
D
el

ft
U

ni
ve

rs
it

y
of

Te
ch

no
lo

gy

GPU-accelerated Large Eddy
Simulation of non-eutectic
MSFR Salt Freezing in
Turbulent Channel Flow
Master Thesis

Pieter van der Spek





GPU-accelerated Large Eddy
Simulation of non-eutectic

MSFR Salt Freezing in
Turbulent Channel Flow

Master Thesis

by

Pieter van der Spek
to obtain the degree of Master of Science
at the Delft University of Technology,

to be defended publicly on Wednesday February 28, 2024 at 10:00 AM

Student number: 4681959
Project duration: April 24, 2023 - February 28, 2024
Thesis committee: Dr. Ir. M. Rohde, TU Delft, supervisor

Dr. Ir. D. Lathouwers, TU Delft
Dr. Ir. J. Peeters, TU Delft

An electronic version of this thesis is available at https://repository.tudelft.nl/.

https://repository.tudelft.nl/




Highlights

The most significant contributions of this thesis are listed below.

1. This work is the first to successfully implement a GPU-accelerated implementation of the filter-
matrix lattice Boltzmann method using a large eddy simulation (LES).

2. This work is the first to combine the filter-matrix lattice Boltzmann method with the WALE sub-grid
scale model for LES.

3. This work presents a novel hierarchical local grid refinement technique that aims to overcome
non-physical operations introduced in existing methods.

4. This work presents an enthalpy transformation procedure in the LBM framework that successfully
suppresses thermal fluctuations and increases numerical stability. The procedure resolves chal-
lenges encountered in previous research.

5. This work is the first to use an adapted immersed boundary method, derived from Noble and Tor-
czynski’s original formulation, to prevent instability during phase change in 3D turbulent channel
flows within the LBM framework.

6. This work is the first to successfully simulate phase change in turbulent channel flows using the
filter-matrix lattice Boltzmann method, both for eutectic and non-eutectic fluids.
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Abstract

The need for continuous carbon-free energy supply makes nuclear energy a valuable addition to the
energy mix. The Generation IV International Forum (GIF) made a selection of the most promising
next-generation reactor concepts that excel in safety, waste management, resource utilization, and
proliferation resistance. One such concept is the Molten Salt Fast Reactor (MSFR) and much research
is being conducted to evaluate its safety aspects. One potential risk inherent to MSFRs involves salt
freezing inside the heat exchangers, which can lead to degraded heat transfer and structural damage.
To further examine this risk, this thesis aims to develop a numerical model that can simulate salt freezing
inside cooled 3D turbulent channel flow.

To this end, aGPU-accelerated double distribution filter-matrix lattice Boltzmann (DDF-FMLB)model
was implemented. A Large Eddy Simulation (LES) has been applied to model the small unresolved tur-
bulent structures, using a wall-adapting local eddy viscosity (WALE) model. Because the center of the
channel requires less resolution than the near-wall region, local grid refinement was implemented to
save computational cost. Two techniques were investigated: an existing local grid refinement tech-
nique and a novel approach. For laminar channel flow, it was found that the existing technique was
both time-convergent and second-order grid convergent towards the analytical Poiseuille solution. The
novel technique did not exhibit such convergence, leading to the implementation of the existing tech-
nique in further simulations.

Turbulent simulations were performed for Reτ = 180 and Reτ = 395 flows, both with a Direct
Numerical Simulation (DNS) and a Large Eddy Simulation (LES). Both DNS and LES simulations were
in close agreement with benchmark data and showed similar performance. The LES simulations yielded
an improved approximation of the mean stream-wise velocity, a slight overshoot of RMS fluctuation,
and no change in Reynolds stress. The use of local grid refinement led to ∼ 40% more computational
efficiency for Reτ = 180, and ∼ 240% for Reτ = 395. To achieve a more efficient GPU implementation,
advanced collision and propagation kernels are recommended.

In addition, the implemented DDF-FMLBMWALE-LES was suitable for simulating turbulent channel
flow coupled with heat transfer. A set of transformation rules for temperature and enthalpy were intro-
duced to mitigate fluctuations and instabilities in thermal simulations and proved effective. Both DNS
and LES accurately predicted turbulent statistics, with LES outperforming DNS in predicting root-mean-
square temperature fluctuations at the channel center, where slight under-predictions were observed
compared to reference studies.

To model phase change for both eutectic and non-eutectic fluids, the immersed boundary method
was adopted. This method introduced instability in the turbulent velocity field, which was resolved by im-
plementing an adapted immersed boundary method. Simulations of steady-state ice layer formation in
a stationary channel yielded accurate results with minor deviations from analytical solutions. Freezing
simulations of eutectic turbulent channel flows were also conducted and benchmarked against analyti-
cal solutions using Gnielinski’s Nusselt correlation. Results indicated thicker ice layers than expected,
corresponding to a moderate over-prediction of the Nusselt number by Gnielinski. Similar deviations
were observed in reference experiments, suggesting acceptable limits of accuracy. Moreover, simula-
tions involving non-eutectic fluids produced slightly thicker ice layers compared to eutectic simulations,
attributed to higher heat conductivity in the mushy region.

In future research on freezing in turbulent channel flows, in- and outflow boundary conditions are
recommended to allow for better comparison with reference studies. Furthermore, challenges remain
regarding the stability of high-Prandtl number turbulent flows in the lattice Boltzmann framework. Similar
to most studies, this thesis restricts itself to low Prandtl numbers (Pr = 0.71), while molten salts typically
have values Pr ≥ 7.5. Recently, techniques have been proposed to simulate high-Prandtl turbulent
flows, which are recommended for future implementation.
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1
Introduction

Over the past 70 years, atmospheric CO2 levels have increased by more than 30% due to rising global
energy consumption, and they are expected to increase by another 15% up to 2050 [16, 29]. To reduce
climate change, focus has shifted towards carbon-free energy sources, such as wind, hydro, or solar
power. Although these are important sources of renewable energy, they are subject to intermittent
production, meaning their availability is not constant. Nuclear reactors are a valuable addition as they
can provide large supplies of carbon-free energy continuously. Nuclear power is currently responsible
for 10% of global electricity production and this share is expected to rise to 14% by 2050, according to
IAEA forecasts [2]. Given the increasing electricity demand, this corresponds to an approximate tripling
of current installed nuclear capacity [3].

Nuclear reactors generate thermal energy through fission chain reactions, requiring relatively small
amounts of fuel compared to traditional fossil-fuel combustion. The majority of the thermal energy
produced by these reactors is quickly converted into usable heat, which can be further transformed into
electrical energy. The most common method involves using the generated thermal energy to produce
high-pressure gas, subsequently driving a turbine to generate electricity. Various reactor designs have
been proposed, with initial developments focusing on graphite or heavy-water moderated systems.

The most widely used types of reactors are Pressurized Water Reactors (PWRs) and Boiling Water
Reactors (BWRs). PWRs operate with two water loops: the primary loop, which is pressurized to
prevent boiling, removes thermal energy from the core, after which hot pressurized water is directed to
a heat exchanger, where the secondary-loop water is transformed into high-temperature, high-pressure
steam, driving a turbine for electricity generation. In contrast, Boiling Water Reactors (BWRs) allow
cooling water to boil while passing through the core. The resulting steam goes directly to the turbine,
and the low-pressure steam leaving the turbine is condensed, then pumped back to the reactor. This
single-loop system eliminates the need for steam generators and other expensive equipment found in
PWRs [95].

While these reactor types are widely used, their designs have shortcomings in terms of safety,
waste management, resource utilization, and proliferation resistance [40]. Extensive research is being
conducted on so-called Generation IV reactors that aim to overcome those limitations. Six reactor tech-
nologies have been selected for further research and development by the Generation IV International
Forum1 (GIF) [54, 36]. One of these is the Molten Salt Reactor (MSR), a family of liquid-fueled fission
reactor concepts using a fluid molten salt mixture as fuel [5].

1.1. The Molten Salt Fast Reactor
The MSFR is based on the MSR concept and thus contains a circulating liquid salt that acts both
as the coolant and the fuel. The MSR concept is not new and there have already been significant
experimental studies with operational MSRs. The Molten Salt Reactor Experiment operated without
trouble from 1966 to 1969 using a liquid-fluoride based fuel and a graphite-moderated thermal neutron
spectrum [5]. The MSFR is still in the conceptual stage. It adopts a fast neutron spectrum, thereby
eliminating the need for a moderator. The reactor has a large negative reactivity feedback coefficient,

1The leading organization for multinational collaboration on nuclear system research and development.
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1.1. The Molten Salt Fast Reactor 2

and is able to operate in a Thorium fuel cycle. The fast spectrum of the MSFR enables better breeding
capabilities and good trans-uranic isotope (TRU) burning, leading to extended resource utilization and
waste minimization. The negative feedback coefficient arises from a combination of the Doppler effect
and density variations of the molten salt. The result is a passive reactivity control mechanism that is
balanced between power generation in the reactor salt and heat removal at the heat exchangers [32].
The MSFR fuel circuit also incorporates a passive salt draining system for planned shutdowns or in
case of incidents, preventing excessive temperature increases in the core.

