficient in the frequency domain with fpert = 0.05.

Figure C.3: Power response to the perturbation of the heat trans-
fer coefficient in the frequency domain with fpert = 0.1.

Figure C.4: Power response to the perturbation of the heat trans-
fer coefficient in the frequency domain with fpert = 0.4.
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Figure C.5: Power response to the perturbation of the heat trans-
fer coefficient in the frequency domain with fpert = 0.8.



D
1D Cross-Section Plots of 3D Simulation

Results

In this appendix we illustrate one-dimensional plots of the simulated variables from the 3D simulations pre-
sented in Section 7.1. The figures illustrate the three velocity components, ux, uy, uz, the temperature field, T ,
and the delayed neutron source

∑
i λiCi along the x-, y- and z- cubic centerlines for both the pure-buoyancy-

driven flow from Section 7.1.1 and the buoyancy-driven flow with shear momentum source from Section 7.1.2.
The x-centerline means that the other coordinates are fixed at a value y, z = L/2.

D.1. Pure Buoyancy-Driven Flow

Figure D.1: ux along x-, y- and z- cubic centerlines for the pure buoyancy-driven flow

Figure D.2: uy along x-, y- and z- cubic centerlines for the pure buoyancy-driven flow

94



D.2. Buoyancy-Driven Flow With Shear Momentum Source 95

Figure D.3: uz along x-, y- and z- cubic centerlines for the pure buoyancy-driven flow

Figure D.4: Temperature field, T , along x-, y- and z- cubic centerlines for the pure buoyancy-driven flow

Figure D.5: Delayed neutron source,
∑

i λiCi, along x-, y- and z- cubic centerlines for the pure buoyancy-driven flow

D.2. Buoyancy-Driven Flow With Shear Momentum Source

Figure D.6: ux along x-, y- and z- cubic centerlines for the buoyancy-driven flow with shear momentum source



D.2. Buoyancy-Driven Flow With Shear Momentum Source 96

Figure D.7: uy along x-, y- and z- cubic centerlines for the buoyancy-driven flow with shear momentum source

Figure D.8: uz along x-, y- and z- cubic centerlines for the buoyancy-driven flow with shear momentum source

Figure D.9: Temperature field, T , along x-, y- and z- cubic centerlines for the buoyancy-driven flow with shear momentum source

Figure D.10: Delayed neutron source,
∑

i λiCi, along x-, y- and z- cubic centerlines for the buoyancy-driven flow with shear momentum
source
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