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Highlights

The most important contributions from this research project are:

• The development of a novel filter-matrix lattice Boltzmann method (FM-LBM) algorithm for the
simulation of the thermal-hydraulics, neutronics, and precursor transport in a MSFR reactor core.
This algorithm shows for the first time that the full multiphysics can be simulated in 1 single FM-
LBM algorithm.

• Increasing the computational performance of the FM-LBMalgorithm usingGPU-acceleration. The
algorithm shows a substantial computational performance increase compared to CPU implemen-
tations, however it under performs compared to similar GPU-accelerated LBM algorithms in liter-
ature.

• The successful implementation of the predictor-corrector quasi-static method in the FM-LBM al-
gorithm to simulate transient MSFR reactor core behaviour. The results agree well with the es-
tablished Tiberga benchmark.
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Abstract

This thesis presents the development of a novel GPU-accelerated multiphysics simulation framework
for modeling the transient behavior of a Molten Salt Fast Reactor (MSFR) core. The MSFR, a Genera-
tion IV nuclear reactor design, operates with a liquid fuel mixture dissolved in molten salt, allowing for
higher fuel utilization, improved inherent safety, and the potential for continuous reprocessing. How-
ever, the use of a circulating liquid fuel introduces a complex coupling between thermal-hydraulics,
neutronics, and delayed neutron precursor transport, which traditional reactor simulation tools are not
well-suited to handle. In this research, a simulation tool is developed specifically to simulate the cou-
pled multiphysics of a molten salt fast reactor core. The equations describing fluid flow, temperature,
neutron flux, and precursor transport will be solved using the lattice Boltzmann method (LBM) with the
novel filter-matrix (FM) collision operator.

The FM-LBM formulation used in this work provides a more stable numerical scheme than classical
single- or multi-relaxation time LBM operators. It effectively filters out non-physical higher-order mo-
ments introduced during discretization, enabling accurate simulations at high Prandtl and Schmidt
numbers. This is essential for simulating the low-diffusivity, low-viscosity characteristics of molten
salts and the slow diffusion of delayed neutron precursors. For the neutronics, the multigroup neu-
tron diffusion equation is implemented using the filter-matrix approach. A two-domain approach with
different timescales is adopted to simulate the short timescale neutronics separate from the longer
timescale thermal-hydraulics and precursor transport. To model transient reactor behavior efficiently,
the predictor-corrector quasi-static method (PCQSM) is integrated into the LBM framework.

To ensure practical usability, the entire simulation framework is implemented in the Julia programming
language with the CUDA backend for GPU acceleration. This allows the simulation tool to leverage the
massive parallelism of modern GPUs, significantly reducing computation time without compromising
accuracy. Benchmarking against the established Tiberga benchmark suite demonstrates that the tool
achieves excellent agreement with reference solutions for steady-state cases and that it is able to
reproduce the trends of the transient case.

The results of this thesis show that the developed GPU-accelerated FM-LBM tool is capable of ac-
curately capturing the coupled thermal-hydraulics, neutronics, and precursor transport of a simplified
MSFR core for both steady-state and transient cases. This work offers a foundation for future research
into more detailed three-dimensional geometries, extended physics (Doppler shift, freezing and melting
of salt, turbulence modeling), and the implementation of the neutron transport equation.
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1
Introduction

With the last two years being the warmest years on record (global air temperature anomalies of+1.17 ◦C
and +1.29 ◦C compared to pre-industrial levels for 2023 and 2024, respectively [34]), it has become
evident that the Earth’s climate is warming due to human activity. A threshold of +1.5 ◦C is widely
accepted as the upper limit of global warming beyond which we will risk severe and irreversible effects
on Earth’s climate [8]. Although many factors play a role in global warming, greenhouse gas emissions
are responsible for the majority. Globally, electricity production accounts for 40% of global greenhouse
gas emissions [3]. Although electricity production is already moving towards carbon-free sources such
as wind and solar power, their weather- and environmental-dependent output endangers the stability of
the power supply. Nuclear power is becoming a more attractive option for reliable, sustainable energy
production, since it is a carbon-free, on-demand power source.

To address current and past concerns about nuclear power generation, the Generation IV International
Forum (GIF) was established in 2001 as a collaborative research initiative with the aim of developing
nuclear reactor technologies with improved reliability, sustainability, and safety [15]. Six reactor designs
have been selected by the GIF for further research - one of which is the Molten Salt Reactor, the subject
of this research.

1.1. The Molten Salt Fast Reactor
The Molten Salt Reactor (MSR) is a family of nuclear fission reactors characterized by the use of a
molten salt which functions as both the fuel and the coolant of the system [16, 31]. Because of the
use of a liquid fuel, molten salt reactors offer improved safety, sustainability, and waste management
compared to conventional solid fuel reactors. Several MSR designs have been proposed over the
years, varying in salt composition (fluoride or chloride salts) and fuel use (uranium, plutonium, and/or
thorium) to address the purpose of the reactor (energy production, high neutron flux, medical isotope
production, breeding, etc.) [25, 31]. In this research, the Molten Salt Fast Reactor (MSFR) design will
be studied.

As the name implies, the MSFR operates neutrons in the fast spectrum. Combined with the addition
of fertile thorium isotopes to the salt mixture, this allows the MSFR to breed fissile uranium and the
fast spectrum promotes actinide burnup [2]. Currently, the MSFR is still in the conceptual phase and
numerical studies are performed to refine the design. The reference MSFR used in these simulations
is a 3 GWth reactor, using a salt mixture composed of 77.5mol% lithium fluoride (LiF), 20mol% thorium
fluoride (ThF4), and 2.5 mol% uranium fluoride (UF4) [2, 17, 30]. The reactor is split in three circuits:
the fuel circuit, the intermediate circuit, and the power conversion system [17, 30]. The fuel circuit,
shown in figure 1.1, is regarded as reactor core.

The core shown in figure 1.1 is a single compact cylinder that measures 2.25 m high and 2.25 m in
diameter. The fuel salt occupies a volume of 18 m3 and operates at a maximum temperature of 750 ◦C
[2]. The inner part of the core contains the core cavity (green region), where most of the fission occurs,
as well as a fertile thorium blanket (red region) and reflectors (blue region). In the outer ring, 16 equally
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Figure 1.1: Schematic representation of the reference MSFR fuel circuit [2].

spaced pumps (blue region) and heat exchangers (orange region) are placed. These pumps and heat
exchangers facilitate in the heat transfer from the core to the intermediate circuit. The salt circulates
in roughly 3 to 4 seconds through the reactor [2, 30]. At the bottom of the reactor (pink region), helium
bubbles are injected to capture insoluble gaseous and metallic fission products. These bubbles are
captured at the top (yellow region) with some salt for reprocessing. This allows for continuous adjust-
ments to the molten salt mixture without the need for reactor shutdowns [25, 31]. In addition, a passive
safety system is incorporated, using a freeze plug at the bottom of the reactor core. This freeze plug
is continuously cooled. In case of emergency, such as power loss or excessive reactor temperatures,
the freeze plug will melt and the molten salt will drain into subcritical drainage tanks, where the fission
reaction stops and the salt can gradually cool down [25, 36, 41]. The reactor core is enclosed by thick
neutron reflectors and a 20 cm thick layer of boron carbide (B4C) to shield the outside from neutrons
[2, 31].

In addition to the continuous reprocessing of fuel salt, and the passive salt-draining mechanism, the
MSFR offers several other advantages. The MSFR exhibits a strong negative temperature feedback
effect [25, 31] of −5 pcmK−1 [2]. This is due to the strong density feedback effect, arising from the
expansion of the salt, which has an immediate effect on the cross sections since there is no heat
transfer delay between the coolant and the fuel. The Doppler feedback also contributes to the negative
temperature feedback. Therefore, the MSFR can entirely be controlled through temperature regulation
and helium bubbling, eliminating the need for control rods [2, 25, 35]. Additional safety and sustainability
advantages include the following:

• The molten salt has a high boiling point and a low vapor pressure, allowing it to operate at low
pressures. This reduces the risk of pipe ruptures and other high-pressure induced failures [25,
35].

• Continuous circulation and reprocessing of fuel leads to a more complete burnup and therefore
to a more efficient fuel usage [31, 35].

• Next to themore efficient fuel usage offered by continuous processing, long-lived actinides remain
longer in the reactor allowing them to burnup completely, significantly reducing the long-term
radioactivity of the nuclear waste. The nuclear waste produced by MSFRs is only dangerous for
a few centuries [9, 20]. Nuclear waste produced by conventional reactors can also be processed
by MSFRs, reducing its dangerous levels of radioactivity from tens of thousands of years to to the
same few centuries. This makes the MSFR a potential solution to the long-lived nuclear waste
[9, 25].

• Thorium is approximately four times more abundant than uranium. Furthermore, while only 0.7%
of all uranium is fissile 235U, thorium is almost 100% made up of fertile 232Th. Thorium is also
already produced as a by-product of rare-earth mining, making fuel acquisition easier and more
sustainable [9, 25].

The safety and sustainability advantages of the MSFR outlined in the previous paragraphs make it an
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attractive technology for future nuclear power generation. However, the MSFR also comes with some
significant challenges that need to be overcome. One of these challenges is the simulation of the cou-
pled neutronics and thermal-hydraulics behaviour of the reactor. Because in MSFRs fuel and coolant
are combined and fuel is liquid rather than solid, these physical fields have a much stronger interaction
than in conventional solid-fuel reactors. Codes developed to simulate the multiphysics of conventional
reactor designs fail to account for the stronger coupling and additional processes like precursor flow, ne-
cessitating the development of new, MSFR-specific, codes. Numerical studies have been performed,
like [35], creating a simulation tool that combines the thermal-hydraulics and neutronics in a single
model. The goal of this research is to contribute by developing a new simulation tool for MSFR reactor
cores, where the thermal-hydraulics and neutronics are simulated in a one GPU-accelerated lattice
Boltzmann model.

1.2. Existing Literature
In this research, a coupled thermal-hydraulics neutronics, also called multiphysics, code will be de-
veloped to simulate the multiphysics behaviour of the MSFR reactor core. This tool consists of three
components: a lattice Boltzmann thermal-hydraulics code, a lattice Boltzmann neutronics code, and
a coupling between these two codes. These multiphysics simulations are computationally expensive.
The lattice Boltzmann method is well suited to be parallelized, so we will study if and how the lattice
Boltzmann method can be parallelized on a graphical processing unit (GPU).

1.2.1. LBM for Thermal Fluid Simulation
The lattice Boltzmann method (LBM) is a numerical technique developed in the 1980s to simulate the
flow of gasses and liquids. The flow is simulated by streaming a distribution function over discrete
directions and colliding it at lattice points. He et al. showed that by implementing a double distribution
function (DDF) flow and temperature can be simulated simultaneously [21]. Chatterjee added to the
DDF by simulating enthalpy rather than temperature, therefore solving the energy equation [6]. Wang
et al. expanded on the DDF approach by introducing a separate distribution function for the precur-
sor density to simulate the precursor advection-diffusion equation [42]. These studies show that the
momentum, energy, and precursor advection-diffusion equations can all be solved simultaneously in
the same LBM framework, allowing for the simulation of the thermal-hydraulics using the LBM. In the
book The Lattice Boltzmann Method: Principles and Practice by Krüger et al. a detailed overview of
the fundamentals of the use of the LBM to simulate thermal fluids is given [23].

The collisions of the distribution function are modeled using a collision operator. In most studies, the
single or multiple relaxation time collision operators are used; however, these operators suffer from
instabilities or require the optimization of a large number of non-physical relaxation times. This research
uses the filter-matrix lattice Boltzmann method (FM-LBM) collision operator, which was first introduced
by Somers [32]. The FM-LBM has an improved stability by filtering out the non-physical terms that are
introduced by the discretization of the governing equations. Zhuo et al. showed that FM-LBM can be
used to simulate both flow and temperature in 2D and 3D simulations [52, 55]. Entes derived a FM-LBM
collision operator analogous to the temperature collision operator to successfully model precursor flow
in a thermal-fluid [12].

1.2.2. LBM for Neutronics Simulation
The LBM has also been employed to model the neutron transport equation and neutron diffusion equa-
tions. The multigroup neutron diffusion equation has been modeled similarly to other physical fields,
by introducing a neutron distribution function for each group [42, 45]. Wang et al. showed that the
multigroup SP3 neutron transport equation can be simulated using the LBM by using two distribution
functions for each energy group [43, 46]. Both neutronics models were in good agreement with neu-
tronics benchmarks, showing that neutronics can be modeled using the LBM. However, in al these
studies the single relaxation time collision operator was used. To improve the stability of the neutronics
simulation, the neutron diffusion equation will be used and a FM-LBM collision operator will be derived
analogous to other fields.

Computing transient neutronics problems comes with some difficulties, since the neutronics change
on very short timescales. This requires the LBM timestep to become very small, which is computa-
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tionally expensive and introduces instabilities. To circumvent this, the predictor-corrector quasi-static
method (PCQSM) has been developed to accurately and efficiently solve transient neutronics problems.
Developed by Dulla et al., the PCQSM factorizes the scalar neutron flux in a slow changing shape func-
tion and fast changing amplitude function [11]. The shape function is solved over big timesteps using
a steady-solver, while the amplitude function is solved over small timesteps using the point-kinetics
equations. This approach allows the LBM timesteps to remain relatively large, while the fast changing
neutronics are captured by the amplitude function. Wang et al. [44] implemented the PCQSM in a
neutron diffusion LBM solver which showed good agreement with the neutronics benchmarks used. In
this research, the shape function was solved using the LBM and the amplitude function using the point
kinetics equations.

1.2.3. GPU Accelerated LBM Simulation Techniques
The most expensive operation of the LBM algorithm is the collision, which is a local operation that only
requires the information on one node. This lends the LBM well to parallelization, making it suitable for
GPU parallelization. Li et al. showed how significant speed-ups can be achieved by parallelizing the
LBM on the OpenGL graphics API. Further advancements have been made on GPU-accelerated LBM
algorithms by Habich [19] and Tölke [38] who demonstrated how the use of shared memory, quickly
accessible short lived memory on the GPU, can be used to accelerate the computations. Delbosc et
al. [7] and Tran et al. [39] showed that by optimizing the data structuring the memory coalescence is
improved and further speed-ups are achieved. Wang et al. [44] showed that even greater speed-ups
can be reached by using a multi-GPU approach, with the greatest speed-ups observed for larger grids.

1.2.4. Multiphysics Simulation Tools for MSFRs
Several studies have developed multiphysics simulation tools for MSFR reactor cores. Wang et al.
[42] developed a unified thermal-hydraulics and neutronics simulation tool using the LBM framework,
where disitribution functions for the precursor density and neutron flux were introduced. This simula-
tion showed how the multiphysics of a MSFR core can successfully be simulated in a LBM-only code.
Since all fields are simulated using the LBM framework, data exchange between the fields is relatively
straightforward, allowing for the easy implementation of couplings between fields. Other studies have
developed similar multiphysics tools, however these tools often use software packages such as COM-
SOL [4] and OpenFOAM [14, 22] for their simulations.

1.3. Research Goals
The goal of this thesis is to develop a multiphysics tool dedicated to molten salt fast reactor cores that
simulates the thermal-hydraulics and neutronics in a single LBM code base that is able to perform
steady-state as well as transient simulations. This is done by developing a GPU-accelerated FM-LBM
algorithms for the thermal-hydraulics as well as the neutronics in the Julia-CUDA framework, as well
as a coupling between these two solvers. The following research questions will be answered during
the development process:

1. Steady-state FM-LBM model development: How can the Julia-CUDA framework be used to
develop a GPU-accelerated FM-LBM algorithm that accurately models the steady-state thermal-
hydraulics, precursor transport, and neutronics in a MSFR reactor core?

• How can the DDF approach be used to model the velocity, temperature, and precursor fields
in a single LBM algorithm?

• How can the neutron diffusion equation be accurately modeled using the FM-LBM algorithm?
How can the neutronics solver be coupled to the thermal-hydraulics solver to simulate accu-
rate behaviour?

• How can the flexibility of the Julia-CUDA framework be used to implement the GPU opti-
mization techniques from the literature to improve the performance of the LBM algorithm?

• How does the steady-state FM-LBM model compare to established steady-state benchmark
studies?

2. Transient FM-LBM model development: How does the steady-state FM-LBM algorithm needs
to be changed to accurately model transient behaviour of a MSFR reactor core?
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• How does the thermal-hydraulics FM-LBM solver need to be altered to simulate transient
situations?

• How does the neutronics FM-LBM solver need to be altered to simulate transient situations?
Will the implementation of the predictor-corrector quasi-static method be sufficient, or are
additional methods required?

• How does the transient FM-LBM model compare to established transient benchmark stud-
ies?

3. Computational performance: What is the computational performance of the multiphysics simu-
lation tool?

• Canwe achieve significant computational performance improvements of theGPU-accelerated
simulation tool compared to other codes using a serial implementation?

• How does the GPU-accelerated simulation tool compare to other GPU-accelerated tools
from the literature?

1.4. Thesis Outline
This thesis is structured as follows. Chapter 2 covers the theoretical background of this project, dis-
cussing the principles of thermal-hydraulics, nuclear reactor physics, the neutron transport and diffusion
equations, the interactions between the physical fields, kinetic theory, and GPU programming. Chap-
ter 3 discusses the numerical methods used, first explaining the fundamentals of the LBM, as well as
the FM-LBM algorithm for each physical field and the implementation of boundary conditions. After-
wards, the lattice conversion, scheme to solve the coupled system, as well as the implementation of
the PCQSM will be discussed. Lastly, the GPU-acceleration of the FM-LBM algorithm will be outlined.
Chapter 4, 5, and 6 compare the results simulation tool against the Tiberga benchmark case, which
is used to validate the multiphysics tool. Chapter 4 covers the validation of the steady-state, single,
uncoupled physics, chapter 5 covers the validation of the steady-state, coupled physics, and chapter
6 covers the validation of the transient coupled physics simulations. Chapter 7 concludes the report,
summarizes the findings and giving recommendations for future research.



2
Theory

In the core of a molten salt reactor, the liquid salt acts as both a coolant and a fuel. This leads to a
stronger coupling between the thermal-hydraulics and neutronics compared to conventional, solid-fuel
reactors. In this chapter, the relevant physics and GPU theory will be discussed for this research. In
section 2.1 the physics describing thermal fluids will be presented. Section 2.2 will explain the gen-
eral theory of nuclear reactors while section 2.3 will discuss the physical equations describing neutron
transport. The interactions between fields will be discussed in section 2.4 and kinetic theory will be
presented in section 2.5. Lastly, section 2.6 will present the fundamentals of GPU programming.

2.1. Thermal-Hydraulics
Thermal-hydraulics concerns the flow and heat transfer in a liquid. In this section, the physical formulas
describing flow and heat transfer through a liquid will be introduced, as well as the relevant dimenions-
less numbers and an introduction to kinetic theory.

2.1.1. Fluid Dynamics
The continuum approximation is used to mathematically describe the behaviour of fluids. The contin-
uum approximation is based on the assumption that the fluid can be described as a continuous mass
distribution [29]. This means that the discrete nature of atoms and their interactions can be ignored.
Under the continuum approximation, the fluid is described by macroscopic variables such as density,
velocity, and pressure. Consequently, conservation laws can be derived for isolated physical systems
in continuum physics.