1.1.1. Design
The referenceMSFR is a 3000MWth reactor that uses amolten binary fluoride salt, primarily composed
of 77.5% lithium fluoride [51]. The total fuel salt volume amounts to 18m3 and is operated at a maximum
fuel salt temperature of 750°C. A schematic view of the fuel circuit is given in Fig. 1.1 [101, 75]. Note
that there is a continuous flow of salt from the reactor core (green) through the heat exchangers which
are located circumferentially around the vessel. Although the flow is primarily driven by a set of pumps,
the MSFR could be designed in a way that natural circulation is enabled in the case of a power outage
[32]. The annular breeding blanket, shown in red, is filled with fertile salt and has the purpose of
capturing neutrons leaking from the core to produce extra fuel [95]. The circuit also involves a unit that
injects gas bubbles near the pumps for the removal of non-soluble fission products like noble metals.
At the same time, the circulating liquid salt makes it possible to continuously reprocess a small portion
of it without the need to shut down the reactor. Lastly, at the bottom of the reactor, the fuel salt can be
drained to dedicated reservoirs using a freeze plug if excessive temperatures are reached.

Figure 1.1: Schematic design of the MSFR core. The core (green) is surrounded by an annular breeding blanket (red). Molten
salt is pumped through the heat exchangers which are located circumferentially around the vessel. [101]

1.1.2. Complications
The use of molten salts inside the reactor core enables many useful safety features, such as passive
safety mechanisms, continuous reprocessing, and waste management. However, some drawbacks
of using molten salts are related to the weakening of structural materials as a result of corrosion and
irradiation embrittlement [63]. Another major issue originates from the relatively high melting points of
the applied fuel salts, which makes molten salts prone to solidification when cooled down.

The same issue has been encountered in the solar industry, where molten salts are often used as a
heat transfer fluid [97], resulting in the need for advanced solidification protection measures. Freezing
can be dangerous primarily for two reasons: (1) it can cause damage to the equipment through phase
change-induced volumetric expansion; and (2) it can clog the pipes and obstruct fluid circulation, which
is necessary for heat removal. Both issues are even more challenging for molten salt reactors as the
melting points of typical fluoride and chloride salts (approximately 450°C) are much higher compared
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to nitrate-based salts (approximately 150°C) used in solar energy applications [59].
By modeling the flow and heat characteristics of molten salts under different circumstances, design

choices can be made to mitigate potential freezing risks. Such circumstances can generally be divided
into the type of flow regime and the type of thermal conditions present in the reactor tubes. The flow
regime is dictated by the Reynolds number, which is a quantity that relates the inertial forces to the
viscous forces present in a fluid. When the Reynolds number is high, inertial forces are dominant and a
flow is said to be turbulent; when the number is low, viscous forces dominate and a flow tends towards
a laminar regime. Thermal conditions depend on both the cooling power inside the heat exchanger and
the thermal properties of the salt. By balancing these characteristics carefully, the risk of solidification
can effectively be reduced.

1.1.3. Research Focus
In this work, a numerical simulation model is developed to examine salt freezing in the heat exchanger
leading to degraded heat transfer. The model simulates a fluid flowing through a 3D channel in a
turbulent regime, while one of the walls is being cooled. The fluid dynamics is modeled using the lattice-
Boltzmann method, which is a popular approach that describes the evolution of particle distributions on
a discrete grid [56]. Furthermore, simulating detailed turbulent motion comes at a great computational
cost. Therefore, simulations will be accelerated using a ’large eddy simulation’ for the modeling of small
turbulent scales and a Graphical Processing Unit will be leveraged to allow for parallel computations.

This thesis is structured as follows. In the remainder of this chapter, an introduction will be given
to the MSFR concept (Sec. 1.1), a brief overview of recent work on computational fluid dynamics is
presented (Sec. 1.2), and the research goals are discussed (Sec. 1.3). Chapter 2 gives an introduction
to the theoretical concepts that will be used throughout this study. Subsequently, the adopted numerical
methods are discussed in Chapter 3. The different grids that are used in the different simulations will
be benchmarked in Chapter 4. In Chapter 5, the obtained turbulent flow results will be discussed and,
lastly, the results of the performed freezing simulations will be presented in Chapter 6.

1.2. Previous Research
Relevant studies conducted in the past are presented below and will be utilized as a starting point for
this research. Studies on the Filter Matrix LB method, LES, thermal LB, and phase change are listed
(non-exhaustive).

Filter Matrix LB
• Somers, [98], summarized theoretical background of the FMLB method. They implemented LES
in a 3D FMLB scheme with a derivative of the Smagorinsky SGS model.

• Eggels and Somers, [27], made a 2D numerical simulation of free laminar convective flow using
the filter matrix lattice-Boltzmann scheme. In their model the subgrid-scale stress tensor τ was
set to zero, corresponding to laminar flow.

• Rohde et al., [92], proposed a new hierarchical grid refinement technique that was tested for
laminar and turbulent flows in the FMLB framework. Turbulent flows were modeled using a DNS.

• Zhuo and Zhong, [129], made an LES-based filter-matrix lattice-Boltzmann model for simulat-
ing fully developed turbulent channel flow. The Vreman-SGS model was adopted for the eddy
viscosity calculation as proposed by [111].

Large Eddy Simulation in LB
• Meyers and Sagaut, [74], did a theoretical analysis of the model coefficients for the Smagorin-
sky model and two variational multi-scale variants of the Smagorinsky model. They proposed
modifications to the different models that follow the behaviour of the ’exact’ coefficients better.

• Mehta et al., [72], did an LES simulation using the Smagorinsky Model in combination with energy-
conserving schemes. These EC schemes make sure that dissipation arises only from viscous
effects, rather than spurious dissipations from discretization in space and time as well. The
Smagorinsky model is explained briefly in this paper.

• Lévêque et al., [62], proposed a shear-improved Smagorinsky model that seeks to improve the
overly dissipative nature near walls by subtracting the magnitude of the mean shear from the
instantaneous strain-rate tensor when calculating the eddy viscosity.
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• Nguyen et al., [78], very recently made a compressible LB-LES simulation of a developed jet
leaving a tube and striking a flat heated plate. The LB model uses a hybrid formulation for mass,
momentum, and energy conservation and a Hybrid Recursive Regularized (HRR) collision oper-
ator. The eddy viscosity was calculated following [62].

• Zhuo and Zhong, [129], see Ch. 1.2.

Thermal LB
• Zhuo et al., [131], introduced a D2Q9 filter-matrix lattice Boltzmann method and extended it to
include incompressible thermal flows using a double-distribution function framework. The paper
contains some derivation of the FMLB model, as well as the temperature equations for LB in 2D.

• Ren et al., [90], modeled 3D turbulent channel flow using a double-distribution function in the LBM-
MRT framework. Additionally, a large eddy simulation was applied using the dynamic Vreman
model.

Phase Change in LB
• Huang et al., [49], developed a solid-liquid phase LB method without the use of iteration steps or
large groups of linear equations, yielding higher efficiency than iterative methods. The moving
phase interface was treated by the immersed moving boundary scheme. The flow was laminar
and a 2D9Q scheme has been adopted. The energy conservation equation is expressed in terms
of the total enthalpy H = CpT + flL, instead of ”sensible enthalpy” CpT . Consequently, the
temperature equilibrium distribution function is modified for the model to correspond to the correct
macroscopic equations.

• Zhao et al., [126], established a 2D model composed of a liquid zone, a mushy zone, and a solid
zone based on the improved enthalpy-porosity method. No LBM has been applied.

• Chakraborty and Chatterjee, [14], developed an LB model with a solid-liquid phase transition pro-
cess. The phase-change modelling is enthalpy-based and a modified enthalpy-porosity method
has been applied, in conjunction with an enthalpy-updating closure scheme.

Work that previous students in the affiliated research group ”Transport Phenomena in Nuclear Applica-
tions” performed is:

• Van Winden, [108], constructed a lattice Boltzmann finite difference model with phase change.
He recommended the use of the double-distribution function LB model, because of its superior
accuracy and stability compared to present hybrid LB models.

• Bus, [10], made a simulation of transient freezing in cooled non-eutectic molten salt laminar chan-
nel flow. The DDF FMLB was applied with a double distribution function. Phase change was
modeled using the immersed boundary method and the enthalpy-porosity method.

• Besseling, [109], implemented AdaptiveMeshRefinement (AMR) in a DDF LBmodel of (1) natural
convection of air in a square cavity, and (2) melting of gallium in a square cavity. Adaptive mesh
refinement was investigated based on velocity, vorticity, and shear rate. The latter two methods
showed the best accordance with the fully fine grid.

• Wortelboer, [119], conducted a DNS of 3D turbulent channel flow using the FMLBM. An exten-
sion with a double-distribution function was made to investigate thermal flows. Furthermore, the
simulation was combined with a GPU implementation in Python.

• Van Bemmelen, [105], conducted a DNS of 3D turbulent channel flow using the FMLBM. It was
applied to model the behavior inside semi-solid flow batteries. Furthermore, the simulation was
combined with a GPU implementation in Python.

1.3. Research Goal
In this thesis, an answer will be formulated to the following set of research questions:

1. How can turbulent channel flow accurately be modeled using a large eddy simulation (LES) in
the filter-matrix lattice Boltzmann (FMLB) framework?

2. How can the solidification of a non-eutectic fluid be modeled in a turbulent channel flow using an
LES in the FMLB framework?
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3. Which boundary conditions and input parameters should be chosen to arrive at a stable and
accurate simulation of turbulent channel flow and phase change?

4. How does such a model compare to reference cases?



2
Theory

This chapter provides an overview of the theoretical concepts that underlie the techniques and models
used in this thesis. Sec. 2.1 covers the fundamentals of fluid dynamics by discussing some of its
governing equations and the concept of kinetic theory. Subsequently, the Lattice Boltzmann method
is presented in Sec. 2.2, which is a numerical technique frequently used in fluid dynamics modeling.
In sec. 2.3, important thermodynamical concepts are discussed that describe the behavior of multi-
phase fluids. Then, turbulent flows will be described and the way they can be approximated using a
turbulence model in Sec. 2.4 and 2.5. Lastly, the hardware components and working principles of a
Graphical Processing Unit will be discussed in Sec. 2.6.

2.1. Fluid Dynamics
Before turbulent flow and heat transfer characteristics in 3D channels can be studied, it is necessary
to understand some of the key concepts in fluid dynamics. In this section, a description of the govern-
ing principles of fluid dynamics will be given in the form of two conservation laws. Subsequently, an
introduction to kinetic theory is provided, which is a convenient way of describing fluids for different
modeling approaches.

2.1.1. Conservation Laws
The governing equations of fluid flow are a mathematical representation of physical conservation laws.
The balancing equations for mass and momentum will be given in the following.

Conservation of Mass
A central principle in fluid dynamics is that no mass in a given system can be created or destroyed.
This is known as the conservation of mass and leads to the continuity equation:

∂ρ

∂t
+∇ · (ρu) = 0. (2.1)

This equation states that the change of mass inside a region with density ρ is equal to the mass inflow
into that region [88].

Conservation of Momentum
A second central principle is the conservation of momentum. It implies that the change in linear mo-
mentum of any control volume is equal to the total force exerted on that volume. By using that the total
force is the sum of surface and body forces, one can arrive at Cauchy’s equation of motion

∇ · σ + ρf = ρ

(
∂u

∂t
+ u · ∇u

)
, (2.2)

where the surface force is represented by stress tensor σ and the body force by f [ms−2] [80]. For
incompressible flow and a Newtonian fluid (i.e., viscosity is not a function of shear rate), the components
of σ can be expressed in terms of dynamic viscosity µ, pressure p, and velocity ui as

6
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σij = −pδij + 2µ

(
Sij −

1

3
Skkδij

)
, (2.3)

where Sij is the strain-rate tensor, given by

Sij =
1

2

(
∂uj
∂xi

+
∂ui
∂xj

)
. (2.4)

Note the use of Einstein notation in the above definitions.
Substituting Eq. 2.3 in Eq. 2.2 leads to the equation for conservation of momentum in an incom-

pressible flow [88]:

µ∇2u−∇p+ ρf = ρ

(
∂u

∂t
+ (u · ∇)u

)
. (2.5)

The above equation and Eq. 2.1 are known as the Navier-Stokes equations for incompressible flows
and constant dynamic viscosity. Together with an equation of state that relates the pressure and density
of a system [46], the system of equations is closed and describes the time evolution of any fluid with
the previously assumed characteristics.

Due to the non-linearity of Eq. 2.5, it is often extremely difficult or even impossible to find exact
solutions to the Navier-Stokes equations [89]. However, there exist situations where the equations
simplify to the extent that finding an analytical solution becomes possible. One such situation is the
body force-driven steady-state parallel flow of incompressible fluid between parallel plates. Denoting
the 1D body force with g, Eq. 2.5 simplifies to

µ
d2u

dy2
= −ρg. (2.6)

After assuming no-slip boundaries at y = 0 and y = 2H with uy(H) = 0, the obtained solution is called
Poiseuille flow and can be expressed as

u(y) =
g

ν

(
Hy − y2

2

)
(2.7)

The kinematic viscosity ν that is used in Eq. 2.7 is related to the dynamic viscosity µ as

ν =
µ

ρ
. (2.8)

Due to the availability of an analytical benchmark solution, Poiseuille flow is a widely used flow case
for validating flow simulations.

2.1.2. Reynolds Number
The Reynolds number is used to characterize the flow regime and describes the ratio between inertial
and viscous forces present in a flow [80]. It is a non-dimensional number that emerges after non-
dimensionalization of the Navier-Stokes equations and is defined as

Re =
UL

ν
, (2.9)

where U is the characteristic velocity of the flow, L is the characteristic length scale, and ν is the
kinematic viscosity. The choice of U and L depends on the type of Reynolds number that is used. In
channel flows, it is common to define the bulk Reynolds number Rem and the shear Reynolds number
Reτ . Their formal definitions will be given in 2.4.2. The laminar regime generally corresponds toRem <
2300, while the fully turbulent regime corresponds to Rem > 2700. However, the exact boundaries
depend on the flow conditions, such as smoothness of the walls and the present geometry. In between
these boundaries there exists a transitional regime in which the flow is considered neither fully turbulent
nor laminar. There will be a more extensive description of turbulence in Sec. 2.4.
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2.1.3. Kinetic Theory
Fluids can generally be modeled on three different scales: the miscroscopic, mesoscopic and macro-
scopic scale. Physically, fluids are large sets of atoms or molecules that collide with one another and
follow random trajectories. The microscopic description aims to track all these individual particle mo-
tions, which quickly comes at an enormous computational cost when moving to macroscopic situations.
An alternative approach is to consider fluids as being continuously distributed throughout the domain,
describing their macroscopic behavior in terms of density, velocity, and temperature. Such an approach
attempts to solve the equations of fluid dynamics directly, applying generic numerical methods such as
finite difference or finite volume methods [56].

The mesoscopic scale is an intermediate scale in which fluids are represented by distributions or
collections of molecules that interact with one another and are tracked in time. One class of mesoscopic
methods solves so-called kinetic equations with some numerical scheme, such as finite differences,
the gas kinetic scheme, or the Lattice Boltzmann method [43]. Kinetic equations are conservation
equations that describe how probability density functions of stochastic systems evolve in time [128].
The Boltzmann equation is one such equation and will be discussed in the following.

Boltzmann Equation
Kinetic theory describes fluids through the use of a probability density function f(x, ξ, t) that depends
on position x, microscopic particle velocity ξ, and time t. This function determines the probability fdxdξ
that a particle is located within the infinitesimal volume (x,x+ dx) with velocity (ξ, ξ+ dξ). The rate of
change of the particle density function df/dt can be decomposed as

df

dt
=

(
∂f

∂t

)
dt

dt
+

(
∂f

∂xi

)
dxi
dt

+

(
∂f

∂ξi

)
dξi
dt

(2.10)

Looking at the terms from left-to-right, we have dt/dt = 1, the particle velocity dxi/dt = ξi, and the
specific body force dξi/dt = gi which has units [F/ρ] =N/kg. We use df/dt ≡ Ω(f) on the left-hand
side, apply vector notation, and arrive at the Boltzmann equation

∂f(x, ξ, t)

∂t
+ ξ · ∇f(x, ξ, t) +∇ξf(x, ξ, t) · g = Ω(f). (2.11)

This equation describes the transportation of f and has the form of an advection equation. The first
two terms describe the advection with velocity ξ and the third term describes the influence of forces
on particle velocities. The term Ω represents the rate of change in f due to binary molecular collisions
and is known as the collision operator. Its formal definition is a double integral over velocity space that
considers all outcomes of two-particle collisions for a choice of intermolecular forces. The macroscopic
quantities can be obtained from the distribution function through the following integrals:

ρ =

∫
fd3ξ, (2.12)

ρui =

∫
ξifd

3ξ. (2.13)

These quantities are also referred to as the moments of f .
The Navier-Stokes equations can be retrieved from the continuous Boltzmann equation by applying

a so-called Chapman-Enskog analysis [56]. This analysis applies a decomposition of the distribution
function into an equilibrium and a non-equilibrium part. The equilibrium distribution is the state a system
relaxes to when it is left alone for a sufficiently long time and the non-equilibrium part is the perturbation
from this state [43]. When f = feq, the collision takes no net effects, giving Ω(feq) = 0. For an ideal
gas, the equilibrium distribution is given by the Maxwell-Boltzmann distribution

feq(x, ξ, t) = ρ

(
1

2πRT

)3/2

e−|ξ|2/(2RGT ). (2.14)

2.2. Lattice Boltzmann Method
The Lattice Boltzmann Method (LBM) is a relatively new numerical technique that solves a simplified
version of the Boltzmann equation on a discrete grid [91]. The groundwork of this method lies in the
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discretization of the Boltzmann equation that leads to the formulation of the lattice Boltzmann equation
(LBE), which will be discussed in Sec. 2.2.1. The stream-and-collide algorithm that is a central concept
in LBM simulations is explained in Sec. 2.2.2 and the most general collision operator, the BGK operator,
is dicussed in Sec. 2.2.3.