In continuum physics, mass cannot be created or destroyed. This means that a change in mass in
a control volume can only occur due to mass flowing in or out of the volume. This leads to the first
conservation law in continuum physics, the so called continuity equation

∂ρ

∂t
+∇ · (ρu) = 0 (2.1)

where ρ denotes the density of the control volume and u the fluid velocity [29]. Similarly, the momentum
inside a control volume can only change due to momentum flowing in or out, stresses at the boundary,
or a body force acting on the control volume. This yields the Cauchy momentum equation, the second
conservation law

∂u

∂t
+ (u ·∇)u =

1

ρ
∇ · σ + f (2.2)

where σ denotes the Cauchy stress tensor and f denotes the bodyforce. When dealing with Newtonian
fluids, the Cauchy stress tensor can be simplified since the viscosity is independent of the applied shear
stresses. The Cauchy momentum equation can be further simplified for incompressible flows, allowing

6
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the material derivative (Dρ
Dt ) to be set to zero. Applying these assumptions, we arrive at the Navier-

Stokes Equations (NSE) for incompressible Newtonian fluids

∂u

∂t
+ (u ·∇)u = −1

ρ
∇p+ ν∇2u+ f (2.3)

where ν denotes the kinematic viscosity of the fluid. The NSE forms a complete set of equations to
describe incompressible Newtonian fluids [29].

2.1.2. Temperature Dynamics
Similarly to mass and momentum, a conservation law can be formulated for energy. The amount of
energy in a control volume can only change as a result of in or out flow of energy (by convection and
diffusion) or by the production or destruction of energy. By applying Fourier’s law of thermal conduction
the heat equation can be derived

ρCp
∂T

∂t
+ ρCp u ·∇T = ∇ · κ∇T + q (2.4)

where κ denotes the thermal conductivity, Cp the specific heat capacity, and q the heat source or sink
term. The terms of the heat equation describe, from left to right, the rate of change of temperature,
convective transport, diffusive transport, and heat production or destruction. For constant thermal con-
ductivity, κ can be taken out of the gradient of the first term on the left-hand side.

To accommodate the modeling of freezing effects in further research, it is more convenient to model the
heat in terms of enthalpy rather than temperature. For systems with negligible heat capacity thermal
variations, the heat equation can easily be rewritten to the enthalpy equation by defining the enthalpy
h = ρCpT and the thermal diffusivity α = κ/ρCp, resulting in:

∂h

∂t
+ u ·∇h = α∇2h+ q (2.5)

In this research, heat transport is modeled using the enthalpy equation.

2.1.3. Dimensionless Numbers
In the study of fluid dynamics, the behaviour of a system is largely determined by the ratio of different
physical processes (e.g. momentum transport by convection versus viscosity) rather than their absolute
physical size. These ratios can be derived by performing a dimensional analysis and give a fundamental
insight into the behaviour of a system. A dimensional analysis will be performed on the NSE from
equation 2.3 by introducing the following dimensionless variables

r̃ =
r

L
, t̃ =

t

T
, ρ̃ =

ρ

ρ⋆
, ν̃ =

ν

ν⋆
, ũ =

u

U
=

uT

L
, etc. (2.6)

where L, T , ρ⋆, ν⋆, and U are the characteristic length, time, density, viscosity, and velocity scales of
the system. With these dimensionless variables, the NSE can be rewritten to

∂ũ

∂t̃
+
(
ũ · ∇̃

)
ũ =

1

ρ̃
∇̃p̃+

1

Re
ν̃∇̃2

ũ+ f̃ (2.7)

where the tilde notation is used for all dimensionless variables and operators. The dimensionless
Reynolds number is also introduced which is defined as

Re =
UL

ν⋆
(2.8)

The relevance of the Reynolds number can be demonstrated when we take a closer look at the dimen-
sionless NSE. When the Reynolds number is low, the viscous term (second term on the right side)
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dominates over the convective term (second term on the left side). Since the viscous term is linear,
at low Reynolds number the flow is smooth and stable, which is also known as laminar flow. For high
Reynolds number, the non-linear convective term dominates, resulting in unstable and chaotic flow,
which is also known as turbulence.

This shows the importance of dimensionless numbers and how they can be applied in practice. For
other equations and systems different dimensionless numbers can be derived, the most important ones
for this research are outlined in the table below.

Table 2.1: Dimensionless numbers with their definitions and physical interpretation relevant to this research.

Dimensionless number Definition Physical interpretation

Reynolds Re = UL
ν Ratio between inertial and viscous forces acting on the

fluid. Determines if the flow is laminar or turbulent.
Prandtl Pr = ν

α Ratio between the viscosity and thermal conductivity of
a fluid.

Schmidt Sc = ν
D Ratio between the viscosity and mass diffusion of a

fluid.
Rayleigh Ra = βthL

3g∆T
να Ratio between the buoyancy forces and viscous and

thermal diffusion effects.

2.2. Nuclear Reactor Physics
A nuclear reactor is an apparatus that can sustain nuclear fission [10]. Nuclear fission is a reaction
where an atomic nucleus splits into two or more smaller nuclei. Fission releases energy and also
often gamma rays and neutrons. Fission can occur spontaneously, however this rate is often slow.
Fission can also be induced by hitting nuclei with neutrons. When a nucleus absorbs a neutron a
heavy, unstable nucleus is created which will undergo fission. This is the basic principle used in a
nuclear reactor core to induce nuclear fission and sustain a fission chain reaction.

The chance that a neutron interacts with a nucleus is characterized by the microscopic nuclear cross
section, σx. For bulk materials the chance is described by the macroscopic cross section Σx, which
is the product of the microscopic nuclear cross section σx and the isotope number density N . In the
rest of this report, the term ‘nuclear cross section’ refers to the macroscopic nuclear cross section.
The nuclear cross section depends on the medium, neutron energy (kinetic energy), and temperature.
There are several neutron-nucleus interactions possible, such as scattering, fission, and absorption.

Fission is a type of absorption that results in an unstable nucleus that undergoes fission. Whether
absorption occurs highly depends on the neutron velocity. If the neutron energy matches an energy
level in the nucleus, absorption is greatly increased, resulting in so called resonance peaks. Due
to thermal motion of the nucleus, these resonance peaks broaden and decrease in magnitude with
increasing temperature, this is called the Doppler effect. Temperature changes will also influence the
nuclear cross section due to isotope number density changes due to volume expansion or shrinkage.

In the reactor core, the neutrons produced in previous fission reactions are used to induce new fission
reactions. For safe reactor operations, one wants to track the increase or decrease of neutrons over
time, for which the multiplication factor k is used. The multiplication factor k is defined as the number
of neutrons produced in the current reactor period divided by the number of neutrons produced in the
previous reactor period. The reactor period is defined as the time between fission events. When k = 1
the reactor core is critical and the number of neutrons in the core will be constant. A reactor core
is subcritical when k < 1 and supercritical when k > 1. For safe reactor operations, the number of
neutrons in the core should be constant, so all nuclear reactors are designed to maintain a critical
multiplication factor. Since small deviations from criticality will results in big power changes due to the
short timescale of nuclear fission, deviations are measured by the reactivity ρ given by

ρ =
k − 1

k
(2.9)
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which is usually measured in pcm (per-cent-mille, 10−5). For instance, a reactivity of 500 pcm corre-
sponds to a multiplication factor of 1.005.

The number of neutrons emitted from a fission reaction vary and their energy varies as well. The av-
erage number of neutrons emitted per fission event is represented by ν, and the energy spectrum by
χ(E). Most neutrons appear instantaneously (< 10−14 s after fission occurs. However, some neutrons
are produced by radioactive fission products. Their emission rate varies from milliseconds to minutes.
The instantaneous neutrons are called prompt neutrons while the neutrons emitted by the fission prod-
ucts are called delayed neutrons. When a nuclear reactor reaches criticality on only prompt neutrons,
the reactor is prompt critical. This makes the reactor hard to control, since the reactor period is in the
order of 10−14 s, meaning that a small change in reactivity will quickly get amplified before an exter-
nal reaction (for example, pulling out/dropping in a control rod) can come into effect. Due to this, all
nuclear reactors are designed to avoid prompt criticality and use delayed neutrons to reach criticality.
The inclusion of delayed neutrons lengthens the reactor period to seconds, enabling practical reaction
times for operators.

To analyze the delayed precursors, they are often grouped into families with similar half-life. The fraction
of neutrons that appear in delayed precursor family d is represented by βd. The total number of neutrons
that appear in the delayed precursors are represented by βtot =

∑
d βd. The average half-life of each

precursor family is given by λd. In molten salt reactors, the delayed precursors are dissolved in the salt.
This means that the flow of the salt will affect the neutron distribution, since the delayed precursors will
emit their neutrons at a different place than where the delayed precursors were created.

2.3. Neutron Transport and Diffusion
Understanding and predicting the behavior and number of neutrons is essential to control a nuclear
reactor. The neutron transport equation (NTE) gives the most complete description of neutrons. The
NTE balances the mechanisms of neutron creation and removal for neutrons with energy E, traveling
in direction Ω, located in an infinitesimal volume element r at a time t [10]. The NTE is given by

1

v

∂φ

∂t
+Ω ·∇φ+Σt(r, E)φ(r, E,Ω, t) =

∫
4π

dΩ′
∫ ∞

0

dE′ Σs(E
′ → E,Ω′ → Ω)φ(r, E′,Ω′, t)

+ Sf (r, E,Ω, t)

(2.10)

where φ is the angular neutron flux, a measure of the number of neutrons crossing a unit of area per
unit of time. The first term on the left is the rate of change of number of neutrons, the second term is
the leakage of neutrons into or out of the volume element, and the third term the removal of neutrons
with energy E in the volume element, either by absorption or collision. The first term on the right is the
scattering of neutrons with all energies and directions to energy E and directionΩ and the second term
is the production of neutrons by fission. The fission term is given by

Sf (r, E,Ω, t) =
χ(E)

4π

∫
4π

dΩ′
∫ ∞

0

dE′ ν(E′)Σf (E
′)φ(r, E′,Ω′, t) (2.11)

The fission term computes the total number of neutrons that are produced by fission from neutrons of
all energies and directions. The prefactor gives the fraction of neutrons traveling with energy E and
direction Ω.

Equation 2.10 must be solved for all possible energies and directions, which results in an infinite num-
ber of coupled equations. To solve the NTE, the neutron energies are discretised into energy bands.
Neutrons are grouped by their energy bands, resulting in so called energy groups, denoted by Eg.
For each energy group share the same neutronics parameters such as cross-sections and diffusion
constants.

The NTE can be further simplified by discretising the angular directions of the neutrons. This is called a
discrete ordinate treatment of angle and gives rise to the SN equations, whereN represents the number
of dicretised angular directions. Alternatively, the angular directions can be expanded using spherical
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harmonics. In one-dimension, this expansion corresponds to an expansion in Legendre polynomials in
cos θ, resulting in the PN equations [10].

The NTE gives the most complete description of neutron transport, however it is also computationally
expensive, even with the use of aforementioned discretisations [10]. A less computationaly intensive
equation can be derived by sacrificing some accuracy. By combining the P1 approximation with the as-
sumption that neutron sources are isotropic and that the neutron current density changes much slower
compared to the neutron collision frequency, the neutron diffusion equation (NDE) can be derived from
the NTE. In the NDE, the neutron diffusion coefficient Dg is introduces, which depends on the total
cross-section, the scattering cross-section and the average scattering cosine µ̄0. Additionally the an-
gular neutron flux φ is replaced by the scalar neutron flux ϕ. The NDE reduces the number of equations
significantly and describes most media very well. In regions with large neutron density gradients, like
sources and boundaries, the NDE become less accurate. Considering discretised energy groups, the
multi-group NDE is written for each energy group g as

1

vg

∂ϕg

∂t
−∇ · (Dg∇ϕg) = −Σt,gϕg + χg

∑
g′

(νΣf )g′ϕg′ +
∑
g′

Σs,g′→gϕg′ (2.12)

Here the first term on the left side is the rate of neutron density change. The second term is the diffusion
term. The first term on the right side is the removal of neutrons, the second term the production due to
fission, and the third term the scattering of neutrons from groups g′ to group g.

A vacuum boundary condition is enforced by setting the incoming neutron flux to zero. In the NTE this
can easily be implemented since the angular neutron flux incorporates a direction. However, for the
NDE this condition is harder to implement since the scalar neutron flux does not carry a direction. It
can be derived that a vacuum boundary condition can be enforced for the NDE by requiring the scalar
flux to be zero at an extrapolated boundary x̃boundary,g. This extrapolated boundary is proportional to
the neutron diffusion constant

x̃boundary,g = xboundary,g + 2.1312Dg (2.13)

A visualization of the diffusion approximation of the vacuum boundary condition is shown in figure 2.1.

Figure 2.1: The exact and diffusion approximation of the neutron flux near a vacuum boundary [10].

Up to this point only prompt neutrons were considered. However, as was stated earlier, the delayed
neutrons also play an important role. To describe the delayed neutrons, a physical description of the
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delayed precursors is needed. The advection-diffusion equation of the concentration of precursors of
family d is given by

∂Cd

∂t
+∇ · (uCd)−∇ · (Dp∇Cd) = −λdCd + βd

∑
g

(νΣf )gϕg (2.14)

Here the first term on the left side is the rate of change of precursor concentration. The second term
is the convective transport and the third term the diffusive transport of precursors. The first term on
the right side is the natural decay of precursors while the second term represents the production of
precursors due to fission. Since the decay of precursors produces neutrons, an extra source term
needs to be added to equation 2.12

1

vg

∂ϕg

∂t
−∇ · (Dg∇ϕg) = −Σt,gϕg + χp

g(1− βtot)
∑
g′

(νΣf )g′ϕg′ + χd
g

∑
d

λdCd +
∑
g′

Σs,g′→gϕg′ (2.15)

Where the fourth term on the right side is the neutron production due to precursor decay. The second
term on the right has been adjusted to account for the fission neutron loss to precursor production
(βtot =

∑
d βd).

2.3.1. Steady-State Neutronics: Reactor Criticality Calculation
For safe operation, reactors are designed to be critical. Criticality implies that the number of neutrons
does not change over time, so in equations 2.14 and 2.15 the time-dependent term can be eliminated

∇ · (uCd)−∇ · (Dp∇Cd) = −λdCd + βd

∑
g

(νΣf )gϕg (2.16)

−∇ · (Dg∇ϕg) = −Σt,gϕg + χp
g(1− βtot)

∑
g′

(νΣf )g′ϕg′ + χd
g

∑
d

λdCd +
∑
g′

Σs,g′→gϕg′ (2.17)

However, these equations only have a solution when the neutronics parameters (Σt, χp, βd, etc.) and
geometric dimensions are chosen for criticality. However, often one wants to assess if the chosen
parameters and dimensions will results in criticality. For this reason, equations 2.16 and 2.17 are
studied as an eigenvalue problem

∇ · (uCd)−∇ · (Dp∇Cd) = −λdCd +
βd

keff

∑
g

(νΣf )gϕg (2.18)

−∇ · (Dg∇ϕg) = −Σt,gϕg +
χp
g(1− βtot)

keff

∑
g′

(νΣf )g′ϕg′ + χd
g

∑
d

λdCd +
∑
g′

Σs,g′→gϕg′ (2.19)

where the eigenvalue keff is incorporated into the fission terms and represents the multiplication factor
of the reactor. The fluxes ϕg and concentrations found are the eigenvectors of the system.

2.3.2. Power Method for k-Eigenvalue Problem
To solve the system of equations described by equations 2.18 and 2.19 and find keff , Cd, and ϕg the
system is rewritten to matrix form:

Mγ =
1

keff
Fγ (2.20)

where matrix M can be identified as the destruction operator and matrix F as the fission operator. γ
is the eigenvector. For a 2 neutron group and single precursor family system, these matrices and
eigenvector look the following [10]
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γ = [C1, ϕ1, ϕ2]
T (2.21)

M =

∇ · u−∇ ·Dp∇− λ1 0 0
χd
1λ1 −∇ ·D1∇+Σt,1 − Σs,1→1 0

χd
2λ1 Σs,1→2 −∇ ·D2∇+Σt,2 − Σs,2→2

 (2.22)

F =

0 β1ν1Σf,1 β1ν2Σf,2

0 χp
1(1− β1)ν1Σf,1 χp

1(1− β1)ν2Σf,2

0 χp
2(1− β1)ν1Σf,1 χp

2(1− β1)ν2Σf,2

 (2.23)

These matrices can be rewritten in a more general block matrix form

[
ACC(u) 0
AϕC Aϕϕ

] [
C
ϕ

]
=

1

keff

[
0 AF

Cϕ

0 AF
ϕϕ

] [
C
ϕ

]
(2.24)

where ACC is an operator only acting on and contributing to precursors concentrations, Aϕϕ an op-
erator only acting on and contributing to neutron fluxes, and AϕC acting on precursor concentrations
and contributing to neutron fluxes. Similarly, AF

Cϕ is a fission operator acting on neutron fluxes and
contributing to precursor concentrations and AF

ϕϕ acting on and contributing to neutron fluxes. The M
matrix on the left can be identified as a lower triangular matrix. The power method can be used to find
the largest eigenvalue and accompanying eigenvector for this kind of matrix systems.

The power method is an iterative method which starts with an initial guess for the effective multiplication
factor and fission source at l = 0. From these initial guesses k0eff and S0 a new value for the eigenvector
γ is found using

Mγ(l+1) =
1

k
(l)
eff

S(l) (2.25)

The new fission source and effective multiplication value are then determined using

S(l+1) = Fγ(l+1) (2.26)

k
(l+1)
eff = k

(l)
eff

∫
S(l+1) dV∫
S(l) dV

(2.27)

This scheme is repeated until the difference (k(l+1)
eff − k

(l)
eff ) is deemed small enough.

2.3.3. Transient Behaviour: the Predictor-Corrector Quasi-Static Method
To study transient reactor core problems, equations 2.14 and 2.15 have to be solved. To solve this
system of equations, the neutron flux is factorized in a slowly changing neutron shape function ϕ̃(r, t)
and a fast changing neutron amplitude function n(t) [10, 11]. This factorization is not an approximation
and results in the following expression for the neutron flux

ϕg(r, t) = ϕ̃g(r, t)n(t) (2.28)

Using this factorization, the fast changing neutron amplitude function is solved for small timescales,
while the neutron shape functions is solved for large timescales. This is called a quasi-static method,
since the shape function is assumed to be constant over small timescales.

Using this factorization and some assumptions, point-kinetics (PK) equations can be derived from
the neutron diffusion equation and precursors advection-diffusion equation describing the transient
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behaviour of the reactor core. In the following derivation, the operators that act on the neutron flux are
shortened as shown below.