2.2.1. Discretizing the Boltzmann Equation
We will now derive the lattice Boltzmann equation by discretizing the Boltzmann equation. To this end,
consider the force-free Boltzmann equation

∂f(x, ξ, t)

∂t
+ ξ · ∇f(x, ξ, t) = Ω(f). (2.15)

As a starting point, one can discretize the velocity space ξ into a finite set of velocities {ci} and define
corresponding weights wi [43]. Subsequently, a discrete distribution function fi(x, t) = ωif(x, ci, t) can
be introduced. This function satisfies the following equation:

∂fi
∂t

+ ci · ∇fi = Ω(f), (2.16)

Density and momentum can now be obtained from the discrete distribution function as

ρ =
∑
i

fi, ρu =
∑
i

cifi. (2.17)

Integrating Eq. 2.16 from t to t +∆t along the characteristic line x(s) = x + cis using the method
of characteristics [45], and assuming a constant collision term over this interval, yields

fi(x+ ci∆t, t+∆t)− fi(x, t) = ∆tΩ(f). (2.18)

This equation is known as the lattice Boltzmann equation. The population fi(x, t) now represents the
particle number density for velocity direction ci at grid node x and time t. Collision operator Ωi now
relaxes the system towards the discretized equilibrium distribution, which is given by

feqi (x, t) = wiρ

(
1 +

u · ci
c2s

+
(u · ci)2

2c4s
− u · u

2c2s

)
, (2.19)

where cs represents the lattice speed of sound and wi are weights specific to the used velocity set [56].
Velocity sets come in different forms and can be classified based on the number of dimensions d and
the number of discrete velocities q, using the notation DdQq. Typically, a higher amount of velocities
leads to a higher accuracy, but also a greater computational cost. Common velocity sets used in three
dimensions are D3Q15, D3Q19 and D3Q27 [56].

2.2.2. Stream-and-collide Algorithm
When taking a closer look at the terms in the lattice Boltzmann equation (Eq. 2.18), two separate
processes can be observed:

1. The first process is a collision,

f∗i (x, t) = fi(x, t) + Ωi(x, t), (2.20)

where f∗i denotes the post-collision distribution. The pre-collision distributions are redistributed,
based on their current values and the present macroscopic variables

2. The second process is streaming (or propagation)

fi(x+ ci∆t, t+∆t) = f∗i (x, t), (2.21)

where post-collision distribution f∗i is streamed to a neighboring site in the lattice.

This illustrates the straightforwardness of the LB algorithm. Each time step consists of a collision step
and a consecutive propagation step, which are repeated at every node in the lattice for the remainder
of the simulation.
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2.2.3. BGK Collision Operator
The collision operator Ωi can be chosen in various ways. The simplest and most widely applied form
is the Bhatnagar-Gross-Krook (BGK) operator,

ΩBGK = −1

τ
(fi − feqi ). (2.22)

This operator assumes the relaxation of populations fi to settle towards equilibrium feqi at a rate that
is determined by the relaxation time τ . Despite its wide application in various fields, the BGK operator
is reported to suffer from stability issues due to non-physical terms that arise from the discretization
of the Boltzmann equation. Numerous solutions have been proposed to alleviate this problem. These
can generally be categorized into changing the numerical discretization, the collision scheme, or both
of them [17].

2.3. Thermodynamics
Because heat transfer will be studied in fluids that are subject to freezing, a thermodynamical descrip-
tion of fluids will now be given that is suitable for situations with phase change. To this end, the conser-
vation of total enthalpy will be discussed in Sec. 2.3.1, and a description of the concepts behind phase
change is given in Sec. 2.3.2.

2.3.1. Conservation of Enthalpy
Apart from mass and momentum conservation in Sec. 2.1.1, one can also define an equation that
balances the sensible enthalpy h = CpT in a confined system and results from the conservation of
energy. Assuming no viscous dissipation and shockwaves, constant density, constant specific heat
capacity, and applying Fourier’s law, the sensible enthalpy equation for a specific phase ϕ can be
written as

ρϕ
∂hϕ

∂t
+ ρui

∂hϕ

∂xi
=

∂

∂xi

(
αϕ ∂h

ϕ

∂xi

)
+ q′′′, (2.23)

where q′′′ is a local heat source term that represents the addition or release of energy due to melting or
solidification and α is the thermal diffusivity [11, 110]. Similar to the Navier-Stokes equation, Eq. 2.23
contains convective and diffusive terms.

One can define a non-dimensional number that expresses the ratio between momentum diffusivity
and thermal diffusivity. It is known as the Prandtl number Pr and is defined as

Pr =
ν

α
. (2.24)

A high Prandtl number Pr ≫ 1 leads to a situation where diffusion of momentum is dominant over
diffusion of heat. At low Prandtl number Pr ≪ 1, the opposite is true [52].

2.3.2. Phase Change
When a liquid changes to a solid state, there is no instant transition. This is because the change in
molecular structure is associated with a change in energy that is given by the latent heat of fusion L
of phase change [110]. A measure of energy that takes into account this latent heat contribution is the
total enthalpy H, which can be expressed as

Hϕ = hϕ + fϕl L. (2.25)

The quantity fϕL is the liquid fraction, which expresses how close a medium is to the solid or liquid phase.
A value fϕl = 1 represents a fully liquid phase, while 0 represents a fully solid phase. When 0 < fl < 1,
the substance is said to be in the so-called mushy region. This is an intermediate phase in which the
growing solid phase forms a porous matrix through which the liquid can flow [118]. Convection is still
possible in a mushy region, but the fluid has different properties than in the fully liquid phase. The
relevant phases are now the liquid, solid, and mushy phases, ϕ = {l, s,m}.

Upon substituting hϕ = Hϕ − fϕl L into Eq. 2.23, and assuming negligible advection of latent heat
such that u · ∇Hϕ ≈ u · ∇hϕ, one obtains the following total enthalpy balance equation:
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∂Hϕ

∂t
+ ui

∂hϕ

∂xi
=

∂

∂xi

(
αϕ ∂h

ϕ
i

∂xi

)
. (2.26)

Note that q′′′ does not appear in this equation anymore, because it has canceled with the latent heat
contribution in the transient term.

The transition from liquid to mushy takes place at the liquidus total enthalpy Hl and the transition
from mushy to solid takes place at the solidus total enthalpy Hs. The liquid fraction can be defined in
terms of H, Hl and Hs,

fl =


0 H < Hs

H−Hs

Hl−Hs
Hs ⩽ H ⩽ Hl

1 H > Hl.

(2.27)

Similar to Hs and Hl, it is also possible to define a solidus and liquidus temperature. These are the
temperatures at which a substance enters the solid or liquid phase, respectively. Materials that have
equal solidus and liquidus temperatures Ts = Tl are called eutectic materials. On the other hand, non-
eutectic materials have different temperatures Ts < Tl, causing the latent heat evolution during phase
change to take place over a range of temperatures [110]. Following [49], this leads to the following
expression of temperature T in terms of total enthalpy H:

T =


H/Cp,s H < Hs

Ts +
H−Hs

Hl−Hs
(Tl − Ts) Hs ⩽ H ⩽ Hl

Tl + (H −Hl) /Cp,l H > Hl

. (2.28)

Typically, molten salts are non-eutectic mixtures and, therefore, their phase change trajectory is
bound by a temperature range rather than a single temperature.

Thermal variables such as the specific heat capacity Cp often have different values in different
phases. This complicates the definition of the sensible enthalpy, because the definition h = CpT does
not anymore guarantee a unique temperature for one value of h. To this end, a more universal definition
of h can be used that is valid in all phases:

h =


Cp,sT T < Ts

hs + Cp,mT Ts ⩽ T ⩽ Tl

hl + Cp,lT T > Tl

. (2.29)

Here, Cp,m is the specific heat capacity in the mushy region and hs and hl are the solidus and liquidus
sensible enthalpies, respectively. They are given by

hs = Cp,sT, (2.30)

hl = hs + Cp,m(Tl − Ts). (2.31)

2.4. Turbulent Flows
In a turbulent flow, the velocity field u(x, t) exhibits seemingly random behavior. When multiple realiza-
tions of the same flow experiment are performed, one obtains different outcomes for the instantaneous
flow field, as opposed to a laminar field in which the flow is constantly aligned. Paradoxically, u is fully
deterministic in a turbulent flow and the field is not completely random. However, turbulent flow fields
just have an inherent sensitivity to only the slightest perturbations. Any flow has unavoidable perturba-
tions in initial conditions, boundary conditions, and material properties, which cause it to diverge from
its unperturbed (or differently perturbed) state [86].

The statistical description of turbulent flows is discussed in Sec. 2.4.1. Subsequently, the concepts
and quantities that are used to classify channel flows will be described in Sec. 2.4.2 and 2.4.3. Sec.
2.4.4 takes a more qualitative standpoint and gives an understanding of the different scales of motion
in turbulent flows.
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2.4.1. Turbulent Statistics
A turbulent variable, such as the flow field u, can be decomposed into its mean u and the fluctuation u′,
which is referred to as a Reynolds decomposition. The same can be done for any turbulent variable,
such as temperature, leading to the following relations:

u = u+ u′,

T = T + T ′.
(2.32)

Mean Quantities
The mean of a quantity is defined as the ensemble average over many realizations N of the same
experiment, such that

u(x, t) =
1

N

N∑
α=0

u(α)(x, t), (2.33)

where the index α labels the realization of the experiment.
In flow simulations, it is often computationally too expensive to perform the same experiment a large

number of times. Therefore, it is common to take a time average uT of only one experiment over an
interval [0, T ], which is defined as

uT (x, t) =

T∫
0

u(x, t)dt. (2.34)

Similarly, it is also possible to take a spatial average uL over an interval [0, L]. In the case of 3D
turbulent flow between parallel plates that span the x-z plane, the spatial average of the velocity field
at position y would be defined as

uL(y, t) =

Lx∫
0

Lz∫
0

u(x, t)dxdz. (2.35)

A process is called stationary if it is statistically invariant to translations in time and homogeneous if it
is statistically invariant to translations in space. For such processes, it holds that

lim
T→∞

uT = u, (2.36)

lim
L→∞

uL = u. (2.37)

Developed turbulent flow between parallel plates is both stationary and homogeneous in the stream-
and span-wise directions. It is therefore suitable to take time and spatial averages to determine the
means of the flow variables.

However, in flow simulations, there is often no continuous flow field that can be integrated over.
Instead, the velocity is defined on discretely spaced points xi in space and at discrete time steps ti. It
is then convenient to define uT and uL in terms of a discrete sum over time and space, respectively
[80]:

uT (x, t) =
1

N

N∑
i=0

u(x, ti), (2.38)

uL(x, t) =
1

N

N∑
i=0

u(xi, t). (2.39)

The selection of N should ensure a sufficiently large number of uncorrelated points and snapshots of
the flow field. This is necessary to guarantee the convergence of Eqs. 2.38 and 2.39 to the ensemble
average.
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Fluctuating Quantities
The fluctuation of a scalar field, such as u′ = u−u or T ′ = T −T , is often described in terms of its root
mean square (RMS) value, e.g.,

urms =
√
u′u′, (2.40)

Trms =
√
T ′T ′. (2.41)

which is a widely usedmetric to benchmark the statistics of turbulent flows. The RMS velocity fluctuation
urms is proportional to the turbulent kinetic energy k, which in a 3D channel with velocity components
ui, is given by

k =
1

2
u′iu

′
i. (2.42)

When Eq. 2.42 is normalized by the squared mean velocity, one obtains the turbulent intensity i [80]:

i =
k

∥u∥2
. (2.43)

Reynolds Stress and Turbulent Heat Flux
A statistic that is often used to describe the turbulent channel flows is the Reynolds stress. It is denoted
by −ρu′iu′j and represents the stress contribution from turbulent fluctuations. In Sec. 2.5.1, it will be
explained how the Reynolds stress emerges from the Reynolds-averaged Navier-Stokes equations.

The analogous quantity in the thermal description is the turbulent heat flux −u′jT ′, which represents
an additional heat flux due to turbulent fluctuations. Similar to the Reynolds stress, it is a turbulent statis-
tic that is commonly used in the description of turbulent channel flows. A more extensive description is
given in Sec. 2.5.1.

2.4.2. Channel Flows
This research is focused on describing the behavior of turbulent flows passing through a channel. To
describe the characteristics of such a flow, a rectangular duct of height h = 2H will be considered in
the remainder of this chapter, as sketched in Fig. 2.1. The duct is infinitely long and assumed to be
very wide (b/H ≫ 1), such that it can be approximated as a set of infinite parallel planes. The flow
propagates in the x-direction and the mean velocity varies in the y-direction, assuming zero velocity at
the boundaries. The bottom and top walls are positioned at y = 0 and y = 2H, respectively, with the
mid-plane being y = H. The three velocity components are denoted by (u, v, w) = (u1, u2, u3).

Figure 2.1: A rectangular duct with half-height H and depth b ≫ H.

As was mentioned in Sec. 2.1.2, a definition of the Reynolds number that is commonly used to
describe flow regimes in channel flows is the bulk Reynolds number Rem,

Rem ≡ um2H

ν
. (2.44)
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Here, the length scale is given by the full-channel height 2H and the characteristic velocity is given by
the bulk mean velocity um. The latter is defined as

um =
1

2H

2H∫
0

udy. (2.45)

Wall Units
We will now dive further into a convenient and universal way to classify and describe turbulent channel
flows, following the descriptions in [86, 90]. To this end, we introduce the total shear stress τ(y) in the
channel, which is defined as

τ(y) = ρν
du

dy
− ρu′v′. (2.46)

The first term is the viscous stress and the second term is the so-called Reynolds stress, which is the
stress contribution from turbulent fluctuations. The origin and physical description of Reynolds stress
will be discussed in Sec. 2.5.1.

Close to the walls, the Reynolds stress should vanish due to the no-slip condition uw = 0. Thus,
the wall shear stress at y = 0 is exclusively determined by viscous forces:

τw ≡ ρν

(
du

dx

)
y=0

. (2.47)

It is convenient to define appropriate velocity and length scales in the near-wall region that allow for
a more universal description of channel flows, based on viscosity ν and wall shear stress τw. These
are the friction velocity,

uτ ≡
√
τw
ρ
, (2.48)

and the viscous length scale,

δν ≡ ν

√
ρ

τw
=

ν

uτ
. (2.49)

With these viscous scales, it is possible to define the friction Reynolds number, which is a widely used
universal turbulence measure in channel flow experiments,

Reτ ≡ uτH

ν
=
H

δν
. (2.50)

The non-dimensional quantity that is used to express relative distance to the wall, is denoted by y+ and
is measured in viscous lengths δν ,

y+ ≡ y

δν
=

y

δν
=
uτy

ν
. (2.51)

Similarly, a non-dimensional velocity u+ and time t+ can be defined as

u+ ≡ u

uτ
, (2.52)

t+ ≡ uτ
H
t. (2.53)

This framework can also be extended to the thermal description of channel flows. The non-dimensional
temperature T+ is obtained after a normalization

T+ ≡ T

Tf
, (2.54)

where Tf is the friction temperature, which is defined as

Tf ≡ − α

uτ

(
∂T

∂y

)
y=0

. (2.55)



2.4. Turbulent Flows 15

The friction temperature depends on thermal diffusivity α and mean temperature gradient ∂T/∂y at the
wall.

These quantities are referred to as wall units and provide useful non-dimensional descriptions of
any type of channel flow. An example of such a universal description will be given in the following
section.

2.4.3. Wall Flow Regions
Wall-bounded turbulent flows exhibit universal mean streaming profiles within specified ranges of y+.
According to Prandtl’s postulation, the mean velocity near the wall is exclusively influenced by the
viscous scales, particularly at sufficiently high Reynolds numbers. Consequently, the mean velocity is
solely dependent on the distance to the wall, leading to the so-called law of the wall:

u+ = fw(y
+), (2.56)

where the function fw(y
+) is universal for Reynolds numbers that are well beyond the transitional

regime (Re ≳ 3000) [86]. The form of fw(y+) can be determined for several ranges of y+, as will
be shown in the following.