Mgϕg = −∇ · (Dg∇ϕg) + Σtϕg −
∑
g′

Σs,g′→gϕg′ (2.29)

FP
g ϕg = χp

g(1− βtot)
∑
g′

(νΣf )g′ϕg′ (2.30)

FD
d,gϕg = χd

gβd

∑
g′

(νΣf )g′ϕg′ (2.31)

FD
g ϕg =

∑
d

FD
d,gϕg (2.32)

Fgϕg =
(
FP
g + FD

g

)
ϕg (2.33)

SD
g = χd

g

∑
d

λdCd (2.34)

By applying the neutron flux factorization of equation 2.28 to the neutron diffusion equation from equa-
tion 2.15 and using the previously defined operators, one arrives at the equation

Φ∗
g

1

vg
ϕ̃g

∂n

∂t
+Φ∗

g

1

vg
n
∂ϕ̃g

∂t
= Φ∗

g

(
FP
g −Mg

)
ϕ̃gn+Φ∗

gS
D (2.35)

Here, the conjugate neutron flux Φ∗
g has been introduced. The conjugate neutron flux is used as a

weighing function to ensure the uniqueness of the factorization of equation 2.28 [11]. The conjugate
neutron flux is defined as the solution to the steady-state neutron diffusion equation from equation 2.19
at the initial time. The conjugate neutron flux is normalised using the condition

〈
Φ∗

g,
1

vg
ϕ̃g

〉
= 1 (2.36)

Continuing the derivation, equation 2.35 is integrated over the entire domain, where ⟨x, y⟩ denotes the
volume integration of x and y. The second term on the left-hand side is neglected, since the neutron
shape function is constant over small timescales. This results in

〈
Φ∗

g,
1

vg
ϕ̃g

〉
∂n

∂t
=
〈
Φ∗

g,
(
FP
g −Mg

)
ϕ̃g

〉
n+

〈
Φ∗

g, S
D
g

〉
(2.37)

Applying the same steps to the precursor advection diffusion equation from equation 2.14, assuming
no convection or diffusion, results in [44]

∂
〈
Φ∗

g, χ
d
gCd

〉
∂t

=
〈
Φ∗

g, F
D
d,gϕ̃g

〉
n− λd

〈
Φ∗

g, χ
d
gCd

〉
(2.38)

The assumption of no convection and diffusion is justified because the timescales for convection and
diffusion are generally much larger than the timescales for precursor concentration change. We now
introduce the definition

md =

∑
g

〈
Φ∗

g, χ
d
gCd

〉
∑

g

〈
Φ∗

g,
1
vg
ϕ̃g

〉 (2.39)

By dividing equations 2.35 and 2.37 by
〈
Φ∗

g,
1
vg
ϕ̃g

〉
and summing over all neutron groups, we arrive at
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∂n

∂t
=

〈
Φ∗

g,
(
FP
g −Mg

)
ϕ̃
〉

〈
Φ∗

g,
1
vg
ϕ̃g

〉 n+
∑
d

λdmd (2.40)

∂md

∂t
=

〈
Φ∗

g, F
D
d,gϕ̃g

〉
〈
Φ∗

g,
1
vg
ϕ̃g

〉 n− λdmd (2.41)

These equation are a form of PK equations, where the PK parameters are expressed as a function of
the slowly changing neutron shape function. The equations are rewritten to [44]

dn(t)

dt
=

ρ(t)− βtot(t)

Λ(t)
n(t) +

∑
d

λdmd(t) (2.42)

dmd(t)

dt
=

βd(t)

Λ(t)
n(t)− λdmd(t) (2.43)

Where the PK parameters are defined as [44]

ρ(t) =

∑
g

〈
Φ∗

g, (Fg −Mg)ϕ̃g

〉
∑

g

〈
Φ∗

g, Fgϕ̃g

〉 (2.44)

βd(t) =

∑
g

〈
Φ∗

g, F
D
d,gϕ̃g

〉
∑

g

〈
Φ∗

g, Fgϕ̃g

〉 (2.45)

βtot(t) =
∑
d

βd (2.46)

Λ(t) =

∑
g

〈
Φ∗

g,
1
vg
ϕ̃g

〉
∑

g

〈
Φ∗

g, Fgϕ̃g

〉 (2.47)
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2.4. Interaction Between Fields
In the prior sections, the physics of each field has been discussed separately. However, in a molten salt
reactor these four fields are strongly coupled to each other through a number of different mechanisms,
which makes the thermal-hydraulics-neutronics of a MSFR a multiphysics problem. In this section all
interactions are summarized and figure 2.2 shows a schematic of the four fields and their interactions.

Velocity
u(r, t)

Precursor density
Cd(r, t)

Temperature
T (r, t)

Neutron flux
ϕg(r, t)

Convection

ConvectionBuoyancy Precursor
decay

Fission
product

Density feedback

Fission heat

Figure 2.2: Schematic of the interactions between the four fields describing the thermal-hydraulics and
neutronics of a MSFR.

Firstly, the velocity interacts with the temperature and precursor density fields through convection. The
precursor density and neutron flux interact with each other through fission production and precursor
decay.

The temperature has a momentum feedback through the buoyancy force. Since the salt is modeled
as an incompressible fluid, the Boussinesq approximation is used. In the Boussinesq approximation, it
is assumed that density differences can be neglected for all heat, mass, and momentum terms except
for the buoyancy force. Density variations of the molten salt are modeled using a linear temperature
dependence on a reference temperature [33].

ρ(T ) = ρ(Tref )(1− βth(T − Tref )) (2.48)

where βth denotes the thermal expansion coefficient in units of K−1. This results in the following
temperature-dependent buoyancy force.

f buoyancy = −βth ρ(Tref )(T − Tref )g (2.49)

Besides neutrons and precursors, fission also produces heat, coupling the neutron flux to the temper-
ature. The fission heat is modeled as a heat source q where each fission event produces Efission of
energy.

q = Efission

∑
g

Σf,gϕg (2.50)

Lastly, the temperature has a feedback effect on the neutronics through two mechanisms: salt expan-
sion and Doppler broadening. Due to temperature changes, the salt will expand or shrink, thereby
changing the number density (number of atoms per volume) of the salt. Since the macroscopic cross
section is the product of the microscopic cross section and the number density, the macroscopic cross
section and neutron diffusion cross section will also change through the expansion (or shrinkage) of
the salt. Additionally, a rise in temperature will broaden the absorption spectrum of the salt due to the
thermal motion of the atoms. This is called Doppler broadening. In this research only the salt expan-
sion feedback will be taken into account, the equations for the change in macroscopic cross section
and neutron diffusion constant are defined as
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Σx,g(T ) = Σx,g(Tref )
ρ(T )

ρ(Tref )
(2.51)

Dg(T ) = Dg(Tref )
ρ(Tref )

ρ(T )
(2.52)

Which using equation 2.48 can be rewritten to

Σx,g(T ) = Σx,g(Tref )(1− βth(T − Tref )) (2.53)

Dg(T ) = Dg(Tref )
1

1− βth(T − Tref )
(2.54)

2.5. Kinetic Theory
To understand the lattice Boltzmann method, which will be discussed in the next chapter, knowledge
of kinetic theory is required. Like the NSE, kinetic theory is used to describe the behaviour of fluids.
However, while the NSE describes fluids from amacroscopic perspective by giving equations for density
and fluid velocity, kinetic theory describes fluid behaviour from amesoscopic perspective. Kinetic theory
tracks the distribution of particles in a gas, which on a macroscopic scale leads to the NSE. The particle
distribution is given by f(r, ξ, t) and has 7 degrees of freedom: 3 spatial, 1 temporal, and 3 in velocity
space (denoted by ξ). While the distribution function itself does not represent any physical quantities its
integrals, called moments, do. The following moments are defined for the particle distribution function
f(r, ξ, t) [23]:

ρ(r, t) =

∫
f(r, ξ, t) dξ (2.55)

ρ(r, t)u(r, t) =

∫
ξ f(r, ξ, t) dξ (2.56)

Where u(r, t) is the mean velocity of the gas. To study the evolution of the particle distribution function
over time, the time derivative is taken

df

dt
=

(
∂f

∂t

)
dt

dt
+

(
∂f

∂r

)
dr

dt
+

(
∂f

∂ξ

)
dξ

dt
(2.57)

This equation can be simplified by recognizing some derivatives. In the first term on the right-hand
side we can rewrite dt / dt = 1. In the second term, dr / dt = ξ can be identified. Lastly, the velocity
derivative dξ / dt can be rewritten as the bodyforce f . By replacing the total differential df / dt by Ω(f),
we arrive at the Boltzmann equation

∂f

∂t
+ ξ ·∇f + f ·∇ξf = Ω(f) (2.58)

Here, the first two terms represent the advection of the distribution function with particle velocity ξ. The
third term represents the forces acting on the distribution function. On the right-hand side is a source
term which represents the redistribution of f due to collisions. Therefore, Ω(f) is called the collision
operator.

The redistribution of particles should conserve mass and momentum for a infinitesimal volume at r.
Hence, a collision operator should obey the following moments
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∫
Ω(f) dξ = 0 (2.59)∫

ξΩ(f) dξ = 0 (2.60)

Additionally, the collision operator should result in the equilibrium distribution function feq(r, ξ, t) as
time goes to infinity. The equilibrium distribution is isotropic in velocity space around the mean gas
velocity u [23].

Through Chapman-Enskog analysis, it can be shown that the Boltzmann equation leads to the NSE on
amacroscopic scale. The Chapman-Enskog analysis decomposes the particle distribution function into
an equilibrium and non-equilibrium part. The particle distribution functions are then expanded through a
perturbation and terms of similar order are grouped together. Using the moments defined in equations
2.55 and 2.56 the same conversation laws of section 2.1.1 are found. For a detailed description of the
Chapman-Enskog analysis, the reader is referred to [23].

2.6. Parallel GPU Programming
Simulating thermal fluid flow using the NSE is notoriously computationally expensive [13]. Therefore,
this research also focuses on speeding up the computational procedure of the simulation. The simu-
lation method used in this research, the lattice Boltzmann method (LBM) is a method where the most
numerical intensive operation only uses information at a local (nodal) level. Since no global information
is required for this operation, this operation can be parallelized, which has the potential to significantly
reduce computation times. The operations of the LBM are small enough that they can be executed
on a graphical processing unit (GPU). A GPU contains thousands of small cores that are individually
less powerful than CPU that can execute massive tasks in parallel. In this section, the fundamentals
of GPU programming will be outlined to show the advantages of parallelization for certain computation
tasks.

2.6.1. CUDA Programming Language
In this research, the Compute Unified Device Architecture (CUDA) programming language, developed
by NVIDIA, is used to write algorithms for the GPU. CUDA is developed by NVIDIA and allows devel-
opers to write programs that are directly executed on the GPU [27]. The functions that are executed on
the GPU cores, called kernels, should be defined to run independently to allow for parallel execution.
Since the GPU is controlled by the CPU, the general procedure for parallel programming using CUDA
is:

1. Transfer input variables from CPU memory to GPU memory
2. Allocate GPU memory for simulation output
3. Run the simulation by executing kernels on the GPU
4. Transfer the simulation results from GPU memory to CPU memory

Several challenges related to GPUs are encountered when using CUDA for parallel programming.
Firstly, the cores of a GPU are less powerful than those of a CPU core. Therefore, the complexity of the
kernel functions should be minimized as much as possible. This is best done by adopting a modular
code design, where each kernel function has a single, well-defined task. The use of single-precision
floating-point number is also recommended, since this halves the computational burden compared to
double-precision floating-point numbers.

Secondly, CUDA only supports a limited set of operations for the kernel function. Most importantly,
vector operations like matrix multiplication are not built-in and need to be written out using loops. This
makes kernel programming more laborious, however it also allows for greater control and optimization
of these complex operations.

Lastly, CUDA assumes that calculations and memory addresses accessed by kernels are independent
and do not overlap. When the independence is not maintained, race conditions may arise, where mul-
tiple kernels on different cores access and modify the same memory location simultaneously. These
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situations do not result in CUDA generating an error, however the results become distorted, making
identifying and debugging race conditions challenging. Race conditions can be avoided by using fea-
tures such as atomic operations and synchronization between kernel executions.

2.6.2. GPU Hardware Architecture and Memory Hierarchy
NVIDIA GPUs are organized in a three-layered architecture to optimize memory handling and process-
ing efficiency. This layered architecture has implications for the software abstractions used in CUDA
and needs to be taken into account for optimal GPU usage.

The layered structure of the GPU is shown in figure 2.3. The first layer consists of all the cores of the
GPU. The intermediate layer consists of streaming multiprocessors (SMs), which are a group of cores
responsible for the parallel execution of tasks. Each SM contains a warp scheduler which is responsible
for scheduling the tasks that will be discussed in more detail in a later section. The last layer is the
individual core, which executes kernels scheduled by the SM.

Figure 2.3: The layered hardware architecture of a NVIDIA GPU.

Each layer also has an associated memory, as can be seen in figure 2.3. The first layer contains the
global memory, which has a large size, exists for the whole program time, and is accessible by all
cores for reading and writing. However, this comes with the downside that reading and writing to global
memory is slow. The shared memory is accessible by all cores in a SM and exists for the lifetime of the
SM task. The shared memory is relatively small; however, it has a quick access speed. The last type of
memory is the register memory, which is only accessible by a single core. The register memory is the
smallest type of memory and the most quick to access. However, its lifetime is short: it exists only for
the execution time of a kernel. When developing GPU code, it is essential to consider optimal storage
locations. For instance, variables that are only required for kernel computation can best be stored in
register memory, while constants and final results that need to be transferred back to the GPU can best
be stored in global memory. An overview of the types of memory and their characteristics is shown in
table 2.2.

Table 2.2: Overview of the types of memory of a NVIDIA GPU. For each type of memory their accessibility,
access speed, size, and lifetime is shown.

Memory type Accessibility Access speed Size Lifetime

Global memory All cores + CPU Slow Large Program time
Shared memory Cores in SM Fast Small SM task lifetime
Register memory Single core Fastest Very small Kernel lifetime

2.6.3. CUDA Software Abstractions
In the CUDA programming language, four layers of software abstractions exist to control the task divi-
sion of the GPU. These layers are illustrated in figure 2.4. The lowest layer is the thread, the smallest
computation unit of a program, usually performing operations on a single lattice point. Warps, the sec-
ond layer, are a group of 32 threads and are scheduled to a single SM. A collection of warps forms a
block, the third layer. The number of warps in a block can be specified, thus allowing for the optimized
use of a GPU. All blocks together make up the grid, the top layer of the CUDA abstractions.
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Figure 2.4: Overview of the software abstractions used in CUDA. The number of threads in a warp is fixed at 32,
however CUDA allows to specify the number of blocks and the number of threads per block.

To conclude, the task division using CUDA can namely be controlled by specifying the number of threads
per block. Since 32 threads will always be collected in a warp and be scheduled to a SM as a warp, for
optimal use the threads per block should always be chosen in multiples of 32.



3
Numerical Method

In this chapter the numerical techniques used in this research will be discussed. The four physical fields
(momentum, enthalpy, neutronics, and precursors) will all be simulated using the lattice Boltzmann
method (LBM). The fundamentals of the LBM and the filter-matrix algorithm used will be explained in
sections 3.1 and 3.2, respectively. A detailed description of boundary condition handling will be given in
section 3.3. The conversion of physical units to lattice units will be discussed in section 3.4. In section
3.5 the solving scheme for the coupled system is presented. Section 3.6 presents the implementation
of the predictor-corrector quasi-static method, previously discussed in section 2.3.3, to solve transient
neutronics. Lastly, the GPU acceleration of the FM-LBM algorithm is discussed in section 3.7 including
several optimization techniques.

3.1. Fundamentals of the Lattice Boltzmann Method
As discussed in section 2.5, the Boltzmann equation gives a mesoscopic description of fluid behaviour.
However, the Boltzmann equation is notorious for being even harder to solve analytically than the
Navier-Stokes equations (NSE). To solve the Boltzmann equation numerically, it will be discretized,
leading to the lattice Boltzmann method (LBM). The LBM is surprisingly easy to solve numerically and,
as it turns out, well suited for GPU parallelization.

The Boltzmann equation is discretized in time, space, and velocity. The time is discretized in timesteps
∆t. The space is discretized by dividing the domain into lattice points that are spaced ∆x apart. The
velocity discretization derives from the time and space discretization: between each time step, the
distribution function can flow to neighbouring lattice points. This results in a discretized velocity for
vertical and horizontal movements of ∆x/∆t, for square diagonals

√
2∆x/∆t, and for cubic diagonals√

3∆x/∆t. The discretized velocities are denoted by ci = [cix, ciy, ciz]
⊺, where i is the direction of the

flow. In the LBM, the distribution function is discretized along the discretized velocities: f(r, ξ, t) →
fi(r, t).

Each lattice velocity ci also has an accompanying weight ωi. Together, these velocity-weight sets form
a lattice velocity set. One can choose which (diagonal) movements are allowed in a set, resulting in the
DdQq notation for lattice velocity sets, where d is the number of spatial dimensions and q the number
of velocities. In figure 3.1 the most common velocity sets for 2 and 3 dimensional domains are shown.
Note that all of these sets contain a rest velocity c0 = [0, 0(, 0)]⊺.

By applying this discretization to the Boltzmann equation from equation 2.58, the lattice Boltzmann
equation (LBE) is found

fi(r + ci∆t, t+∆t) = fi(r, t) + Ωi(r, t) (3.1)

This expresses that during a timestep ∆t particles fi(r, t)move with velocity ci to a neighbouring point
r + ci∆t, while being affected by the collision operator Ωi(r, t).

20
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(a) Two 2-dimensional lattice velocity sets in the LBM; D2Q5
in black and D2Q9 in black and gray [23].
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(b) Two 3-dimensional lattice velocity sets in the LBM; D3Q7
in black and D3Q19 in black and gray. The rest velocity

(c0 = [0, 0, 0]⊺ is not shown [23].

Figure 3.1: Common lattice velocity sets for 2 and 3 dimensional LBM simulations.

From this discretization naturally follows the simulation procedure. During each timestep ∆t, there is
first a collision step, where the new distribution f∗

i (r, t) at each node is determined using the previous
distribution fi(r, t). Next, the streaming step follows, where the distributions f∗

i (r, t) stream with their
velocity ci to the neighbouring nodes (r+ci∆t, t+∆t). This procedure is schematically shown in figure
3.2.

fi(r, t)
pre-collision distribution function

Collision

f∗
i (r, t)

post-collision distribution function

Streaming

f∗
i (r + ci∆t, t+∆t)

post-streaming distribution function

Figure 3.2: Schematic overview of the collision and streaming step for the distribution function fi.

As with the Boltzmann equation, the distribution function of the LBE does not describe a physical quan-
tity; however, its moments do. Since the LBE is the discretized version of the Boltzmann equation, the
integrals have been replaced by sums and the following moments are defined for the velocity distribu-
tion function fi(r, t) [23].

ρ =
∑
i

fi, ρu =
∑
i

cifi (3.2)

There is some freedom in choosing the discretized collision operator Ωi(f) introduced in equation 3.1.
The collision operator must satisfy the moments described in equations 2.59 and 2.60 and in the limit
it should relax the distribution function to the equilibrium distribution given by the Maxwell-Boltzmann
distribution. For the LBM, the particle density equilibrium function is given by

feq
i = ρωi

(
1 +

ci · u
c2s

+
(ci · u)2

2c4s
− u · u

2c2s

)
(3.3)
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Where ρ and u denote the macroscopic fluid density and velocity. ωi are the weights for each velocity
ci. cs is the lattice speed of sound. Through Chapman-Enskog analysis it can be shown that this
equilibrium distribution results in the force-free NSE [23].

The most simple collision operator is the Bhatnager-Gross-Krook (BGK) operator, which relaxes the
distribution towards equilibrium using a single relaxation parameter τ , which is defined as

ΩBGK(f) = −1

τ
(fi − feq

i ) (3.4)

The BGK operator is simple to implement and can simulate a large range of fluid behaviours well.
However, the BGK operator also has its downsides. The value of the relaxation time τ is directly coupled
to the viscosity of the fluid, and for stable simulations the relaxation time is limited to a small range of
values, thereby limiting the viscosity range of the simulations. Therefore, more sophisticated methods
have been developed, such as the two-relaxation times operator (TRT) [18], the multi-relaxation times
operator (MRT) [5], and the filter-matrix lattice Boltzmann method (FM-LBM) operator [23, 55]. In this
research the FM-LBM operator is used, which will be discussed in the next section.