The Viscous Sublayer
The viscous sublayer is the region that is nearest to the wall and is located at y+ < 5. In this region,
the no-slip condition at the wall yields a value u+(0) = 0. The derivative at the wall can be obtained
from Eq. 2.47 after normalizing with δν . This leads to

du+

dy
(0) = 1. (2.57)

After applying the definition of the Taylor-series expansion to Eq. 2.57 for small values y+, and ne-
glecting higher order terms O(y+4), one obtains the following average velocity profile in the viscous
sublayer [86]:

u+(y+) = y+. (2.58)

The Log-law Region
The log-law region is located at y+ > 30, y/H < 0.3 and is also a region for which fw(y+) can be well
estimated. As the distance to the wall becomes greater, the relative contribution of viscous stress to
the total shear stress in Eq. 2.46 becomes negligibly small compared to the contribution of Reynolds
stress, leading to

τ(y) ≈ −ρu′v′. (2.59)

It has also been experimentally observed that the shear stress is approximately constant near the wall,
such that τ(y) ≈ τw. Recalling the definition of the friction velocity in Eq. 2.48, one then obtains

u2τ ≈ −u′v′. (2.60)

The Reynolds stress −u′v′ can be modeled using Prandtl’s mixing length theory [50], which estimates
the Reynolds shear stress as

−u′v′ = ℓ2
∣∣∣∣∂u∂y

∣∣∣∣ ∂u∂y , (2.61)

where the characteristic size ℓ of eddies scales with distance from the wall according to

ℓ = ky. (2.62)

Here, k is the Von Kármán constant with a value k ≈ 0.4. The combination of Eqs. 2.60 and 2.61 leads
to a solution for the mean velocity that can be written as

u+ =
1

k
ln y+ +B, (2.63)
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where B is a constant with value B ≈ 5.2 that depends on the Reynolds number that is used [80]. For
high Reynolds numbers (e.g., Reτ = 395), the value is closer to 5, while for low Reynolds numbers the
value is closer to 5.5 (e.g., Reτ = 180) [55].

As mentioned earlier, the log-law region stretches until y/H = 0.3. However, even at the center of
the channel, where the arguments leading to Eq. 2.63 no longer apply (τ(y) ̸= constant), deviations
from the log law are still quite small [86].

2.4.4. Scales of Turbulent Motion
Turbulent flow consists of eddies, which are vortex-like turbulent structures with varying length scales ℓ.
The largest scale eddies are characterized by length scale ℓ0, velocity u0 and timescale τ(ℓ0) ≡ ℓ0/u(ℓ).
They are comparable in size with the flow domain, meaning

ℓ0 ≈ H. (2.64)

The large eddies are unstable and break up into smaller eddies, transferring their kinetic energy. The
smaller eddies undergo a similar break-up process, which is repeated until the smallest length scale
η is reached. At this scale, kinetic energy is dissipated into heat, resulting from viscous forces that
dominate over inertial forces. Thus, energy is transported from large to small scales, or equivalently,
from small to large wavenumbers κ, which can be defined as

κ = 2π/ℓ. (2.65)

anisotropic range

isotropic range

inertial subrange

dissipation 
rangeenergy-

containing 
eddies

Energy cascade

Figure 2.2

The largest-scale eddies draw their energy directly from the mean motion, leading to a strong di-
rectional preference of their flow statistics. Consequently, these large turbulent structures are said to
be highly anisotropic. Upon transitioning to considerably smaller scales ℓ ≪ ℓ0, provided a sufficiently
high Reynolds number, the turbulent structures lose their directional preference and become isotropic.
This is known as Kolmogorov’s hypothesis of local isotropy and the applicable range of scales is re-
ferred to as the isotropic range [86]. This range can be categorized into the dissipation range and the
inertial subrange. As the names suggest, energy is dissipated in the dissipation range, while inertial
forces dominate in the inertial subrange. A schematic overview of the different turbulent scales and
corresponding energy spectra E(κ) is given in Fig. 2.4. It can be seen that most energy is contained
in large-scale eddies with wavenumbers κ ≈ κe = 2π/H. These are the large-scale eddies that are
on the order of the domain size. In the inertial subrange, the energy contained in the eddies gradually
decays with κ−5/3. It is also the range where energy is transferred to successively smaller scales, fol-
lowing the energy cascade. The dissipation range is approached when wavenumbers reach a value
κ ≈ κd = O(2π/η). [80, 71]

According to Kolmogorov’s first similarity hypothesis, the small-scale motions in the dissipation
range take a universal form that is exclusively determined by viscosity ν and the energy dissipation
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rate ϵ. These two parameters can be used to derive unique length, velocity, and time scales for the
smallest, dissipative eddies. Respectively,

η ≡
(
ν3

ϵ

)1/4

, uη ≡ (ϵν)
1/4

τη ≡ (ϵν)
1/4

. (2.66)

The energy dissipation rate ϵ is approximately equal to the production of energy at large scales. Be-
cause the latter scales as u20/τ0 = u30/ℓ0 [86], the ratios between the smallest and the largest scales
can be expressed as

η

ℓ0
∼ Re−3/4,

uη
u0

∼ Re−1/4,
τη
τ0

∼ Re−1/2. (2.67)

It can be concluded from the above relations that the scales of the smallest eddies decrease with
increasing Reynolds number. Consequently, when it is desired to simulate all scales of a high-Re flow
(i.e., Direct Numerical Simulation), it is necessary to have a high grid resolution. This comes at a large
computational cost, so there exists great interest in modeling approaches that do not need to resolve
all turbulent scales. One such approach will be introduced in the next section.

2.5. Turbulence Modeling
Turbulence models are methods that aim to include the effects of turbulence in simulations of fluid flows.
It is possible to directly solve the governing equations without the use of any turbulence model. This
approach is known as a Direct Numerical Simulation (DNS) and it requires a very fine grid that captures
the full range of turbulent motion. Especially for high Reynolds numbers, when turbulent scales become
smaller, this approach is not feasible as computation times quickly become too large. An alternative
method lies in the Reynolds-Averaged Navier-Stokes (RANS) approach, which effectively models all
turbulent scales. A third method is the Large Eddy Simulation (LES), which takes an intermediate
approach and models only the small turbulent motions. The latter two approaches will be discussed in
Sec. 2.5.1 and 2.5.2, respectively.

2.5.1. RANS Approach
The RANS approach relies on a Reynolds decomposition u = u+ u′ that was discussed in Sec. 2.4.1.
This decomposition can be inserted in the equations of motion of Sec. 2.1.1, i.e., the continuity equation
(Eq. 2.1) and the Navier-Stokes equation (Eq. 2.5). Subsequent averaging of the continuity equation for
incompressible flows and applying the so-called ”Reynolds conditions” [80] for the averaging operators,
yields

∂ui
∂xi

= 0, (2.68)

∂u′i
∂xi

= 0. (2.69)

This implies that both the average and fluctuating velocity fields are divergence-free. A similar pro-
cedure can be performed for the Navier-Stokes equation to arrive at the Reynolds-Averaged Navier-
Stokes equations (RANS):

ρ
∂ui
∂t

+ ρ
∂uiuj
∂xj

= ρf i +
∂

∂xj

[
pδij + µ

(
∂ui
∂xj

+
∂uj
∂xi

)
− ρu′iu

′
j

]
, (2.70)

where −ρu′iu′j is referred to as the Reynolds stress tensor[80]. This tensor is composed of nine
Reynolds stresses for each combination of i and j, of which only six are unique. The term ’stress’
is being used here, first of all, because the dimensions of ρu′iu′j are force per unit area. Secondly, the
last two terms in Eq. 2.70 can be grouped, such that −ρu′iu′j becomes the turbulent equivalent of the
viscous term µ

(
∂ui

∂xj
+

∂uj

∂xi

)
[61]. Physically, Reynolds stress can be interpreted as the transfer of mo-

mentum in the i-direction, due to turbulent fluctuations in the j-direction. If i = j, the stress components
are called normal stresses, while for i ̸= j, they are called shear stresses.
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Analogously, one can apply a Reynolds-averaging approach to the total enthalpy balancing equation
(Eq. 2.26). The resulting Reynolds-averaged total enthalpy equation yields

∂H

∂t
+ uj

∂h

∂xj
=

∂

∂xj

[
α
∂h

∂xj
− Cpu′jT

′
]
, (2.71)

where −u′jT ′ is referred to as the turbulent heat flux [61]. It can be seen as the thermal equivalent of
the Reynolds stress.

The Reynolds stress and turbulent heat flux are generally unknown quantities as turbulent structures
are hard to predict, in contrast to the averaged quantities. A central topic in the theory of turbulence is
to predict these unknown quantities by relating them to the known, averaged quantities, and so, get a
mathematically closed problem [80].