3.2. The Filter-Matrix Lattice Boltzmann Method
The filter-matrix lattice Boltzmann method (FM-LBM) operator can be derived from the LBE by shifting
the spatial and temporal dimensions by half a grid and time spacing, resulting in the staggered grid
approach [23]. Using the staggered approach, equation 3.1 is rewritten to

fi

(
r +

∆t

2
ci, t+

∆t

2

)
= fi

(
r − ∆t

2
ci, t−

∆t

2

)
+∆tΩi(f) (3.5)

Applying a Taylor expansion around fi(r, t) and combining this with the staggered LBE in equation 3.5
results in

fi

(
r ± ∆t

2
ci, t±

∆t

2

)
= fi(r, t)±

∆t

2
Ωi(f) +O

(
∆t2

)
(3.6)

By applying the Chapman-Enskog analysis to equation 3.6, expressions for the particle distributions fi
and collision operator Ωi in terms of macroscopic variables are found. These expressions ensure that
the LBE simulates incompressible NSE flow and are given by

fi(r, t) = ρωi

[
1 +

ci · u
c2s

+
1

2

(
(ci · u)2

c4s
− u · u

c2s

)
− ν

(
(ci ·∇)(ci · u)

c4s
− ∇ · u

c2s

)]
(3.7)

Ωi(f) =
ρωi

c2s

[
(ci ·∇)(ci · u)− c2s ∇ · u+ ci · f

]
(3.8)

Here, ν denotes the kinematic viscosity and f the body force acting on the fluid. By substituting the
expression for the particle distribution and collision operator into equation 3.6 one arrives at

fi

(
r ± ∆t

2
ci, t±

∆t

2

)
= ρωi

[
1 +

ci · u
c2s

+
1

2

(
(ci · u)2

c4s
− u · u

c2s

)
− ν

(
(ci ·∇)(ci · u)

c4s
− ∇ · u

c2s

)

± ∆t

2

(
(ci ·∇)(ci · u

c2s
−∇ · u+

ci · f
c2s

)] (3.9)

The equation above can also be written more concisely as a matrix multiplication, by introducing the
filter matrix Eik and the solution vector α±

k (r, t)
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fi

(
r ± ∆t

2
ci, t±

∆t

2

)
=
∑
k

ωiEikα
±
k (r, t) (3.10)

The filter matrix Eik depends on the mesoscopic velocities ci, while the solution vector α±
k is defined

in terms of macroscopic quantities. The definition of the filter matrix and the solution vector depends
on the lattice velocity set used and physical quantity simulated. In later sections definitions for the filter
matrix and solution vector will be given. Equation 3.10 can also be inverted by introducing the inverted
matrix Eki, defined as ωiEki = (Eki)

−1, resulting in

α±
k (r, t) =

∑
i

Ekifi

(
r ± ∆t

2
ci, t±

∆t

2

)
(3.11)

The FMLBM is a powerful collision operator, since it allows us to transform the non-physical distribution
function to the physical solution vector and back using the Eik and Eki filter matrices. The collision
algorithm for the FMLBM operator is as follows:

1. The pre-collision distribution function fi is transformed to the pre-collision vector α−
k using the

filter matrix Eik.
2. The pre-collision solution vector α−

k is updated to the post-collision vector α+
k .

3. The post-collision vector α+
k is transformed back to the post-collision distribution f⋆

i using the filter
matrix Eki.

The exact definition of the solution vector depends on the lattice velocity set used and physical quantity
being simulated. As will be shown in later sections, the solution vector is easily transformed from pre-
to post-collision, making the FMLBM an easy and intuitive operator. Additionally, due to the lack of
a relaxation parameter as is present in the BGK operator, the FMLBM operator can simulate a wider
range of fluid behaviour before becoming unstable.

3.2.1. Lattice Velocity Sets
In this research, the D3Q7 and D3Q19 lattice velocity sets are used. For the D3Q7 velocity set, the
following weights and filter matrix are defined [50, 49]:

ω7
i =

{
1/4 i = 1

1/8 i = 2, 3, 4, 5, 6, 7
(3.12)

E7
ki =

[
1, cix, ciy, ciz, 4c

2
ix − 1, 4c2iy − 1, 4c2iz − 1

]⊺ (3.13)

The speed of sound for the D3Q7 velocity set, in lattice units (lattice time lt and lattice spacing ls), is
c2s = 1/2 ls lt−1. The speed of sound for the D3Q19 velocity set is cs = 1/

√
3 ls lt−1 [49]. For the D3Q19

velocity set, the following weights and filter matrix are defined [23, 53]:

ω19
i =


1/3 i = 1

1/18 i = 2, 3, 4, 5, 6, 7

1/36 i = 8, 9, . . . , 18, 19

(3.14)
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E19
ki =



1
cix, ciy, ciz

3c2ix, 3c
2
iy, 3c

2
iz

3ciyciz, 3cixciz, 3cixciy
3cix

(
c2iy − c2iz

)
, 3ciy

(
c2iz − c2ix

)
, 3ciz

(
c2ix − c2iy

)
cix
(
3c2iy + 3c2iz − 2

)
, ciy

(
3c2ix + 3c2iz − 2

)
, ciz

(
3c2ix + 3c2iy − 2

)
3
(
2c2ix − c2iy − c2iz

)(
|c|2 − 3

2

)
3
(
c2iy − c2iz

)(
|ci|2 − 3

2

)
3|ci|2

(
|ci|2 − 2

)
+ 1


(3.15)

3.2.2. Filter-Matrix for Momentum Transport
The momentum transport through the fluid is simulated using the particle density distribution function fi.
Momentum is transported according to the NSE defined in equation 2.3. To correctly simulate fluid flow,
the D3Q19 scheme is required to capture all complexities of the NSE [23]. Using the Chapman-Enskog
analysis, the momentum solution vector α±

k is defined as [53]:

α±
k =



ρ
ρux ±∆tfx/2
ρuy ±∆tfy/2
ρuz ±∆tfz/2

3ρu2
x + ρ(−6ν ±∆t)∂xux + (2− 3B)ρν∇ · u

3ρu2
y + ρ(−6ν ±∆t)∂yuy + (2− 3B)ρν∇ · u

3ρu2
z + ρ(−6ν ±∆t)∂zuz + (2− 3B)ρν∇ · u
3ρuyuz + ρ(−3ν ±∆t/2)(∂yuz + ∂zuy)
3ρuxuz + ρ(−3ν ±∆t/2)(∂xuz + ∂zux)
3ρuxuy + ρ(−3ν ±∆t/2)(∂xuy + ∂yux)

0, k = 11, ..., 16
0, k = 17, 18, 19



(3.16)

Here, ρ is the fluid density, ux,y,z the fluid velocity along the Cartesian axes, fx,y,z the bodyforce com-
ponents along the Cartesian axes, ∆t the simulation time step, ν the kinematic viscosity, and B the
ratio of the bulk and kinematic viscosities. ∂x,y,z denotes the spatial derivative. The terms α±

11−16 and
α±
17−19 correspond to third and fourth order terms respectively. These terms are non-physical artifacts

that arise from the discretization of the LBM. These terms are set to zero during the FMLBM collision,
to filter out these non-physical terms, enhancing the stability of the simulation.
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3.2.3. Filter-Matrix for Heat, Neutron, and Delayed Precursor Transport
The heat, neutron, and delayed precursor transport are all described by advection-diffusion type equa-
tions. This allows us to treat them in the samemanner to derive their filter-matrix expressions, therefore
they are discussed together in this section.

Similarly to momentum transport, distribution functions and solution vectors are defined for heat, neu-
tron, and precursor transport. Heat is modeled by the heat distribution function gi and the heat solution
vector β±

k . Neutrons are modeled by the neutron distribution function ni,g per neutron group g and the
neutron solution vector γ±

k,g. Delayed precursors are modeled by the precursor distribution function pi,d
for delayed precursor family d and the precursor solution vector δ±k,d. These distribution functions and
solution vectors are related by

gi

(
r ± ∆t

2
ci, t±

∆t

2

)
=
∑
k

ωiEikβ
±
k (r, t) (3.17)

ni,g

(
r ± ∆t

2
ci, t±

∆t

2

)
=
∑
k

ωiEikγ
±
k,g(r, t) (3.18)

pi,d

(
r ± ∆t

2
ci, t±

∆t

2

)
=
∑
k

ωiEikδ
±
k,d(r, t) (3.19)

The advection-diffusion equations model the scalar quantities of enthalpy h, neutron flux ϕg, and precur-
sor concentration Cd, respectively. This allows us to define the following moments for the distribution
functions

h =
∑
i

gi (3.20)

ϕg =
∑
i

ni,g (3.21)

Cd =
∑
i

pi,d (3.22)

The heat transport through the fluid is described by the heat equation from equation 2.5, which, as
earlier mentioned, is a type of advection-diffusion equation. For advection-diffusion equations theD3Q7
velocity set is sufficient, so this velocity set is used to model heat, neutron, and delayed precursor
transport [23]. This significantly reduces memory usage and therefore computation time.

By performing a Chapman-Enskog analysis on the heat equation Zhuo found the following heat solution
vector, expressed in enthalpy h [54]

β±
k =


h±∆t q/2

hux + −8α±∆t
8 ∂xh

huy +
−8α±∆t

8 ∂yh
huz +

−8α±∆t
8 ∂zh

0, k = 5, 6, 7

 (3.23)

The heat solution vector is physically interpreted that the first term tracks the enthalpy, the second to
fourth terms the convection and diffusion in the Cartesian directions, and the fifth to seventh terms are
non-physical higher-order terms, set to zero. The heat source q in the first term is defined as:

q = γ

(
href

ρrefcp
− h

ρcp

)
+ Efission

∑
g

Σf,gϕg (3.24)
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Where ρ(ref) is the (reference) fluid density and Cp the heat capacity. The first term on the right-hand
side is the volumetric heat sink around the reference enthalpy href and the second term is heat pro-
duction due to fission.

In literature, no filter-matrix expression was found for the NDE (equation 2.19) and delayed precursor
ADE (equation 2.18). However, since both of these equations are types of advection-diffusion equa-
tions, expressions for their solution vectors were derived analogously to the heat solution vector. This
resulted in the following expression for the neutron solution vector:

γ±
k,g =


ϕg ±∆t Sg/2
−8Dg±∆t

8 ∂xϕg
−8Dg±∆t

8 ∂yϕg
−8Dg±∆t

8 ∂zϕg

0, k = 5, 6, 7

 (3.25)

Here, it can be seen that the heat source q is replaced with the neutron source Sg and that the convective
terms are omitted from the γ±

2−4,g terms, since the NDE is not affected by convection. Dg is the neutron
diffusion constant. The neutron source term is defined as:

Sg = −Σt,gϕg + χp
g

1− βtot

keff

∑
g′

(νΣf )g′ϕg′ + χd
g

∑
d

λdCd +
∑
g′

Σs,g′→gϕg′ (3.26)

Where Σ(t,f,s),g is the macroscopic neutron cross section for removal, fission, and scattering, respec-
tively. χp,d

g are the prompt and delayed neutron spectra. βtot is the total delayed neutron fraction, keff
the multiplication factor, νg the average numbers of neutrons produced per fission event, λd the decay
constant, and Cd the precursor concentration for precursor family d.

The following expression was derived for the precursor solution vector:

δ±k,d =


Cd ±∆t Sd/2

Cdux +
−8Dp±∆t

8 ∂xCd

Cduy +
−8Dp±∆t

8 ∂yCd

Cduz +
−8Dp±∆t

8 ∂zCd

0, k = 5, 6, 7

 (3.27)

Where the heat source is replaced by the delayed precursor source Sd and the convective terms are
present in the second to fourth terms, since the precursors are affected by convection. Dp is the delayed
precursor diffusion constant and the delayed precursor source is defined as:

Sd = −λdCd +
βd

keff

∑
g

(νΣf )gϕg (3.28)

Where βd is the delayed neutron fraction of delayed precursor family d. The first term on the right-hand
side is the decay of precursors, while the second term is the production of precursors by fission.

3.3. Boundary Conditions
During the streaming step of the LBM algorithm, the populations streaming in from outside the domain
are unknown. This is were boundary conditions come in: using the boundary conditions, the external
populations flowing into the domain are determined.

Computationally, the external populations are programmed by introducing a layer of ghost nodes around
the whole lattice. In these ghost nodes, the external populations are stored and updated for each
streaming step.
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There exists a vast number of techniques to enforce Dirichlet, Neumann, or Robin boundary conditions
in the LBM scheme. In this research, the simple and straightforward halfway bounce-back (HBB) and
anti bounce-back (ABB) techniques are used to enforce Dirichlet and Neumann boundary conditions for
the different physical fields. The HBB and ABB boundary techniques are simple in their application; for
both techniques, the outgoing populations ‘stream’ to a ghost node, where their velocity is reversed. For
the ABB technique, the population is also inverted during the reflection. The HBB and ABB techniques
are illustrated in figure 3.3 [23].

ghost fluidwall

(a) The halfway bounce-back (HBB)
technqiue visualized.

ghost fluidwall

(b) The anti bounce-back (ABB)
technique visualized.

Figure 3.3: Visualization of the boundary techniques used in this research. The fluid populations are marked by
black, filled arrows, reflected populations are marked by dashed arrows, and inverted populations are marked by

red arrows. The illustrations are inspired by [23].

3.3.1. Periodic Boundaries
Periodic boundaries are implemented by copying the distribution function at the edge of the periodic
boundary to the ghost node at the other side of the domain. For a domain with N lattice nodes in the x
direction, this means that the populations at x1 are copied to xN+1, and the xN populations are copied
to x0. This is illustrated in figure 3.4 [23].

x0 x1 xN xN+1

Figure 3.4: Implementation of periodic boundary conditions along the x-axis. Fluid nodes are denoted by filled
black circles and ghost nodes are denoted by black, empty circles. Arrows denote the duplication direction.

Illustration inspired by [23].

3.3.2. Momentum Boundaries
In this research, the walls of the simulatioN-domain were treated as a no-slip boundary. In the LBM, a
no-slip boundary is implemented for the momentum equations using the HBB technique. For stationary
walls, this results in [23]:
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fj(rb + ci∆t, t+∆t) = fi(rb, t) (3.29)

where j is the inverse direction of i, such that cj = −ci. For moving walls, equation 3.29 is modified to
[23]:

fj(rb + ci∆t, t+∆t) = fi(rb, t)− 2ωiρw
ci · uw

c2s
(3.30)

where ρw and uw are the density and velocity at the wall rw = rb +
1
2ci∆t

3.3.3. Heat, Neutronics, and Delayed Precursor Boundaries
The heat equation, neutron diffusion equation (NDE), and the precursor advection-diffusion equation
(ADE), are all types of advection-diffusion equations. In this research, Dirichlet boundary conditions
are used for the NDE and Neumann boundary conditions are used for the heat equation and precursor
ADE. For advection-diffusion equations, Dirichlet andNeumann boundary conditions are enforced using
(modified versions of) the ABB boundary technique. The general expression for the ABB technique, for
stationary walls is [51]:

fj(rb + ci∆t, t+∆t) = −fi(rb, t) + 2ωiCw (3.31)

here again, j is the inverted direction of i. Cw is the value of the physical quantity (enthalpy, neutron
flux, or precursor density) prescribed at the wall.

To enforce Dirichlet boundary conditions, Cw is equal to the Dirichlet value at the wall (e.g. the enthalpy
at the wall for a fixed temperature boundary). In this research, only neutronics have Dirichlet boundary
conditions, namely the vacuum boundary condition for the NDE. The vacuum boundary condition for
the NDE prescribes a zero flux at an extrapolated distance x̃b from the boundary rather than at the wall,
so interpolation is required to determine the neutron flux at the wall. The interpolation is shown in figure
3.5. Here, the wall flux ϕw is determined by interpolating between the known neutron flux just inside the
domain ϕ0, located half a lattice spacing from the wall, and the extrapolated neutron flux ϕextr, spaced
at one extrapolated boundary x̃b from the wall. The extrapolated neutron flux is by definition equal to
zero and the extrapolated boundary length is equal to 2.1312 times the neutron diffusion constant Dg.

x

wall

ϕ0

ϕextr = 0

ϕw

1/2 ls x̃b

Figure 3.5: Visualization of the linear interpolation to determine the neutron flux at the wall (ϕw) for the vacuum
boundary condition of the NDE. The neutron flux just inside the domain (ϕ0), located half a lattice spacing from
the wall, and the extrapolated neutron flux (ϕextr), spaced at one extrapolated boundary length x̃b from the wall,
are used for the interpolation. The extrapolated boundary length is defined as 2.1312 times the neutron diffusion

constant Dg.
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Using this interpolation, it can be derived that the neutron flux at the wall ϕw is described by:

ϕw =
x̃b

1/2 + x̃b
ϕ0 (3.32)

Where the extrapolated boundary x̃b is expressed in lattice spacings (ls).

The heat and delayed precursor fields both have Neumann boundary conditions of the form ∂h
∂n = 0

and ∂Cd

∂n = 0, where n is the normal of the boundary. Neumann boundary conditions are enforced by
setting the physical wall quantity Cw equal to the macroscopic value just inside the domain (C0). For
the enthalpy and precursor fields that translates to setting Cw to the enthalpy just inside the domain
(h0) and delayed precursor concentration just inside the domain (C0,d) [51].

For moving walls, a correction to the ABB technique is required. This is only necessary for the physical
quantities that are affected by convection (heat and delayed precursors in this research). For walls
moving with velocity uw, equation 3.31 is corrected by [51]:

fj(rb + ci∆t, t+∆t) = −fi(rb, t) + 2ωiCw

[
1 +

(ci · uw)
2

2c4s
− |uw|2

2c2s

]
(3.33)

3.4. Lattice Conversion
To standarize computations, the simulation parameters are converted from physical units to lattice units,
in a way similar to the dimensionless numbers from section 2.1.3. For instance, the spacing between
neighbouring lattice points is defined as one ‘lattice spacing’ (ls), and the time between iterations as
one ‘lattice time’ (lt). As with physical units, these lattice units can be combined to express other units
such as velocity (ls lt−1). When a variable is expressed in lattice units, an asterisk subscript is added
(e.g. Q∗). When it is emphasized that a variable is expressed in physical units, a ‘ph’ subscript is added
(e.g. Qph).

When choosing lattice units, the same fluid behaviour needs to be simulated, i.e. the dimensionless
numbers should be the same whether they are computed in physical or lattice numbers, i.e.:

Re =
UphLph

νph
=

U∗L∗

ν∗
(3.34)

This can be achieved by defining the lattice units for the SI base units (time, space, temperature, and
mass) and expressing all other units in these lattice units.

To convert from physical units to lattice units and back, conversion factorsCQ are used. The conversion
factor is defined as the ratio of the physical value to the lattice value. For example, the conversion factor
for space is defined as

Cx =
Lph

L∗ =
Lph

N
(3.35)

where Lph is the physical length of a given axis, and N the number of grid points of that given axis.
Conversion factors for non-SI base units can be derived by combining the SI base conversion factors,
for example the conversion factor for viscosity:

Cν =
C2

x

Ct
(3.36)
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3.5. Scheme for Solving the Coupled System
The timescales of the flow, heat, neutronics, and precursor field vary. The timescale of the neutronics
field is a few orders of magnitude smaller than the timescales of the flow, heat, and precursor fields,
which have comparable timescales. To solve the coupled system, the simulatioN-domain was split in a
long-timescale thermal-hydraulics domain (TH-domain), which simulates the flow, heat, and precursors,
and a short-timescale neutonics domain (N-domain) simulating the neutronics.

Since the neutronics evolve on a timescale many times smaller than the thermal-hydraulics, in practice
the neutronics will converge for each thermal-hydraulics timestep. This is implemented in the solv-
ing scheme by letting the N-domain run to convergence for each TH-domain LBM cycle. This solving
scheme is thus structured as a thermal-hydraulics solver (the outer iteration) with an embedded neu-
tronics solver (the inner iteration).

Since the two domains are coupled, between LBM cycles there is a data exchange required. Macro-
scopic quantities such as temperature and precursor concentration are transferred from the TH-domain
to the N-domain, and the fission source and heat source is transferred back from the N-domain to the
TH-domain. The solving scheme is illustrated in figure 3.6.

Start

Initialize TH-domain and N-domain

Transfer macroscopic quantities from TH-domain to N-domain

Perform 1 N-domain LBM cycle

N-domain converged?

Transfer macroscopic quantities from N-domain to TH-domain

Perform 1 TH-domain LBM cycle

TH-domain converged?

Stop

no

yes

no

yes

Figure 3.6: General solving scheme used to simulate the coupled multiphysics problem.
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3.6. Predictor-Corrector Quasi-Static Method
The transient behaviour of the system is modeled using the predictor-corrector quasi-static method (PC-
QSM), discussed in more detail in section 2.3.3. The PCQSM is implemented using three timescales:
a big timestep∆tB , a medium timestep∆tM , and a small timestep∆tS . The simulation is initialized on
a critical, steady state solution. As described in section 2.3.3, the neutron flux is factorized in a slowly
changing shape function ϕ̃(r, t) and a fast changing amplitude function n(t), both of which need to be
solved.

First, the steady-state LBM algorithm is used to compute the shape function over the big timestep
∆tB . Then, the point-kinetics (PK) parameters ρ, βd, and Λ are computed over medium timestep
∆tM intervals, where the old and new shape functions are linearly interpolated to determine the shape
function at the medium timestep. Lastly, the PK equations in equations 2.42 and 2.43 are solved over
small timesteps ∆tS using the forward Euler method, resulting in the following expressions [47]

n(t+∆ts) = n(t) +

[
ρ− βtot

Λ
n(t) +

∑
d

λdmd(t)

]
∆ts (3.37)

md(t+∆ts) = md(t) +

[
βd

Λ
n(t)− λdmd(t)

]
∆ts (3.38)

The initial values for the PK equations are given by [11]

n(0) = 1 (3.39)

md(0) =
βd

λdΛ
(3.40)

When after iterating over all medium and small timesteps the big timestep ∆tB is reached, the neutron
flux is computed by multiplying the shape function by the amplitude function. A schematic showing the
timescales used in the PCQSM is shown in figure 3.7.

∆tB

∆tM

∆tS

solve shape function over
big timestep ∆tB

compute Point-Kinetics
parameters over medium
timestep ∆tM

solve amplitude function
over small timestep ∆tS

Figure 3.7: Schematic showing the different timescales involved in the PCQSM.

The big timestep ∆tB is chosen to be equal to the thermal-hydraulics timestep, which is in the order
of 10−3 to 10−4 s. The medium and small timesteps ∆tM and ∆tS are chosen sufficiently small such
that iteratively solved PK equations yield the same results as for smaller timestep values. The medium
and small timestep values are determined on a trial-by-error basis, and are usually 2 to 10 medium
timesteps per big timestep, and 10 to 100 small timesteps per medium timestep.
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The modified neutronics solving scheme incorporating the PCQSM is shown in figure 3.8. Here, the
first block is the same FM-LBM algorithm that is used to compute the steady-state neutronics. All the
other blocks are added to compute the amplitude function using the point-kinetics equations.

Start

Compute new shape function using the FM-LBM over ∆tB

Start medium timestep loop, m = 1

Compute PK parameters using interpolated shape function

Start small timestep loop, s = 1

Compute new n and md over ∆tS

s = NS?

m = NM?

Compute new flux using new shape function and n

Stop

yes

yes

no

s+ 1

no

m+ 1

Figure 3.8: Schematic view of the implementation of the PCQSM for the transient neutronics in the code. NM

and NS are the number of medium and small timesteps, respectively.
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3.7. GPU Acceleration
Due to the localized nature of the collision and boundary condition enforcement steps of the FM-LBM,
the FM-LBM algorithm is well suited for parallelization. Since the operations are computationally small,
the cores of a GPU are sufficient to execute these operations.

3.7.1. Julia-CUDA
In this research, the Julia programming language is used ot parallelize the FM-LBM algorithm on the
GPU. Julia uses a just-in-time compiler and high-performing type inference system, giving it computa-
tional performance comparable to statically typed languages like C and Java [24]. In Julia, the CUDA
package is available, which allows for the writing of GPU kernels and their execution. In Julia-CUDA
programming, it is also possible to assign the level of GPU memory to be used, increasing the control
and optimization of GPU programming. These facts, combined with the ease of implementation due to
the high-level syntax make Julia an ideal programming language for this research.

For the most optimal use of the GPU, the algorithm should be split in small functions - called kernels
- that perform only a singular task. For each physical field five kernels are introduced: an initialization
kernel, a collision kernel, a boundary condition kernel, a propagation kernel, and a convergence kernel.
These kernels are executed at the start of the program (initialization) or in a loop (the rest). A schematic
overview of the GPU-accelerated FM-LBM algorithm is shown in figure 3.9.

Specify input parameters

Initialize domain on CPU

Allocate memory
on GPU and move
variables to GPU

Initialize kernels

Neutronics LBM

Collision kernel

Boundary conditions kernel

Propagation kernel

Convergence kernel

Converged?

Y N

Thermal-hydraulics LBM

Collision kernel

Boundary conditions kernel

Propagation kernel

Convergence kernel

Converged?

Y N

Move GPU output to CPU

Save results

Figure 3.9: Schematic of the GPU-accelerated FM-LBM algorithm. The figure shows which processes take
place at the CPU or GPU, and how the processing units communicate.

3.7.2. Race Conditions
One speaks of race conditions when two threads access and modify the same memory address, lead-
ing to invalid numerical values. Race conditions rarely result in an error, complicating their detection.
The risk of race conditions are the largest during the propagation step of the algorithm, since all the
distribution functions stream to the neighboring nodes. To prevent race conditions, an extra temporary
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array to store distribution functions is used. During propagation, the distribution function array is read
from and the temporary distribution array is written to. After propagation, the temporary distribution
array is copied to the distribution array. Due to the use of an extra array this approach uses twice as
much memory, however it prevents the occurrence of race conditions.

Race conditions can also occur when a new kernel is executed before the old kernel is finished, for
example the boundary condition kernel is executed before the collision kernel is finished. To prevent this
from happening, after each kernel launch a synchronization function is called, to force the completion
of all kernels before new kernels are launched.

3.7.3. Performance Gains
To optimize GPU usage, several techniques are incorporated into the FM-LBM algorithm to improve
its computational efficiency. The two most significant techniques, memory coalescence and shared
memory usage, will be discussed in this section.

Memory coalescence is a technique to flatten multidimensional arrays to 1D arrays. 1D arrays are
quicker to access and modify, as they incur less computational overhead on the GPU. When flattening
a multidimensional array, the order in which the axes is a non-trivial decision. By ordering the axes in
such a way that frequently accessed memory locations are located close to each other in the memory,
the computational speed can be further improved. In figure 3.10 the two types of flattening of a 2D
array are illustrated. Depending on the kernel used, type 1 or type 2 sorting is quicker: for a collision
kernel, which uses information over all the directions on a single lattice node, type 2 sorting is quicker;
for a propagation kernel, which propagates a direction over the whole lattice at a time, type 1 sorting is
quicker. The order of flattening was adapted to the kernels to achieve additional computational speed.

Grid layout

Type 1
…

Type 2
…

Figure 3.10: Illustration of the two types of flattening for a 2D array. For type 1, the 2D array is flattened over the
direction-axis, while for type 2 the 2D array is flattened over the x-axis.

As discussed in section 2.6.2, NVIDIA GPUs have a layered memory hierarchy, where memory closer
to individual cores is quicker to access at the cost of smaller memory size and more restrictive access.
Julia-CUDA allows low-level management of this memory for each kernel, enabling the assignment of
variables to global, shared, or register memory. Register memory was used as much as possible for
variables that existed only during the kernel lifetime. Shared memory was more limited; it is quicker
to access than global memory; however, due to shared memory only being accessible by threads in
the same block, its use to store data spanning multiple lattice nodes was limited. The only use found
for shared memory was for the storage of solution vectors of the collision kernel, since these were too
large to store in register memory. Global memory usage was limited to storing constants and distribution
functions, since these needed to be accessed and updated by all lattice nodes during the simulation.



4
Validation of Single-Physics Models

To validate the accuracy of the numerical methods described in the previous chapter, the multiphysics
tool is tested against a benchmark. The Tiberga benchmark was selected to validate the tool, since
this benchmark gradually couples the fields and supplies observables for each coupling step, which
helps with error identification. The Tiberga benchmark case studies a 2-dimensional lid-driven cavity
filled with a molten salt mixture.

Section 4.1 describes the details and structure of the Tiberga benchmark case. The specifics of two
previously developed LBM multiphysics tools, which were also validated with the Tiberga benchmark,
are discussed in section 4.2. The error quantification methods employed are explained in section 4.3.
The results for the single field simulations for momentum, neutronics, and temperature are presented
and compared to the benchmark in sections 4.4, 4.5, and 4.6, respectively. Additionally, heatmaps of
all observables for each step can be found in appendix B.

All steps from the Tiberga benchmark case in this chapter are steady-state problems. The power
method as described in section 2.3.2 is used to compute the neutronics criticality eigenproblem.

4.1. Description of Tiberga Benchmark
The Tiberga benchmark was developed to assess the physics-coupling capabilities of multiphysics
MSFR codes [37]. The benchmark compares codes developed during the SAMOFAR project devel-
oped by four institutions: Delft University of Technology, Paul Scherrer Institute, Politecnico di Milano,
and CNRS-Grenoble.

In the benchmark, a step-by-step approach is taken, where the different physical fields are gradually
coupled. In the initial phase (phase 0) the momentum, heat, and neutronics fields are simulated sep-
arately until a steady-state solution is found. In the next phase (phase 1) the momentum, heat, and
neutronics fields are gradually coupled, until all couplings are into effect and a steady-state solution
is found. In the last phase (phase 2) the transient behaviour of the system is studied by perturbing
system parameters. The steps in each phase are numbered (i.e. step 1.1, step 1.2, etc.) and for
each step the Tiberga benchmark provides the results of observables from the codes developed by
the four institutions, against which the results from this research will be compared. The results of the
four institutions are labeled by their respective names: ‘CNRS’ for Centre national de la recherche
scientifique-Grenoble, ‘PoliMi’ for Politecnico di Milano, ‘PSI’ for Paul Scherrer Institute, and ‘TUD’ for
Delft University of Technology. From step 0.2 onwards, the neutron transport equation discretization is
also specified if applicable, for example: CNRS-SP1 and CNRS-SP3. The results from this study are
labeled by ‘LBM’, standing for lattice Boltzmann method.

4.1.1. Description of the Molten Salt System
The domain of the problem is a 2-dimensional 2 m by 2 m cavity filled with molten salt at an initial
temperature of 900 K. Observables of the different steps are compared along the centerlines AA′ and
BB′, which are shown in figure 4.1. A no-slip boundary condition is applied to the flow field, where all

35
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wall except for the top lid are stationary. The top lid moves with a velocity Ulid to the right. All walls are
adiabatic and a homogeneous Neumann boundary condition is applied to the delayed precursors (i.e.
∂Cd

∂n = 0). The domain is treated as a homogeneous bare reactor, so vacuum boundary conditions are
applied to the neutron flux at all boundaries. Salt cooling is modeled using a volumetric heat sink:

q′′′(r) = γ(Tref − T (r)) (4.1)

where γ is the volumetric heat transfer coefficient, Tref the reference temperature of 900 K, and T (r)
the local temperature. All steady-state steps (phases 0 and 1) are criticality eigenvalue problems where
the reactor power is normalized to the reference power P .

B

B′

A A′

Ulid

Figure 4.1: Schematic of the benchmark domain. The top lid moves with Ulid to the right, all other walls are
stationary. The cavity is thermally insulated and surrounded by vacuum. Observables are compared along the

AA′ and BB′ centerlines. Figure is inspired by [37].

The fuel salt used in the benchmark is a LiF-BeF2-UF4 mixture, the composition of which is shown
in table 4.1. Fluid properties like viscosity are taken constant over temperature and space. The fluid
properties are shown in table 4.2. The salt flow is considered to be incompressible and laminar, and
buoyancy is modeled using the Boussinesq approximation. No neutronics model is prescribed. Tur-
bulence, 3D geometries, and decay heat are all neglected and avoided since other benchmarks exist
to study these complexities. These choices were made to make the Tiberga benchmark fairly general
and suitable for codes in early stages of development [37].

Table 4.1: Fuel salt composition [37].

Isotope 6Li 7Li 9Be 19F 235U

Atomic fraction (%) 2.11488 26.0836 14.0992 56.3969 1.30545

Table 4.2: Salt thermodynamic and fluid properties [37].

Property Units Value

Density kgm−3 2.0× 103

Kinematic viscosity m2 s−1 2.5× 10−2

Volumetric heat capacity Jm−3 K−1 6.15× 106

Thermal expansion coefficient K−1 2.0× 10−4

Prandtl number − 3.075× 105

Schmidt number − 2.0× 108
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The nuclear data was taken from the JEFF-3.1 library at a temperature of 900 K [1]. The nuclear data for
the six neutron groups and eight precursor families was generated using Serpent [26]. The definitions
of the neutron groups can be found in table 4.3. The complete set of neutronics and precursor data
can be found in appendix A.

Table 4.3: Definition of neutron energy groups [37].

Group number, g Upper energy bound [MeV]

1 2.000× 101

2 2.231× 100

3 4.979× 10−1

4 2.479× 10−2

5 5.531× 10−3

6 7.485× 10−4

4.2. Description of previous LBM studies
Coco Polderman and Tom Entes, two previous students of Martin Rohde’s research group, have devel-
oped multiphysics tools using the lattice Boltzmann method for the Tiberga benchmark case [28, 12].
Different neutronics implementations and different LBM algorithms were used in these codes. Due to
the limitations or advantages offered by these architecture differences, different grid sizes and simu-
lation parameters were used compared to the Tiberga benchmark and this research. Their research
offers the opportunity to not only compare the LBM algorithm developed in this research with the Tiberga
benchmark, but also with the other LBM algorithms. In this research, only the reactivity (differences)
between the LBM codes will be compared. The LBM results will be listed as LBM-Polderman, LBM-
Entes, and LBM-Pijls, for the results from Polderman’s, Entes’, and this research, respectively. The
specifics of both LBM codes are discussed below.

Polderman’s code simulates both the neutronics and thermal-hydraulics with the LBM. In Polderman’s
code, the neutronics and thermal-hydraulics were simulated in one domain. The code was written
in accelerated Python (numba) and no GPU parallelization was implemented. All simulations were
performed on a 200 × 200 grid. For all four physical fields, the BGK collision operator was used and
Dirichlet and Neumann boundary conditions were enforced using the anti bounce-back and halfway
bounce-back techniques. For the neutronics, the non-equilibrium extrapolation scheme (NEES) was
used. The NEES is a wet-node boundarry technique, meaning that the boundary is set at the node
itself instead of halfway between two nodes. Using the NEES, the neutron flux at the ghost node
was set to zero, to approximate the extrapolated boundary condition of the vacuum boundary for the
neutron diffusion equation. Since the BGK collision operator is limited in the physical values it can stably
simulate, Polderman significantly reduced the Prandtl and Schmidt numbers. Step 0.3 was simulated
using a Prandtl number of 600, step 1.1 using a Schmidt number of 400, step 1.2 a Prandtl and Schmidt
number of 200, step 1.3 a Prandtl and Schmidt number of 300, and step 1.4 a Prandtl and Schmidt
number of 100. The transient neutronics were simulated using the PCQSM.

Entes’ code simulates the thermal-hydraulics and precursors using the LBM and simulates the neu-
tronics with the Phantom code developed by the TU Delft. This required the exchange of information
between the two codes, and also interpolation since the Phantom code used a different grid than the
LBM. The Phantom code is written in Fortran and the LBM code was written in Julia. The LBM code
was parallelized on the GPU and the simulations were performed on a 501 × 501 grid. In the LBM
code, the filter-matrix collision operator was used, and the boundary conditions were modeled using
the anti bounce-back and reflective bounce-back boundary techniques. The use of the filter-matrix
collision operator allowed for a greater range of physical parameters that can be stably simulated, so
Entes’ simulations were done with a Prandtl number of 1000 and a Schmidt number of 1500. The Phan-
tom code simulates the neutron transport equation and uses a S6 discretization. It can perform both
steady-state and transient computations, so no special scheme was used for transient simulations.
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4.3. Error Quantification
To compare the simulation results with the benchmark results, an error quantification method is used.
For consistent comparisons of the steady-state simulations, the final neutron flux is normalized to the
the reference power of Pref = 1 GW.

The error of the simulated physical quantitiesQ along the horizontal and vertical centerlines is quantified
using the following equation.

εQ =

√√√√∑N
i=1 (Qsim(ri)−Qavg(ri))

2∑N
i=1 Q

2
avg(ri)

(4.2)

Where εQ denotes the error in physical quantity Q, Qsim the simulation results of the physical quantity,
Qavg the mean of all the benchmark studies, N the number of points to evaluate, and ri the evaluation
point. When the simulation results did not align with the benchmark grid, linear interpolation was used
to match the evaluation points.

4.4. Step 0.1: Lid-Driven Cavity Flow
In the first step, the velocity field was simulated. While lid-driven cavity flows have already success-
fully been simulated using the filter-matrix lattice Boltzmann method, this step is still performed for
completeness and to check if the code is implemented properly.

The relevant parameters for this simulation step are listed in table 4.4, given in both physical and lattice
units. The physical values were converted to lattice units using the conversion factors described in
section 3.4.

Table 4.4: Simulation parameters used for the simulation of step 0.1 of the Tiberga benchmark. The parameters
are given in both physical and lattice units, the conversion of which is described in section 3.4.

Parameter Physical value Physical unit Lattice value Lattice unit

∆tTH 1.0× 10−3 s 1.0 lt
Re 40 − 40 −
L 2.00 m 200 ls

ρ 2000 kgm−3 1.0 lm ls−3

ν 0.025 m2 s−1 0.25 ls2 lt−1

Ulid 0.5 m s−1 0.05 ls lt−1

In step 0.1, the momentum is source is a moving top lid, while the other walls are stationary. The
observables are the horizontal and vertical velocity components ux and uy, measured along the center-
lines AA′ and BB′. The simulation results of these observables on a 200× 200 grid are shown against
the benchmark in figures 4.2 and 4.3.

In addition, the spatial convergence of the filter-matrix algorithm was analyzed. This was done by com-
puting the discrepancy of the simulation results with the averaged benchmark results using equation
4.2 for a number of simulation grid sizes, the results of which are shown in figure 4.4.