Eddy-Viscosity Assumption
One way to relate Reynolds stress to the averaged quantities is through an eddy-viscosity assumption.
This approach was first proposed by Boussinesq in 1877 [9], and it is therefore also referred to as the
Boussinesq hypothesis. Analogous to the viscous stress term in Eq. 2.70, he suggested expressing
the Reynolds stress in terms of the mean velocity gradients and a factor of proportionality, known as
the eddy-viscosity µt = ρνt. This led to the representation of the Reynolds stress as

−ρu′iu′j = µt

(
∂ui
∂xj

+
∂uj
∂xi

)
− 2

3
ρkδij , (2.72)

where k is the turbulent kinetic energy [71]. In Boussinesq’s initial proposal, the term − 2
3ρkδij was not

included, but it has been added to retrieve the turbulent kinetic energy when taking the sum of normal
components−ρu′iu′i. For each normal component (i.e., i = j), the first term on the right-hand side of Eq.
2.72 becomes zero for incompressible flows. This leaves only − 2

3ρk. The sum of normal components
becomes

−ρu′iu′i = −2ρk, (2.73)

which returns the definition of k in Eq. 2.42 [61]. Note the use of Einstein summation convention in Eq.
2.73.

By introducing the Boussinesq assumption, the six independent unknowns of the Reynolds stress
tensor have been reduced to only one unknown in the form of µt. A common approach to solving turbu-
lent flow problems is to choose a turbulence model that calculates µt and then use the eddy-viscosity
assumption to obtain the Reynolds stresses. From this point, one can solve the RANS equations.

Eddy-Diffusivity Approximation
It is possible to relate the turbulent heat flux to the averaged quantities in a similar manner as was
done for the Reynolds stress in the eddy-viscosity assumption. This is known as the eddy-diffusivity
assumption, which expresses the turbulent heat flux as

−u′jT =
νt
Prt

∂T

∂xj
. (2.74)

The pre-factor νt/Prt is known as the eddy thermal diffusivity αt and it is related to the eddy-viscosity
through the turbulent Prandtl number Prt,

αt ≡
νt
Prt

. (2.75)

The turbulent Prandtl number is a model constant (or function) that needs explicit prescription. The
result is a mathematically closed set of equations for both the mean velocity and mean temperature.
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Shortcomings
A shortcoming of the RANS approach is that one solves only for the averaged quantities, while all
scales of instantaneous motion are modeled by a turbulence model. This leads to a significant loss
of information, which is often necessary to accurately describe turbulent flows. Also, the Boussinesq
approximation introduces some inaccuracies as it falsely assumes a linear relationship between the
Reynolds stress and the mean flow strain rate Sij = 1

2

(
∂ui

∂xj
+

∂uj

∂xi

)
. This linear relation is not valid

in various applications, especially in regions with sudden changes in Sij , strong streamline curvature,
three-dimensional structures, or anisotropic flow conditions [117].

Numerous efforts have been undertaken to overcome the limitations of linear eddy-viscosity models
by developing more sophisticated Reynolds stress modeling approaches. However, these approaches
have a lack of robustness that restricts them to a small portion of practical turbulent flows, and no
turbulence model can accurately describe the flow physics in all circumstances [121].

2.5.2. Large-Eddy Simulation
Large-eddy simulations (LES) provide a compromise between the turbulence modeling approach in
RANS and the computationally expensive, all-scale resolving approach of DNS. This technique divides
the complete turbulent field into large-scale or ”resolved” eddies and small-scale or ”sub-grid” eddies.
The resolved eddies are computed directly through the equations of motion while a single sub-grid
scale model represents the combined effect of all sub-grid eddies [38].

Filtering Approach
Resolving motions only up to a cut-off length ∆ is the equivalent of introducing a high-pass spatial filter
or a low-pass wavenumber filter to the scalar fields. The resolved part ϕ̃(x, t) of a scalar field ϕ(x, t)
(e.g., velocity) is defined by the relation

ϕ̃(x, t) =
∞∫

−∞

G (ξ,x)ϕ (x− ξ) dξ, (2.76)

where the convolution kernel G is a property of the adopted filter, and is associated with cut-off length
∆ and cut-off time scale τc [35, 86]. The filtering operation can also be described in terms of the
wavenumber k and frequency ω by switching to Fourier space. To this end, the Fourier spectrum
ϕ̂(k, ω) of ϕ(x, t) is multiplied by the transfer function Ĝ(k, ω) of the kernel G(x, t):

˜̂
ϕ(k, ω) = Ĝ(k, ω)ϕ̂(k, ω), (2.77)

where the spatial cut-off length ∆ is now associated to the cut-off wavenumber kc and the cut-off time
scale τc to the cut-off frequency ωc. The energy spectrum is also cut off at this scale due to the filtering
procedure, meaning that the energy of structures with k > kc is not included in the resolved flow field.
This is schematically shown in Fig. 2.3.

𝜅c𝜅

Resolved Unresolved

Figure 2.3: The energy spectrum in LES; eddies up to cut-off wavenumber κc are resolved. The unresolved eddies are
modeled using a sub-grid scale model.
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LES Governing Equations
To arrive at the governing equations for the filtered fields, the filters are required to be consistent, linear,
and commuting with differentiation [35]. Respectively, this leads to conditions

ã = a, a = constant, (2.78)

ϕ̃+ ψ = ϕ̃+ ψ̃, (2.79)

∂̃ϕ

∂s
=
∂ϕ̃

∂s
, s = x, t. (2.80)

Similar to the Reynolds averaging that was performed in Sec. 2.5.1, one can apply a filter with the
above characteristics to the incompressible continuity and Navier-Stokes equations (Eq. 2.1 and 2.5).
The resulting filtered continuity equation is given by

∂ũi
∂xi

= 0, (2.81)

and the filtered Navier-Stokes momentum equation by

ρ
∂ũi
∂t

+ ρ
∂ũiuj
∂xj

= ρfi +
∂

∂xj

[
p̃δij + µ

∂ũi
∂xj

]
. (2.82)

The nonlinear term ũiuj is the filtered product of two non-filtered variables, which is not a usable result.
Similar to the Reynolds decomposition, it is possible to decompose a scalar quantity ϕ into a filtered
part ϕ̃ and an unresolved part ϕ′′. Following the Leonard decomposition [60], the nonlinear term can
be expressed as

ρũiuj = ρũiũj + ρτRij , (2.83)

where ρτRij is the residual-stress tensor or sub-grid stress tensor, which is analogous to the Reynolds
stress tensor and captures the influence of the sub-filter scales to filtered momentum transfer [93].
From the residual-stress tensor, one can define the residual kinetic energy as

kr ≡ τRii
2
, (2.84)

which is the energy contained in the sub-grid scales [86].
Eqs. 2.83 and 2.85 can be combined, leading to the following form of the filtered Navier-Stokes

momentum equation [93]:

ρ
∂ũi
∂t

+ ρ
∂ũiũj
∂xj

= ρfi +
∂

∂xj

[
p̃δij + µ

∂ũi
∂xj

− ρτRij

]
. (2.85)

In a similar manner, one can apply a filter to the total enthalpy balance (Eq. 2.26) to obtain [93]

∂H̃

∂t
+

∂

∂xi
(ũiCpT̃ ) =

∂

∂xi

[
α
∂

∂xi
CpT̃ − q̃i

]
, (2.86)

where−q̃i is the sub-grid heat flux that needs to be modeled using a SGSmodel. Modeling the sub-grid
stress tensor τRij and the sub-grid heat flux q̃i with a so-called sub-grid scale (SGS) model represents
a central topic in the LES approach.

Eddy-Viscosity and Diffusivity SGS model
The largest and most commonly used class of LES models for τRij are the Eddy-Viscosity Models, which
model the residual-stress tensor as [86]

−ρτRij = µt

(
∂ũi
∂xj

+
∂ũj
∂xi

)
− 1

3
ρτRkkδij , (2.87)

where µt is the eddy-viscosity. The term − 1
3ρτ

R
kkδij ensures that the residual kinetic energy (Eq. 2.84)

is retrieved when taking the sum of normal components −ρτRii .
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For the modeling of the sub-grid heat flux, one can take an analogous approach to the eddy thermal
diffusivity approximation that was introduced for RANS in Sec. 2.5.1. Similar to the approximation of
the turbulent heat flux, one can approximate the sub-grid heat flux as

−q̃i = αt
∂T

∂xj
, (2.88)

where αt is the eddy thermal diffusivity [120]. It is defined in terms of the eddy-viscosity νt = µ/ρ and
the turbulent Prandtl number Prt, according to

αt =
νt
Prt

. (2.89)

Sec. 3.5 dives deeper into the different possible approaches for modeling νt and discusses some
commonly used values for Prt.