Figure 4.4 shows that the horizontal velocity component converges to the benchmark results for in-
creasing grid size. In the right plot, the results from the PSI study were omitted, since these showed
significant deviations from the other benchmark results, especially for the vertical velocity component
along the vertical centerline. However, in both plots the vertical velocity components show a minimum
error around N = 200, with a slowly increasing error for increasing grid size. However, the overall error
of all observables is small, below 1% for grid sizes N > 100, and below 0.5% for grid sizes N > 200.
Due to the small error decrease with increasing grid size, and to save on computing time and memory
usage, it was decided to simulate all consecutive steps on 200× 200 grid sizes.
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Figure 4.2: Simulation results for the horizontal velocity component for step 0.1 of the Tiberga benchmark case.
The LBM simulation results are shown alongside the benchmark results along the AA′ (left) and BB′ (right)

centerlines. The results were obtained using the filter-matrix algorithm on a 200× 200 simulation grid.

Figure 4.3: Simulation results for the vertical velocity component for step 0.1 of the Tiberga benchmark case.
The LBM simulation results are shown alongside the benchmark results along the horizontal (left) and vertical
(right) centerlines. The results were obtained using the filter-matrix algorithm on a 200× 200 simulation grid.

4.5. Step 0.2: Neutronics
In the second step of the Tiberga benchmark the neutron flux and precursor concentration are simulated
in a stationary fluid at a constant temperature of 900 K. The observables of this step are the fission
rate density

∫
E
Σfϕ dE along the horizontal centerline and the reactivity ρ.

The aim of this step is to verify the neutronics solution in simple, static-fuel conditions. Minor differences
in the reactivity are reported due to different neutronics models and approximations adopted and are
considered acceptable.

The simulation parameters used are listed in table 4.5.

Table 4.5: Simulation parameters used for the simulation of step 0.2 of the Tiberga benchmark.

Parameter Physical value Physical unit Lattice value Lattice unit

∆tN 1.0× 10−9 s 1.0 lt

Pref 1.0× 109 W 5.0× 10−14 lm ls2 lt−3

Tref 900 K 1.0 lT

The fission rate density of the simulation is plotted against the benchmark codes in figure 4.5 and
the reactivities are reported in table 4.7. In the figure it can be seen that the LBM simulation is in good
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Figure 4.4: Discrepancies of the simulated horizontal and vertical velocity component along the horizontal and
vertical centerlines compared to the benchmark results. The left plot includes all benchmark results, while in the
right plot the PSI results are omitted since these showed significant deviations from the other benchmark results.
The x-axis shows the number of grid point N per dimension. The discrepancies are computed with the average

of the benchmark results and is shown in percentages.

agreement with the benchmark codes, which use both the neutron transport equation (CNRS and TUD)
and the neutron diffusion equation (PoliMi and PSI). The reactivity of the LBM simulation is also in the
same range as the reactivity of the benchmark codes and other LBM codes. These results validate the
neutronics filter-matrix method and the neutron flux boundary treatment developed in this research.

Figure 4.5: Fission rate density along the horizontal centerline of
the benchmark codes and the simulation.

Code ρ (pcm)

CNRS-SP1 411.3
CNRS-SP3 353.7

PoliMi 421.2
PSI 411.7

TUD-S2 482.6
TUD-S6 578.1

LBM-Polderman 520.6
LBM-Entes 578.1
LBM-Pijls 485.5

Table 4.7: Step 0.2 reactivity for the
benchmark codes and the simulation.

4.6. Step 0.3: Temperature
In the third and last step of the single-physics Tiberga benchmark case the temperature is simulated.
In this step, the convective and diffusive behavior of the temperature field are assessed, as well as the
heat sources and sinks. Thermal convection is modeled by fixing the flow field from step 0.1. The heat
source is modeled by using the neutron flux solution from step 0.2, and the heat sink is modeled by the
volumetric heat sink. The heat source and sink is described in equation 3.24.

The observables in this step are the temperature distribution along the AA′ and BB′ centerlines. The
simulation parameters are listed in table 4.8.
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Table 4.8: Simulation parameters used for the simulation of step 0.3 of the Tiberga benchmark.

Parameter Physical value Physical unit Lattice value Lattice unit

∆tTH 2.5× 10−4 s 1.0 lt
Pr 1200 − 1200 −
γ 1.0× 106 Wm−3 K−1 0.0703 lm ls−1 lt−3 lT−1

Cp 6.15× 106 Jm−3 K−1 1730 lm ls−1 lt−2 lT−1

Tref 900 K 1.0 lT

α 2.08× 10−5 m2 s−1 5.21× 10−5 ls2 lt−1

In the Tiberga benchmark a very high Prandtl number of 3.075× 105 is prescribed. To simulate such a
high Prandlt number, an increased lattice viscosity (ν∗) is required for stability. This, in turn, requires
a smaller lattice spacing to keep a constant Reynolds number, greatly increasing computational effort.
Additionally, larger grids converge at a slower pace, compounding the computational costs.

Therefore, the simulations will be run at a lower Prandtl number to manage the computational costs. To
understand the effect of a reduced Prandtl number, the heat equation in equation 2.4 is non-dimensionalized.
The tilde notation indicates non-dimensional variables, as is outlined in section 2.1.3.

RePr
(
ũ · ∇̃T̃

)
= ∇̃2

T̃ +
1

Lτα
q̃ (4.3)

Where L and τ are the characteristic length and timescale of the system and α the thermal diffusivity.

From equation 4.3 it can be seen that an increase in the Prandtl number results in convective transport
and heat sink effects dominating over diffusive transport. The high Prandtl number in the benchmark
implies that diffusion effects can be neglected. However, since the temperature gradients in the bench-
mark case are relatively small due to the volumetric heat sink being applied over the whole domain, it is
expected that at lower Prandtl numbers the diffusive term will be negligible. The only notable tempera-
ture gradients are expected to arise from the shape of the power source and by convection. However,
beyond a certain Prandtl number these diffusive effects will become negligible as well.

To study the effect of lowering the Prandtl number, different Prandtl numbers were simulated and the
error along the vertical and horizontal centerlines with the benchmark results was computed with the
help of equation 4.2. The results of these are shown in figure 4.6.

Figure 4.6: Discrepancy of the simulated temperature along the AA′ and BB′ centerlines compared to the
benchmark results. The x-axis shows the Prandtl numbers of the LBM simulation. The discrepancies were

computed with the average of the benchmark results and is shown in percentages.

It can be seen that for all Prandtl numbers the error is below 0.32%, which means that a relatively low
Prandtl number of 300 is sufficient to neglect diffusive effects. By increasing the Prandtl number, the
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error slowly decreases, especially for the temperature along the horizontal (AA′) centerline. To get a
more detailed view of the error in the temperature simulations, the error was computed per point along
the centerlines for the Prandtl numbers. This is shown in figure 4.7. Here, it can be seen that the error
is the largest at the boundaries, which is expected since the largest temperature gradients are found
here. With increasing Prandtl number, the error at the boundaries decreases, which is expected since
diffusive effects are more suppressed.

Figure 4.7: Pointwise discrepancy of the LBM simulation along the horizontal (left) and vertical (right) centerlines
compared to the benchmark results.

By increasing the Prandtl number, the error in the domain decreases in most regions. Except for the
1.5 − 2.0 m region along the horizontal centerline, where the error increases with increasing Prandtl
number. This is because the fixed flow field of step 0.1 has a higher density in the top-right corner of
the domain. This high density is caused by the discontinuity in the wall velocity: the top wall moves
to the right, while the right wall is stationary. When simulating the heat transport, this results in a
low-temperature region in the top-right corner that travels down due to the strong downward velocity.

Figure 4.8: Simulation results of the temperature for step 0.3 of the Tiberga benchmark case. The LBM
simulation results are shown alongside the benchmark results along the horizontal (left) and vertical (right)

centerlines. The results were obtained using the filter-matrix algorithm on a 200× 200 grid and with a Prandtl
number of 1200.

In figure 4.8 the temperature along the centerlines is shown for a Prandtl number of 1200, and at the
rightmost end of the horizontal centerline the effect of the low-temperature region in the corner can be
seen as an oscillation in the 1.5− 2.0 m region. To increase the Prandtl number, the LBM timestep (∆t)
was reduced, which increased the high-density region in the corner and therefore the instability of the
temperature along the right wall.

In summary, the overall error decreases as the Prandtl number increases. However, the local error
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increases with increasing Prandtl number due to instabilities, in particular along the right wall. Therefore,
it was decided to use a Prandtl number of 1200 in further simulations to strike a trade-off between global
and local error reduction.

4.7. Performance
To test the computational performance of the GPU-accelerated FM-LBM algorithm, the number of lattice
updates per second (LUPS) was computed for the simulations. Due to the large number of updates
per second, the computational performance is instead expressed in million lattice updates per second
(MLUPS), which is defined as

MLUPS =
NgridNT

T
× 10−6 (4.4)

whereNgrid is the number of grid points in the lattice, NT the number of iterations, and T the simulation
time in seconds. A lattice update is defined as the execution of all steps (collision, boundary conditions,
propagation) for one LBM iteration at a single lattice point.

In figure 4.9 the computational performance of the previous outlined steps of the single physics phase
are shown for increasing grid sizes. Step 0.1 simulated momentum for a lid-driven cavity, step 0.2
simulated the 6 neutron groups and 8 precursor families in a stationary fuel, and step 0.3 simulated
the temperature using the flow field from step 0.1 as a convective input and the neutron distribution
from step 0.2 as the heat source. All simulations were performed using a NVIDIA A-100 GPU using
double-precision floating point numbers. The computational performance of the FM-LBM algorithm
developed by Entes for the side-heated 3D cavity problem is shown alongside the results from this
study for comparison [12]. In the side-heated 3D cavity problem, flow and thermal transport, including
buoyancy, is simulated in a square cavity with a cold left wall, a hot right wall, and adiabatic top, bottom,
front, and back walls.

Figure 4.9: In the left figure, the computational performance of the GPU-accelerated FM-LBM algorithms
developed for the single physics phase of the Tiberga benchmark for different grid sizes is plotted. In the right
figure, the computational performance of the FM-LBM algorithm developed by Entes for the side-heated 3D

cavity problem is shown alongside the computational performance in this study [12]. Here, N is the number of
grid points along an axis, since the simulations take place in a 2-dimensional square grid Ngrid = N2.

All three steps in figure 4.9 show an increase in MLUPS as the grid size increases. This is expected
since in theory the GPU-accelerated algorithm should not be limited by the grid size due to the paral-
lelization. However, it can be seen that the MLUPS stops increasing or even decreasing with a certain
grid size. This can be explained that at these grid sizes the memory access speed starts to play a
limiting factor, thereby capping the MLUPS. It can also be seen that the highest maximum number of
lattice updates varies greatly between the steps: step 0.1 reports a maximum of 32MLUPS, step 0.2 of
13 MLUPS and step 0.3 of 112 MLUPS. This finding further reinforces the memory limitation explana-
tion, since step 0.3 is the least memory intensive where one field is simulated using the D3Q7 scheme,
while step 0.2 is the most memory intensive simulating 14 fields each using the D3Q7 scheme .
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When the computational performance of theGPU-accelerated FM-LBM algorithm is compared to similar
studies, it is underperforming. As can be seen in the figure on the right in figure 4.9, Entes reached
390 MLUPS simulating flow and temperature using a GPU-accelerated FM-LBM algorithm in a cavity
measuring 200× 200× 200 grid points [12]. This is significantly higher than the 112MLUPS reached for
the step 0.3 simulation, which was simulated on a smaller grid (5002 = 2.5×105 versus 2003 = 8.0×106)
and only simulated temperature and no flow. Tran et al. reports simulation speeds of 1200 MLUPS
simulating only flow using the BGK collision operator [39, 40]. This performance is 38 times higher
than the performance reached in step 0.1, which simulates flow using the more complicated FM-LBM
collision operator.

Although the GPU-accelerated FM-LBM algorithm shows a substantial increase in computation speed
when compared to the CPU FM-LBM algorithm, its computational performance under performs com-
pared to the literature. This can be attributed to the fact that the algorithm was not fully optimized. In
future research, parameters such as threads per block, memory coalescence, and the use of shared
and register memory can be optimized to achieve greater computational speed improvements.



5
Validation of Steady-State Coupled

Models

In this chapter, the single fields are gradually coupled to each other. For each step, the coupling is
validated using the Tiberga benchmark case. Firstly, convective transport of the delayed precursors is
activated in section 5.1. In section 5.2 the two-way temperature-neutronics coupling is introduced and
validated. Section 5.3 studies purely the effects of buoyancy; the top-lid velocity is set to zero in this step.
Lastly, the full-coupled problem, with a moving top-lid, is simulated in section 5.4 for several values for
the top-lid velocity and reference power. In each step, the results of this research are also compared
to the results of the two previous LBM multiphysics tools. Additionally, heatmaps of all observables for
each step can be found in appendix B.

5.1. Step 1.1: Circulating Fuel
In the first coupling step of the Tiberga benchmark, the steady-state neutronics are assessed for a
moving fluid. The velocity field is fixed on step 0.1 and the temperature field is uniformly fixed at 900 K.
The aim of this step is to assess if fuel motion has the correct effect on neutronics, in particular the
reactivity loss due to fuel motion.

The observables in this step are the delayed neutron source
∑

d λdCd along the horizontal and vertical
centerlines and the reactivity change compared to step 0.2: ρ1.1 − ρ0.2. The simulation parameters are
listed in table 5.1.

Table 5.1: Simulation parameters used for the simulation of step 1.1 of the Tiberga benchmark.

Parameter Physical value Physical unit Lattice value Lattice unit

∆tTH 2.5× 10−4 s 1.0 lt
∆tN 1.0× 10−9 s 1.0 lt
Sc 1200 − 1200 −
Dp 2.08× 10−5 m2 s−1 5.21× 10−5 ls2 lt−1

In this step, the same problem as in Step 0.3 was encountered: a very high Schmidt number is pre-
scribed. By the same reasoning as in step 0.3, a very fine grid is required for a stable LBM simu-
lation with such a high Schmidt number, resulting in impractical computation times. Therefore, the
Schmidt number will be reduced to arrive at practical computation times. To understand the effect of
lowering the Schmidt number, the delayed precursor advection-diffusion equation of equation 2.14 is
non-dimensionalized.

ReSc
(
ũ · ∇̃C̃d

)
= ∇̃2

C̃d −Da C̃d (5.1)

45
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Here, the tilde notation is used for non-dimensionalized variables and a steady-state system is consid-
ered. Da represents the Damköhler number, which is the ratio of the decay rate of the precursors to
the precursor diffusion constant. The Damköhler number increases with the Schmidt number.

In equation 5.1 it can be seen that the convective and decay terms start to dominate for high Schmidt
numbers. However, since relatively small concentration gradients are encountered in step 1.1, a signif-
icantly lower Schmidt number than prescribed by the Tiberga benchmark is expected to be sufficient to
simulate a convection-dominated system. To study this, similarly to step 0.3, several Schmidt numbers
were simulated and their discrepancy with the benchmark results was computed. The results of this
are shown in figure 5.1

Figure 5.1: Discrepancy of the simulated delayed neutron source along the horizontal and vertical centerlines
compared to the benchmark results for phase 1.1 of the Tiberga benchmark case. The x-axis shows the Schmidt
numbers of the LBM simulation. The discrepancies were computed with the average of the benchmark results

and is shown in percentages.

In figure 5.1 a clear downward trend of the discrepancy can be seen for both the horizontal and vertical
centerline. The discrepancy is quite low, reaching around 0.5% for both centerlines at a Schmidt number
of 3000. To study the spatial dependence of the discrepancy, the pointwise discrepancy was computed
along the horizontal and vertical centerlines and is shown in figure 5.2. In this figure, it can be seen
that the discrepancies are the highest at the edges of the domain. This is expected, since the largest
concentration gradients are found here. The 1.5 − 2.0 m region along the horizontal centerline shows
the largest non-boundary discrepancy. As in step 0.3, this is also due to the high-density region in the
top-right corner of the domain.

Figure 5.2: Pointwise discrepancy of delayed neutron source of simulation results along the horizontal (left) and
vertical (right) centerlines compared to the benchmark results for phase 1.1 of the Tiberga benchmark case.



5.2. Step 1.2: Power Coupling 47

In figure 5.3 the delayed neutron source simulation results are plotted against the benchmark for a
Schmidt number of 1200. The LBM simulation shows a good agreement with the benchmark results.
The reactivity difference found in the simulation are listed in table 5.2 next to the benchmark values.
The found LBM reactivity difference is slightly higher than the Tiberga benchmark, but is considered
satisfactory. Compared to the results from Polderman and Entes the reactivity difference found in
this research is even higher, suggesting that the two-domain approach and FM-LBM algorithm for the
neutron diffusion equation simulate the neutronics in a different manner compared to the LBM studies
by Polderman and Entes.

Figure 5.3: Simulation results of the delayed precursor source for step 1.1 of the Tiberga benchmark case. The
LBM simulation results are shown alongside the benchmark results along the horizontal (left) and vertical (right)

centerlines. The results were obtained using the filter-matrix algorithm on a 200× 200 grid with a Schmidt
number of 1200.

Table 5.2: The reactivity results for the LBM simulation of step 1.1 of the Tiberga benchmark shown alongside
the benchmark results and previous LBM studies results. The effective multiplication factor keff , reactivity ρ (in

per cent mille), and reactivity difference to step 0.2 are shown per column.

Code keff ρ (pcm) ρ1.1 − ρ0.2 (pcm)

CNRS-SP1 1.00350021 348.8 −62.5
CNRS-SP3 1.00291950 291.1 −62.6

PoliMi 1.00360495 359.2 −62.0
PSI 1.00349920 348.7 −63.0

TUD-S2 1.00422377 420.6 −62.0
TUD-S6 1.00520091 517.4 −60.7

LBM-Polderman 1.00457311 455.2 −65.3
LBM-Entes 1.00516126 513.5 −64.7
LBM-Pijls 1.00429923 428.1 −57.4

5.2. Step 1.2: Power Coupling
In step 1.2 of the Tiberga benchmark, the coupling between the neutronics and thermal-hydraulics is
investigated for a fixed velocity field. In this step, power coupling is added. The power coupling is
two-fold: the temperature field influences the nuclear cross sections due to salt expansion feedback,
whereas the neutronics introduce a heat source for the temperature field due to fission. This step
focuses on the power coupling, hence complex flow effects like buoyancy are not taken into account.
The velocity field is also fixed at the converged field from step 0.1. The reactor power is normalized at
1 GW.

Given from the findings in earlier steps, it is assumed that the simulation will converge for a grid size
of 200× 200 and a Prandtl and Schmidt number of 1200. These values will be used in this and the next
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steps and no further grid and Prandtl or Schmidt number convergence tests will be conducted. The
simulation parameters used are the same as in earlier steps, which can be found in tables 4.5, 4.8, and
5.1.

The primary observable in this step is the reactivity change compared to step 1.1. In addition, the
temperature field is compared to the benchmark along the vertical and horizontal centerlines, which
is shown in figure 5.4, and the change in fission rate density with respect to step 0.2 is compared to
the benchmark along the centerlines, which is shown in figure 5.5. The simulation results agree well
with the benchmark results, with an average discrepancy for the temperature field of 0.18% along the
horizontal and 0.29% along the vertical centerline, and an average discrepancy for the change of the
fission rate of 1.3% along the horizontal and 1.4% along the vertical centerline.

Figure 5.4: Simulation results of the temperature field for step 1.2 of the Tiberga benchmark case. The LBM
simulation results are shown alongside the benchmark results along the horizontal (left) and vertical (right)

centerlines. The results were obtained using the filter-matrix algorithm on a 200× 200 grid with a Prandtl and
Schmidt number of 1200.

Figure 5.5: Simulation results of the fission rate density change with respect to step 0.2 for step 1.2 of the
Tiberga benchmark case. The LBM simulation results are shown alongside the benchmark results along the
horizontal (left) and vertical (right) centerlines. The results were obtained using the filter-matrix algorithm on a

200× 200 grid and with a Prandtl and Schmidt number of 1200.

The reactivity difference to step 1.1 is shown in table 5.3. The reactivity difference found in the LBM
simulation agrees well with those of the other institutions. The LBM reactivity difference is slightly higher
than the other diffusion codes (PoliMi and PSI), while it is equal to the TUD-S6 results. The found
reactivity difference agrees well with Entes’ results, while Polderman’s reactivity difference is slightly
lower than the benchmark results. Polderman’s results can be attributed to the difference in neutronics
modeling, especially the use of the BGK operator and approximation of the vacuum boundary condition.
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Table 5.3: The reactivity results for the LBM simulation of step 1.2 of the Tiberga benchmark shown alongside
the benchmark results and previous LBM studies results. The effective multiplication factor keff , reactivity ρ (in

per cent mille), and reactivity difference to step 1.1 are shown per column.

Code keff ρ (pcm) ρ1.2 − ρ1.1 (pcm)

CNRS-SP1 0.9920320 −803.2 −1152.0
CNRS-SP3 0.9914576 −861.6 −1152.7

PoliMi 0.9920458 −801.8 −1161.0
PSI 0.9920035 −806.1 −1154.8

TUD-S2 0.9928061 −724.6 −1145.2
TUD-S6 0.9939903 −604.6 −1122.0

LBM-Polderman 0.99288174 −716.9 −1172.1
LBM-Entes 0.9940334 −600.2 −1113.7
LBM-Pijls 0.9931081 −694.0 −1122.0

5.3. Step 1.3: Buoyancy
In step 1.3 of the Tiberga benchmark case, the last coupling, buoyancy is added. The effects of buoy-
ancy are studied under the simplest conditions, so the external momentum source is removed by setting
the top lid velocity to zero. The buoyancy force is modeled by the Boussinesq approximation, which is
driven by temperature gradients. The goal of this step is to predict the correct velocity field induced by
the fission heat source and the correct reactivity change due to the movement of precursors. Discrep-
ancies arising in the results of this step can be attributed to buoyancy effects, since the other couplings
have been studied in steps 1.1 and 1.2. This step offers the first opportunity to study the complete
multiphysics tool.

Again, the main observable of interest is the reactivity change compared to step 0.2. Along the horizon-
tal and vertical centerlines, the velocity, temperature, and delayed neutron source are observables of
interest. The simulation parameters used in this step are identical to those of earlier steps, which are
listed in tables 4.4, 4.5, 4.8, and 5.1. The buoyancy specific parameters are shown in table 5.4

Table 5.4

Parameter Physical value Physical unit Lattice value Lattice unit
∆tTH 2.5× 10−4 s 1.0 lt
∆tN 1.0× 10−9 s 1.0 lt
βth 2.0× 10−4 K−1 1.80× 10−1 lT

g 9.81 m s−2 9.81× 10−4 ls lt−2

The horizontal and vertical velocity components along the centerlines are shown in figures 5.6 and 5.7.
Both components agree well with the benchmark codes, showing an average discrepancy of 0.84% and
0.00% for the horizontal velocity component along the AA’ and BB’ line, and 0.48% and 0.40% for the
vertical velocity component along the AA’ and BB’ line.
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Figure 5.6: Simulation results of the horizontal velocity components for step 1.3 of the Tiberga benchmark case.
The LBM simulation results are shown alongside the benchmark results along the horizontal (left) and vertical
(right) centerlines. The results were obtained using the filter-matrix-algorithm on a 200× 200 grid with a Prandtl

and Schmidt number of 1200.

Figure 5.7: Simulation results of the vertical velocity components for step 1.3 of the Tiberga benchmark case.
The LBM simulation results are shown alongside the benchmark results along the horizontal (left) and vertical
(right) centerlines. The results were obtained using the filter-matrix-algorithm on a 200× 200 grid with a Prandtl

and Schmidt number of 1200.

The temperature field and delayed neutron source along the centerlines are shown in figure 5.8 and
5.9. In the figures, it can be seen that the temperature and delayed neutron source deviate more from
the benchmark results. The LBM simulation temperature results are slightly underestimated compared
to the benchmark results, in particular for regions above 1250 K. This suggests that the temperature-
neutronics coupling is suppressed in some way by buoyancy. However, the average discrepancy of
the temperature is small: 0.41% along the horizontal centerline and 0.41% along the vertical centerline,
so these deviations are not considered to play a significant role in the overall reactor behavior. The
delayed neutron source agrees better with the benchmark codes; however, it shows a larger average
discrepancy: 0.84% along the horizontal centerline and 0.90% along the vertical centerline. This can be
attributed to the larger variation of the delayed neutron source shapes among the benchmark codes
compared to the temperature shapes. The delayed neutron source shape and magnitude of the LBM
simulation fits well within the range of benchmark codes.
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Figure 5.8: Simulation results of the temperature field for step 1.3 of the Tiberga benchmark case. The LBM
simulation results are shown alongside the benchmark results along the horizontal (left) and vertical (right)

centerlines. The results were obtained using the filter-matrix-algorithm on a 200× 200 grid with a Prandtl and
Schmidt number of 1200.

Figure 5.9: Simulation results of the delayed neutron source for step 1.3 of the Tiberga benchmark case. The
LBM simulation results are shown alongside the benchmark results along the horizontal (left) and vertical (right)
centerlines. The results were obtained using the filter-matrix-algorithm on a 200× 200 grid with a Prandtl and

Schmidt number of 1200.

The effective multiplication factor, the reactivity, and the reactivity difference to step 0.2 are shown
in table 5.5 for the LBM simulation and the benchmark codes. The reactivity difference of the LBM
simulation is slightly higher than the benchmark results, which was also observed in earlier steps. The
found reactivity difference agrees well with Entes’ result, which is also on the high end. Polderman
again reports a reactivity difference on the lower end.

Table 5.5: The reactivity results for the LBM simulation of step 1.3 of the Tiberga benchmark shown alongside
the benchmark resuls. The effective multiplication factor keff , reactivity ρ (in per cent mille), and reactivity change

compared to step 0.2 are shown per column.

Code keff ρ (pcm) ρ1.3 − ρ0.2 (pcm)

CNRS-SP1 0.9919730 −809.2 −1220.5
CNRS-SP3 0.9914045 −867.0 −1220.7

PoliMi 0.99200648 −805.8 −1227.0
PSI 0.9919858 −807.9 −1219.6

TUD-S2 0.9927933 −725.9 −1208.5
TUD-S6 0.9939735 −606.3 −1184.4
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Table 5.5: The reactivity results for the LBM simulation of step 1.3 of the Tiberga benchmark shown alongside
the benchmark resuls. The effective multiplication factor keff , reactivity ρ (in per cent mille), and reactivity change

compared to step 0.2 are shown per column.

Code keff ρ (pcm) ρ1.3 − ρ0.2 (pcm)

LBM-Polderman 0.99278435 −726.8 −1247.4
LBM-Entes 0.9940039 −603.2 −1181.4
LBM-Pijls 0.9930794 −696.9 −1182.3

5.4. Step 1.4: Full Coupling
In the final step of the steady-state coupling of the Tiberga benchmark case, all couplings and momen-
tum sources are activated. This step is analogous to the previous; however, the top lid is no longer
stationary. The observable in this step is the reactivity difference compared to step 0.2. The reactivity
difference is computed for a range of top lid velocities and reference powers. Simulations were for a
top lid velocity in the range of [0.0, 0.1, 0.2, 0.3, 0.4, 0.5] m s−1 and a reference power in the range of
[0.2, 0.4, 0.6, 0.8, 1.0] GW. Initially, the simulations were performed with a Prandtl and Schmidt number
of 1200, however these showed some instabilities and did not converge to a stable value. Therefore,
the Prandtl and Schmidt number was lowered to 1000 for stable simulations. The results of the reactivity
difference for a limited number of top lid velocities and reference powers are shown in table 5.6, next
to the Tiberga benchmark results and other LBM code results.

Table 5.6: Reactivity difference of step 1.4 of the Tiberga benchmark case compared to step 0.2. The
benchmark results are shown alongside the LBM simulation results. The reactivity differences are listed for top

lid velocities of 0.1, 0.3, and 0.5 m s−1 and for reactor powers of 0.2, 0.6, and 1.0 GW.

ρ1.4 − ρ0.2 (pcm)
Code Ulid (ms−1) P = 0.2 GW P = 0.6 GW P = 1.0 GW

CNRS-SP1

0.1

−268.5 −738.2 −1219.6
CNRS-SP3 −268.8 −738.2 −1219.7

PoliMi −269.0 −734.0 −1225.0
PSI −270.2 −738.6 −1214.1

TUD-S2 −265.8 −730.7 −1207.6
TUD-S6 −260.1 −716.0 −1183.5

LBM-Polderman − − −
LBM-Entes − − −
LBM-Pijls −260.7 −722.3 −1195.7

CNRS-SP1

0.3

−269.5 −735.2 −1212.1
CNRS-SP3 −269.8 −735.3 −1212.4

PoliMi −278.0 −734.0 −1219.0
PSI −274.0 −735.6 −1206.8

TUD-S2 −269.5 −727.7 −1200.2
TUD-S6 −263.8 −713.2 −1176.4

LBM-Polderman − − −
LBM-Entes − −712.7 −1173.1
LBM-Pijls −264.1 −719.2 −1188.6

CNRS-SP1

0.5

−276.5 −732.9 −1204.8
CNRS-SP3 −276.8 −733.0 −1205.2

PoliMi −284.0 −737.0 −1214.0
PSI −278.1 −733.1 −1199.8

TUD-S2 −273.1 −725.2 −1193.0
TUD-S6 −267.5 −710.8 −1169.7

LBM-Polderman − − −1085.3
LBM-Entes − −708.9 −1164.8
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Table 5.6: Reactivity difference of step 1.4 of the Tiberga benchmark case compared to step 0.2. The
benchmark results are shown alongside the LBM simulation results. The reactivity differences are listed for top

lid velocities of 0.1, 0.3, and 0.5 m s−1 and for reactor powers of 0.2, 0.6, and 1.0 GW.

ρ1.4 − ρ0.2 (pcm)
Code Ulid (ms−1) P = 0.2 GW P = 0.6 GW P = 1.0 GW

LBM-Pijls −268.5 −716.3 −1181.5

In table 5.6 it can be seen that the reactivity difference found in this research is slightly higher than five
of the benchmark results (CNRS-SP1, CNRS-SP3, PoliMi, PSI, TUD-S6) for all tested values of Ulid

and P . The reactivity difference found for a reference power of 2 GW is in good agreement with the
higher reactivity difference found in the TUD-S6 code. However, for reference powers of 0.6 and 1.0
GW, the reactivity difference is in between the five other benchmark codes and the TUD-S6 results.
Polderman and Entes only have results for a limited combination of top lid velocities and reference
powers. Entes’ reactivity differences are slightly higher than the TUD-S6 results, which is unsurprising
since both codes use the Phantom code with the same discretization for the neutronics. Polderman
only reported results for a top lid velocity of 0.5 m s−1 and a reference power of 1.0 GW. The reactivity
difference is higher than the benchmark by about 120 pcm, which can be explained by the different
neutronics diffusion equation implemenation used. Overall, the reactivity differences in this research
agree well with the benchmark and Entes’ results, confirming that the multiphysics tool developed in
this research can accurately model the steady-state multiphysics of a simplified molten salt fast reactor
core.

To study the behaviour in the code in more detail, velocity heatmaps were created of each top lid
velocity - reference power combination. These velocity heatmaps are shown in table 5.7, where arrows
are added pointing in the direction of the flow and scaled by the velocity magnitude. Two competing fuel
motions are expected: lid-driven cavity flow, induced by the moving top lid, on the one hand; and 2-cell
buoyant flow, induced by the fission heat, on the other hand. In the case of a high lid velocity and low
reference power (bottom-left cell in the table), it can be seen that the lid-driven cavity flow dominates.
For the opposite case, of a low lid velocity and high reference power (top-right cell in the table), it can
be seen that the 2-cell buoyant flow dominates, as expected. The other combinations show a mix of
both effects, which is most pronounced in the high lid velocity, high reference power case (bottom-right
cell in the table). Here, the combination of both effects creates three circulation cells: a strong buoyant
cell on the right, a small buoyant cell on the bottom-left, and a lid-driven cavity cell on the top-left.
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Table 5.7: Velocity heatmap with arrows for the nine simulated top lid velocity-reference power combinations of
step 1.4 of the Tiberga benchmark case. The top row has a top lid velocity of 0.1 m s−1, the middle row 0.3 m s−1,

and the bottom row 0.5 m s−1. Note that the colorbar range differs between figures.

P = 0.2 GW P = 0.6 GW P = 1.0 GW



6
Validation of Transient Multiphysics

Coupled Models

In this final results chapter the results of the transient fully-coupled simulations will be discussed. The
Tiberga benchmark included one transient case, where the power response of the model is tested for
a sinusodial perturbation of the volumetric heat transfer coefficient for a range of frequencies. The
specifics of this step are outlined in section 6.1 and the results in section 6.2. Additionally, to study the
transient neutronics in the absence of flow and thermal gradients, a reactivity insertion was simulated
for simplified geometries and compared to an analytical solution. This is discussed in section 6.3.

6.1. Description of phase 2.1 of the Tiberga benchmark
In the last step of the Tiberga benchmark, the transient behaviour of the multiphysics tool is studied.
This step continues on the previous step, phase 1.4, considering the full coupled system with Ulid =
0.5 m s−1 and Pref = 1 GW. The transient response is studied in the most general manner by applying
a perturbation in the frequency domain. Practically, this is done by perturbing the volumetric heat sink
coefficient by a sine wave with an amplitude of 10% and a frequency fpert. The new time-dependent
volumetric heat sink coefficient is now given by

γ(t) = γ0[1 + 0.1 sin(2πfpertt)] (6.1)

where γ0 is the reference volumetric heat transfer coefficient used in the steady-state simulations. By
varying the cooling of the salt, the reactor power will oscillate due to the negative salt expansion feed-
back coefficient. To study the transient response of the system, the phase shift and gain of the reactor
power are computed for each frequency. The normalized gain is defined as

Gain =
(Pmax − Pavg)/Pavg

(γmax − γavg)/γavg
(6.2)

Here, the subscripts max and avg denote maximum and average values, respectively. The gain is
measured over the last period of the simulation, since at this point in time the perturbation has settled
in a stable oscillation. Now we introduce the normalized heat transfer coefficient and power, shown in
equations 6.3 and 6.4.

γ̃ =
γ(t)− γavg

γavg
(6.3)

P̃ =
P (t)− Pavg

Pavg
(6.4)
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Here, γavg is equal to γ0 and Pavg is equal to 1.0 GW. Since the heat transfer coefficient is perturbed
by a sine with an amplitude of 10%, the denominator in equation 6.2, this equation can be simplified to:

Gain = 10P̃max (6.5)

The phase shift of the power is computed by comparing the time at which the maxima and minima occur
between the heat transfer coefficient and the reactor power. This is expressed by

Phase shift = π · fpert
[
(tγmax

− tPmax
) + (tγmin

− tPmin
)
]

(6.6)

The phase-shift is determined over the last period of the simulation, since at this point the system has
settled into a consistent oscillation.

6.2. Phase 2.1: Forced Convection Transient
The response of the system was simulated for frequencies of [0.0125, 0.025, 0.05, 0.1, 0.2, 0.4, 0.8] Hz.
Snapshots of the power and heat transfer coefficient over the last two periods for each perturbation
frequency can be found in appendix C. For each frequency, the gain and phase shift of the power with
respect to the heat transfer coefficient was computed. Bode plots of the computed gain and phase shift
are shown in figure 6.1, plotted with the results of the Tiberga benchmark and the results of Polderman’s
study. These results were generated using 10 medium timesteps per big timestep, and 100 small
timesteps per medium timestep for the PCQSM algorithm.

Figure 6.1: Response of the coupled multiphysics tool to a perturbation of the heat transfer coefficient for several
frequencies compared to the Tiberga benchmark and Polderman’s study. The power gain as defined in equation

6.2 is shown on the left, the phase-shift as defined in equation 6.6 is shown on the right.

In figure 6.1 it can be seen that the benchmark codes agree well with each other, especially for the gain
plot where they completely overlap. The LBM algorithm developed by Polderman (LBM-Polderman)
displays a delayed response. The gain and phase shift show the same trend as the benchmark codes,
decreasing for increasing frequency; however, the response is shifted to the right in the frequency
space. The LBM algorithm developed in this research (LBM-Pijls) agrees better with the benchmark
codes, but still shows some discrepancies. To better understand these discrepancies, the difference
and discrepancy of the gain and phase shift compared to the mean of the benchmark codes is plotted
in figures 6.2 and 6.3. The discrepancy was computed using equation 4.2.
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Figure 6.2: The difference (left figure) and discrepancy (right figure) of the gain between the LBM results and the
mean of the benchmark codes plotted for each frequency.

Figure 6.3: The difference (left figure) and discrepancy (right figure) of the phase shift between the LBM results
and the mean of the benchmark codes plotted for each frequency.

In the above figures it can be seen that for the gain the largest differences are observed in the 0.0125 Hz
to 0.1Hz region, with a discrepancy peak of 28.2% at fpert = 0.1Hz. For frequencies of 0.2Hz and higher,
the difference and discrepancy are relatively constant, hovering around 0.02 and 10%, respectively. The
phase shift shows more oscillatory behaviour, displaying a negative difference for the low frequencies
(0.0125 Hz, 0.025 Hz, 0.05 Hz), a positive difference for the middle frequencies (0.1 Hz, 0.2 Hz), and
again a negative difference for the high frequencies (0.4 Hz, 0.8 Hz). The discrepancy is the largest
for the the extreme frequencies (0.125 Hz, 0.025 Hz, 0.8 Hz) and lowest for the middle-high frequencies
(0.2 Hz, 0.4 Hz), with an average discrepancy of 3.8%.

Three potential sources of the discrepancy in the gain and phase shift can be identified: the thermal-
hydraulics solver, the neutronics solver, or the coupling between them. To validate the transient neu-
tronics solver, the response of a reactivity insertion in the absence of flow and thermal effects is studied
in the next section.
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6.3. Phase 2.2: Reactivity Insertion
To study the validity of the transient neutronics FM-LBM solver, a situation is considered where a reac-
tivity insertion is made in a system with no flow and constant temperature T0. For one neutron energy
group and n precursor families, this system can be simulated using the following point-kinetics equa-
tions for neutron density n(t) and precursor density Cd:

n(t+∆t) =

(
ρ− βtot

Λ
n(t) +

∑
d

λdCd

)
∆t+ n(t) (6.7)

Cd(t+∆t) =

(
βd

Λ
n(t)− λdCd

)
∆t+ Cd(t) (6.8)

Here, ∆t denotes the simulation timestep, and ρ, βtot, βd, and Λ are the point-kinetics parameters for
the reactivity, total delayed neutron fraction, delayed neutron fraction, and neutron generation time,
respectively. λd is the decay constant of precursor family d.

Two cases were simulated for the transient FM-LBM model, the first case concerned a 1-dimensional
slab with boundary conditions on both sides, while the second case concerned a square domain peri-
odic over all axes. Nuclear parameters such as decay constant, delayed neutron fraction, and all cross
sections were equal among the three models. For both cases and the analytical point-kinetics model
a reactivity of 0.1βtot was inserted at t = 0. The time step was taken as 1.0 × 10−4 s for all models;
shorter time steps did not show any difference. The spatial convergence for the 1-dimensional slab was
studied and the results are shown in figure 6.4. The discrepancy was computed using equation 4.2 with
the analytical model as reference. From the figure it can be concluded that at a grid size of N = 200
the FM-LBM algorithm has spatially converged, since the graph flatten with increasing grid size and
the absolute discrepancy only changes little (63.99% for N = 25 compared to 63.82% for N = 200).

Figure 6.4: Discrepancy of the 1D-slab FM-LBM algorithm with the analytical model for different grid sizes N .
The discrepancy was computed using equation 4.2.

The results of the simulations for the 1-dimensional slab and the periodic square are shown in figure
6.5. To iterate, only the neutrons and precursors are simulated in the FM-LBM model, flow and heat
effects are removed by imposing a stagnant fuel and constant temperature.

As can be seen in figure 6.5, the 1-dimensional slab and the periodic square follow the same trend as
the analytical model but over predict the neutron density. To better understand this over prediction, the
ratio of the FM-LBM neutron density over the analytical neutron density is plotted in figure 6.6. In this
figure it can be seen that with increasing time the over prediction increases for both the 1-dimensional
slab and the periodic square. These results show a small over prediction of the prompt neutron density
(10−4 − 10−1 s region) and a large over prediction of the delayed neutron density (101 − 102 s region).
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Figure 6.5: Neutron density response for a 1-dimensional slab (left figure) and a periodic square (right figure) in
blue for a reactivity insertion of ρ = 0.1βtot at t = 0. The analytical model is shown in orange. The neutron

density is normalized to the initial neutron density n0 at t = 0.

Figure 6.6: The relative neutron density for the 1D slab and the periodic square compared to the analytical
neutron density.

Figure 6.6 also helps us explain the power gain of step 2.1 shown in figure 6.1. In figure 6.6 it can be
seen that up to times of 5 s the over prediction of the neutron density is a factor of about 1.1, while
above these times it increases to a factor of 2. This coincides with the gain discrepancy jump observed
in figure 6.1, where a large jump is observed between the 0.1 Hz and 0.2 Hz frequencies, which have
periods of 10 s and 5 s, which falls exactly in the transition regime of the relative neutron density.



7
Conclusion and Recommendations

In this research, a simulation tool was developed to model the coupled thermal-hydraulics, neutronics,
and precursor transport in a MSFR reactor core. The simulation tool made use the GPU-accelerated
filter-matrix-lattice Boltzmann method (FM-LBM) algorithm. The conclusions of this research will be
discussed in this chapter, starting with the conclusions of the steady-state FM-LBM model presented
in section 7.1. Section 7.2 discusses the results from the transient simulations. The computational
performance will be discussed in section 7.3. Finally, recommendations for future research will be
given in section 7.4.

7.1. Steady-state FM-LBM Model Development
In the first part of this research, a steady-state solver for the coupled thermal-hydraulics, precursor
transport, and neutronics was developed for MSFR cores using a GPU-accelerated FM-LBM algorithm.
This algorithm employed a double distribution function approach, where the 18 physical fields (momen-
tum, enthalpy, 6 neutron groups, and 8 precursor families) each had their own distribution function.
The LBM algorithm operates by alternating between propagation and collision of the distribution func-
tions over a two-dimensional lattice grid. Interactions between the fields occurred in the collision step,
through convective and source terms. The collision was performed using the FM-LBM algorithm, which
uses a filter-matrix to transform the non-physical distribution function to a physical solution vector, which
is modified and then transformed back to a post-collision distribution function which was propagated.
The FM-LBM algorithm filters out non-physical terms, thereby increasing the stability of the simulation.

The timescales of the neutronics are some orders of magnitude smaller than those of the thermal-
hydraulics and precursor transport; therefore, a two-domain approach was used where the neutronics
were simulated in a seperate domain using a shorter timestep. Since the neutronics domain operates
on a much shorter timescale, for each thermal-hydraulics timestep the neutronics were simulated to
convergence. The power-method was used to iteratively solve the steady-state neutronics. A novel FM-
LBM solution vector was derived for the neutron diffusion equation, which was analogous to the solution
vector of the enthalpy and precursor transport. Additionally, a novel boundary condition treatment for
the vacuum boundary condition of the neutron diffusion equation was developed, which interpolates
the scalar neutron flux to the wall.

The steady-state FM-LBM model was validated using the steady-state single physics (Phase 0) and
steady-state coupled physics (Phase 1) steps of the Tiberga benchmark, the results of which can be
found in chapters 4 and 5. In the Tiberga benchmark, instead of using maximum values, observables
measured along the horizontal and vertical centerlines and reactivity differences were used to compare
results. The accuracy of the results was quantized by computing the discrepancy with the average of
the benchmark codes. For all but one observable, the discrepancy of the FM-LBM model was below
1.0%. Only the fission rate density change of step 1.2 reported discrepancies greater than 1.0%. This
can explained by the fact that the benchmark displayed a large discrepancy among the codes here.

Two significant findings were identified from the steady-state results of the FM-LBM model. Firstly,
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the very high Prandtl and Schmidt numbers of the Tiberga benchmark, which effectively remove diffu-
sion effects in transport, proved impossible to result in stable and computational efficient simulations.
Therefore, the Prandtl and Schmidt numbers were significantly reduced to 1200, resulting in stable and
computational efficient simulations that agreed well with the benchmark. The largest discrepancies
with the benchmark were observed along the walls, which was unsurprising since the largest gradients,
and thus diffusion effects, can be found there. Additionally, further increasing the Prandtl and Schmidt
numbers does not result in a significant improvement of simulation results.

Secondly, the reactivity differences reported in each step were consistently slightly higher than the
benchmark codes. The higher reactivity was already observed in the uncoupled neutronics step, sug-
gesting that the higher reactivity is caused by the implementation of the neutronics and not due to
the thermal-hydraulics or coupling method. A possible error source of the neutronics is in the source
implementation of the filter-matrix: for both the neutronics and precursor source, the scalar flux and
precursor concentration appear in the source term, while the source term also updates the scalar flux
and precursor concentration. It is assumed that the time steps are chosen sufficiently small for these
errors to be negligible, however it may be the case that at some times and locations in the domain
these errors are significant. It may also be the case that the neutron diffusion equation is not sufficient
to model the neutronics in LBM, reinforced by Polderman who also had difficulties with modeling the
neutronics. Therefore, it can be explored how the neutron transport equation can be implemented in
the FM-LBM framework.

7.2. Transient FM-LBM Model Development
To simulate the transient behaviour of a MSFR core, the steady-state FM-LBM algorithm was modified
to capture the quick reaction times of the prompt neutrons. This was done using the predictor-corrector
quasi-static method (PCQSM), where the neutron scalar flux is factorized in a slowly changing, spa-
tially dependent shape function and a fast changing, non-spatially dependent amplitude function. The
shape function is solved over big time steps using the steady-state LBM neutronics solver, while the
amplitude function is solved over small time steps using the point-kinetics equations. The point-kinetics
parameters are computed from the shape function, which is interpolated over medium time steps.

The Tiberga benchmark offers one transient case, in which the power response of the FM-LBM model
was measured for a perturbation of the volumetric heat transfer coefficient. The gain and phase shift of
the power responsewas computed with respect to the heat transfer coefficient for a range of frequencies
and these were compared to the benchmark codes in a Bode plot. While the FM-LBM code showed the
same trends for both gain and phase shift as the benchmark codes, the absolute values did not match.
For low frequencies the FM-LBM model reported a significant lower gain and the phase shift was for
some frequencies above the benchmark, while for other frequencies it was below the benchmark.

Additionally, a reactivity insertion case was simulated in the absence of flow and thermal feedback
effects, to study how the FM-LBM model performed simulating only neutronics and precursors. This
case showed that the transient FM-LBM model predicted the neutron density response for all geome-
tries tested. The prompt neutron density was slightly over predicted, while the delayed neutron density
increase was too early. This confirms that the cause of the discrepancy power response is due to the
transient neutronics and precursors solver.

Two possible causes for the inaccuracy of the transient solver can be identified. Firstly, the predictor-
corrector quasi-steady method may not be implemented correctly or be suited to this solver, however
this is deemed unlikely. Secondly, it could be that the neutronics model used, either in the FM-LBM
model or the use of the neutron diffusion equation - is not well suited to simulate the full neutronics of
a MSFR core - something that was also observed in the steady-state cases.

7.3. Computational Performance
The FM-LBM algorithmwas accelerated using the Julia-CUDA framework. In the acceleration, optimiza-
tions such as multi-dimensional array flattening and the use of shared and register memory were used.
The GPU-acceleration was measured for the single physics benchmark cases, to study the speed up
for each physical field. Step 0.3simulating the temperature reported the highest computational perfor-
mance with a maximum of 112 million lattice updates per second (MLUPS), step 0.1 simulating the
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lid-driven cavity flow the second highest with 32 MLUPS, and step 0.2 simulating the neutronics the
lowest with 13 MLUPS. This was expected, since the temperature requires the least memory usage
and is most simple to simulate, while the neutronics demand the most memory usage.

Compared to similar GPU-accelerated LBM algorithms, the GPU-accelerated FM-LBM algorithm under-
performed by a factor of 10 to 100 times. Although the FM-LBM algorithmmade use of multidimensional
array flattening and the use of shared and register memory to speed up memory access, this could be
optimized further. Furthermore the threads per block can be optimized, which was not done in this
research.

7.4. Recommendations for Future Research
For future research, the following recommendations are suggested to improve the computational per-
formance and accuracy of the model:

• The Tiberga benchmark does not consider all physical processes in aMSFR reactor core. Doppler
shifts, which depend on the reactor temperature, and decay heat generated by precursors are
omitted. Inclusion of these effects would increase the realism of the FM-LBM model.

• The molten salt has a high melting point, making the mixture prone to freezing in low temperature
areas. This is especially a concern in the heat exchangers of a MSFR reactor core, where heat is
actively extracted from the molten salt. To extend the FM-LBM model to full MSFR reactor core
simulations, the freezing and melting of salt should be incorporated into the model.

• Turbulence was explicitly omitted in the Tiberga benchmark case due to its computational com-
plexity. However, to simulate realistic MSFR reactor cores the modelling of turbulence is neces-
sary. To reduce computational demands, local grid refinements can be used to achieve a greater
resolution near the walls and other areas with large gradients.

• Realistic MSFR reactor core designs are 3-dimensional and contain complex shapes and bound-
aries. The HBB and ABB boundary techniques used are designed for Cartesian boundaries; to
study complex, non-Cartesian boundaries new boundary techniques can be developed or tested
to simulate complex geometries with the most accuracy and smallest computational burden. The
possibility of the use of non-grid-aligned periodic boundaries is also interesting to research.

• In this research, the neutron diffusion equation was used and a FM-LBM algorithm was created.
However, in the future it can be researched how the neutron transport equation can be imple-
mented using the FM-LBM algorithm and if this leads to accuracy improvements. Wang et al.
showed that the SP3 discretization can be modeled in the LBM using two distribution functions
for each neutron energy group [48]. Implementing a GPU-accelerated, FM-LBM version of this
approach might improve the accuracy of the neutronics and allow for the correct simulation of
transient problems.

• Lastly, while the GPU-acceleration of this FM-LBM algorithm improved the computational perfor-
mance compared to the CPU FM-LBM algorithm, the computational performance is 10 to 100
times below that of similar GPU-accelerated LBM algorithms. In future research, more optimiza-
tions and benchmarking of the code can be performed to improve the computational performance
of the algorithm, allowing for the simulation of more complex cases and quicker validation and
development.
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A
Neutronics and Precursor Data from

Tiberga Benchmark Case

This appendix contains the data used in the simulations for the six neutron energy groups and the eight
precursor families. The data was retrieved from the benchmark by Tiberga et al. [[37]]

A.1. Neutronics data
Table A.1: Total (removal) cross sections, fission cross sections, diffusion constants, and velocities for the six

neutron energy groups. Retrieved from Tiberga et al. [37]

Group, g Σt,g [m−1] Σf,g [m−1] Dg [m] vg [m s−1]

1 1.65512 0.0111309 0.0280064
2 2.17253 0.0108682 0.0184021
3 3.18009 0.0152219 0.0113110
4 2.42093 0.0258190 0.0144786
5 2.50351 0.0536326 0.0139750
6 2.72159 0.0144917 0.0128252

Table A.3: P0 scattering cross sections for the six neutron energy groups. Retrieved from Tiberga et al. [37]

Σs,0,g′→g [m−1]
g′\g 1 2 3 4 5 6

1 1.08476E+1 5.23316E+0 4.01805E−1 1.09869E−2 2.53290E−3 3.78334E−4
2 0 1.83666E+1 3.19138E+0 2.34218E−3 2.25259E−4 2.00405E−5
3 0 0 2.98293E+1 1.63470E+0 1.70575E−3 1.24625E−4
4 0 0 0 2.17472E+1 1.90243E+0 1.36858E−6
5 0 0 0 0 2.27173E+1 1.05885E+0
6 0 0 0 0 0 2.37826E+1
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Table A.5: Average number of neutrons emitted per fission event, prompt neutron spectrum, delayed neutron
spectrum, and average energy emitted per fission event for the six neutron groups. Retrieved from Tiberga et al.

[37]

Group, g νtot,g [−] χp,g [−] χd,g [−] Efiss [J]

1 2.85517 3.53812× 10−1 4.30325× 10−3 3.240722× 10−11

2 2.54532 5.23642× 10−1 3.87734× 10−1 3.240722× 10−11

3 2.43328 1.21033× 10−1 5.81848× 10−1 3.240722× 10−11

4 2.43127 1.35457× 10−3 2.27947× 10−2 3.240722× 10−11

5 2.43330 1.51226× 10−4 2.89130× 10−3 3.240722× 10−11

6 2.43330 7.37236× 10−6 4.28935× 10−4 3.240722× 10−11

A.2. Precursor data
Table A.7: Decay constants and delayed neutron fraction for the eight families of delayed neutron precursors.

Retrieved from Tiberga et al. [37]

Family, d λd [s−1] βd [−]

1 1.24667× 10−2 2.33102× 10−4

2 2.82917× 10−2 1.03262× 10−3

3 4.25244× 10−2 6.81878× 10−4

4 1.33042× 10−1 1.37726 e−3
5 2.92467× 10−1 2.14493× 10−3

6 6.66488× 10−1 6.40917× 10−4

7 1.63478× 10+0 6.05805× 10−4

8 3.55460× 10+0 1.66016× 10−4



B
Heatmaps of Simulation Results from

Tiberga Benchmark Case

B.1. Phase 0: Single-Physics Simulations

Figure B.1: Heatmap of the simulated velocity field from step 0.1 of the Tiberga benchmark case. In the right
plot, arrows denote the flow direction of the fluid. The arrows are scaled to the local velocity magnitude. The

FMLBM algorithm was used on a 200× 200 grid.

Figure B.2: Heatmap of the simulated fission density from step 0.2 of the Tiberga benchmark case. In the right
plot, isoline intervals of 2.0× 1018 m−3 s−1 are drawn. The FMLBM algorithm was used on a 200× 200 grid.
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Figure B.3: Heatmap of the simulated temperature field from step 0.3 of the Tiberga benchmark case. In the
right plot, isoline intervals of 50 K are drawn. The FMLBM algorithm was used on a 200× 200 grid with Pr = 1200.

B.2. Phase 1: Coupled Steady-State Simulations

Figure B.4: Heatmap of the simulated delayed neutron source from step 1.1 of the Tiberga benchmark case. In
the right plot, isoline intervals of 2.5× 1016 m−3 s−1 are drawn. The FMLBM alogrithm was used on a 200× 200

grid with Sc = 1200.
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Figure B.5: Heatmap of the simulated delta fission density from step 1.2 of the Tiberga benchmark case. In the
right plot, isoline intervals of 2.0× 1017 m−3 s−1 are drawn. The FMLBM algorithm was used on a 200× 200 grid

with Pr = Sc = 1200.

Figure B.6: Heatmap of the simulated temperature field from step 1.2 of the Tiberga benchmark case. In the
right plot, isoline intervals of 50 K are drawn. The FMLBM algorithm was used on a 200× 200 grid with

Pr = Sc = 1200.

Figure B.7: Heatmap of the simulated velocity field from step 1.3 of the Tiberga benchmark case. In the right
plot, arrows denote the flow direction of the fluid. The arrows are scaled to the local velocity magnitude. The

FMLBM algorithm was used on a 200× 200 grid with Pr = Sc = 1200.
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Figure B.8: Heatmap of the simulated temperature field from step 1.3 of the Tiberga benchmark case. In the
right plot, isoline intervals of 50 K are drawn. The FMLBM algorithm was used on a 200× 200 grid with

Pr = Sc = 1200.

Figure B.9: Heatmap of the delayed precursor source from step 1.3 of the Tiberga benchmark case. In the right
plot, isoline intervals of 5× 1016 m−3 s−1 are drawn. The FMLBM algorithm was used on a 200× 200 grid with

Pr = Sc = 1200.
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Table B.1: Heatmap of the simulated temperature field from step 1.4 of the Tiberga benchmark case. The top
row shows simulations with Ulid = 0.1 m s−1, the middle row with Ulid = 0.3 m s−1, and the bottom row with
Ulid = 0.5 m s−1. Isolines are drawn for intervals of 25 K for the left column, 33 K for the middle column, and
50 K for the right column. The results were generated using the FMLBM algorithm on a 200× 200 grid with

Pr = Sc = 1000. Note that the colobar range differs between the plots.

P = 0.2 GW P = 0.6 GW P = 1.0 GW
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Table B.2: Heatmap of the simulated concentration of the first delayed precursor family from step 1.4 of the
Tiberga benchmark case. The top row shows simulations with Ulid = 0.1 m s−1, the middle row with

Ulid = 0.3 m s−1, and the bottom row with Ulid = 0.5 m s−1. Isolines are drawn for intervals of 2.0× 1016 m−3 for
the left column, 3.3× 1016 m−3 for the middle column, and 5.0 m−3 for the right column. The results were

generated using the FMLBM algorithm on a 200× 200 grid with Pr = Sc = 1000. Note that the colorbar range
differs between the plots.

P = 0.2 GW P = 0.6 GW P = 1.0 GW



C
Snapshots of Transient Simulation

Results

Figure C.1: Power response to the perturbation of the
heat transfer coefficient with fpert = 0.0125 Hz.

Figure C.2: Power response to the perturbation of the
heat transfer coefficient with fpert = 0.025 Hz.

Figure C.3: Power response to the perturbation of the
heat transfer coefficient with fpert = 0.05 Hz.

Figure C.4: Power response to the perturbation of the
heat transfer coefficient with fpert = 0.1 Hz.

75



76

Figure C.5: Power response to the perturbation of the
heat transfer coefficient with fpert = 0.2 Hz.

Figure C.6: Power response to the perturbation of the
heat transfer coefficient with fpert = 0.4 Hz.

Figure C.7: Power response to the perturbation of the heat transfer coefficient with fpert = 0.8 Hz.
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