Implicit Filtering
The spatial filtering approach that has been discussed, removes the small turbulent scales below cut-off
length ∆. Usually, the governing equations are not filtered using an explicit filter G as in Eq. 2.76 [8].
Instead, the grid is assumed to behave as an implicit filter that only resolves scales above the cut-off
length, which equals the grid spacing. The velocity field defined on the grid is then equivalent to the
filtered velocity ui that appears in Eq. 2.87.

In general, high-quality LES resolves at least 80% of the turbulent kinetic energy in isotropic turbu-
lence [127]. While it is important to choose a grid that has enough resolution, the optimal grid is difficult
to determine as the turbulence energy spectrum varies throughout the domain. As was mentioned in
Sec. 2.4.4, more turbulent energy is concentrated at higher length scales. Regions with large turbulent
scales can therefore have a larger grid spacing than regions where the small scales are dominant. Near
no-slip walls, turbulent structures become smaller. For accurate simulations, it is therefore necessary
to have high resolution near the walls, which limits the application of LES.

2.6. Parallel Programming on the GPU
We shift our focus to the implementation of high-performance, parallelized computing, now that the
relevant physics have been discussed. This is an important topic because the 3D turbulent flow simu-
lations that will be performed in this research require an enormous computational effort. Although the
application of LES allows for slightly less resolution in the center of the grid, there is still a need for high
resolution near the walls. The Lattice Boltzmann Method (LBM) tracks the collision and propagation of
particle distributions locally on each grid cell. This intrinsically makes LBM a promising candidate for
parallel implementation on High-Performance Computing (HPC) architectures, including the Graphical
Processing Unit (GPU) [103].

In the present work, the GPU NVIDIA implementation will be used, which is compatible with the
Compute Unified Device Architecture (CUDA) technology [85]. This technology offers a development
environment that enables communication between the CPU and a GPU, such that GPU-accelerated
applications can be created and deployed [20]. The CUDA framework was originally developed for
C-based languages, but it can also be accessed using the Numba library in Python.

Sec. 2.6.1 dives deeper into the concept of parallel programming and the CUDA framework. In Sec.
2.6.2, the working principles of the CUDA kernel are discussed and the link to the GPU hardware is
explained. Lastly, in Sec. 2.6.3, the different memories that are relevant to the GPU will be described.

2.6.1. Parallel Programming
The GPU can break a repetitive task down into much smaller components that can all be finished in
parallel due to its large number of cores. This enables GPU-accelerated LBM to reach hundred-fold
speed-ups, compared to traditional CPU implementations of LBM. In the CUDA framework, the stan-
dard workflow is to define variables and functions on the CPU, which are then transferred to the GPU
memory. The GPU then executes the computations, caching data locally for increased performance.
When the computations on the GPU are finished, data is then transferred back to the CPU. The transfer
of data from device to host and vice versa is a slow process and is therefore required to be minimized.
This process can be summarized as:
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1. Allocate GPU memory
2. Transfer input variables from CPU memory to GPU memory.
3. Run computations on the GPU
4. Transfer back the results to CPU memory.

Although the parallelization of computations greatly increases computational efficiency, there are some
difficulties associated with programming on a CUDA-enabled GPU. The most important ones are:

1. Low individual performance: Because there are so many small cores in a GPU, the individual
cores are not as powerful as CPU cores. An individual GPU core performs its tasks significantly
slower than an individual CPU core. The capabilities of a GPU are therefore only leveraged when
a high GPU utilization is achieved, meaning that many GPU cores can perform computations
simultaneously.

2. Limited Functionalities: The CUDA framework, especially in the Numba environment of Python,
offers much fewer functionalities on the GPU than what is common in CPU applications. Almost
all built-in functions, modules, and functionalities are not available in a GPU environment. This
includes print statements and a large amount of specified error messaging. This makes debug-
ging on a GPU much harder than it is on a CPU and it is therefore extremely important to write
robust code that can be tested in small chunks. The limited built-in functions and modules force
one to build all their functionalities from scratch. Only some basic basic data frameworks and
atomic operations are available.

3. Raise Conditions: Many cores read and write data in parallel and the order in which they execute
their tasks is randomly determined. It is therefore possible that some cores write to or access the
same data in the wrong order, resulting in so-called raise conditions. The program’s correctness
then relies on the order of execution.

2.6.2. CUDA Kernel and Hardware Perspective
In the CUDA framework, a kernel is a function that can be assigned to the GPU. It is executed a
K number of times by K different CUDA threads, which are single execution units that can run in
parallel [84]. A thread block is a programming abstraction that signifies a collection of threads and the
collection of all thread blocks forms the kernel grid. Threads, blocks and grids are essentially software
abstractions that are used to write kernels in the CUDA framework. The programmer must define
the amount of threads and blocks before the kernel is executed, choosing the right balance between
amounts of threads and blocks for optimal performance. This balance is based on memory constraints
and the maximum amount of threads in one block, which is 1024 in current GPUs. All threads in the grid
can be synchronized after a kernel has been executed. This is realized with a specfic statement (e.g.,
numba.cuda.synchronize in the Numba library) that must be reached by all threads before anyone can
proceed. It is also possible to synchronize threads during the execution of a kernel, but, in general,
only within one specific block.

In a hardware perspective, threads are grouped into so-called warps, which is a set of 32 threads
that execute the same instruction. Each warp is executed by one core. Because the GPU executes
threads in groups of 32, thread blocks should be initialized in a multiple of 32 threads. If this is not
done, the GPU will allocate the remaining threads in the warp anyhow, while they are not assigned to
execute any instruction through CUDA. This leads to reduced performance.

The GPU hardware contains several Streaming Multiprocessors or SMs, which are general purpose
processors that can execute amaximum amount of thread blocks in parallel [19]. Themaximum number
of blocks that can be executed simultaneously is determined by the amount of SMs and the resources
needed per block [44]. As soon as a thread block has completed execution on an SM, the next thread
block in the queue is assigned for execution. Because the SM only schedules a new block when all
threads in a block have finished execution, it is important to have an equally distributed computational
load across the threads in a block [84]. If one thread takes significantly longer to execute than other
threads in the same block, all threads in the block remain on the SM until the last thread is finished.
The collection of SMs comprises the whole GPU unit.
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Figure 2.4: Overview of the CUDA framework and GPU hardware. The CUDA framework abstracts the GPU framework in
threads, blocks, and a grid. The GPU Unit consists of Streaming Multiprocessors containing a set of cores that can execute

warps in a block. New blocks are scheduled, when cores become available in the SM.

2.6.3. Memory Hierarchy
There are several different memory spaces available for the GPU, all with different size, application
and performance [84, 18]. They are summarized below:

1. Global Memory: The main memory store of the GPU from/to which all threads and the CPU can
read and write. The storage capacity is large, but it is slow to read from and write to. The data is
stored for the entire lifetime of the simulation.

2. Constant Memory: A small memory store that can be read by all threads, but can only written to
by the CPU before launching a kernel. It can be very fast if all running threads access the exact
same address. It is also stored for the entire lifetime of the simulation. In the Numba library of
Python [82], global variables are automatically converted to arrays in the constant memory, which
makes the explicit allocation of constant memory unnecessary.

3. Shared Memory: Very fast and relatively small memory that is shared among the threads in a
block. It makes communication between threads in a block possible and exists only for the lifetime
of a block, meaning that it is deleted after kernel execution.

4. Registers: The smallest and fastest available memory on the GPU, which is used to store local
variables that are declared within a kernel. If the maximum available amount of registers is ex-
ceeded, the excess data is stored in the slower local memory. This is known as register spilling.
It exists for the lifetime of a thread.

5. Local Memory: Slow type of memory that is part of the main memory of the GPU (same location
as the global memory). It is used when threads run out of registers during the execution of a
kernel. It exists for the lifetime of a thread.



3
Numerical Method

This chapter describes the numerical techniques and implementations that will be applied in the LES-
LBM modeling of 3D turbulent heat transfer in conjunction with phase change. Sec. 3.1 discusses the
implementation of the highly stable Filter-Matrix Lattice Boltzmann method, both for the velocity and
thermal fields. A description of the applied phase change model is given in Sec. 3.3. An overview of the
relevant boundary conditions is given in Sec. 3.4. Sec. 3.5 delves into the WALE sub-grid-scale model
that will be applied to model the eddy viscosity and thermal diffusivity. Subsequently, two possible
approaches to implementing a locally refined grid are discussed in Sec. 3.6. The implementation of
existing turbulent data sets to initialize the turbulent simulations is discussed in Sec. 3.7. Lastly, the
applied approach in GPU parallelization is treated in Sec. 3.8.

3.1. Filter-Matrix Lattice Boltzmann Method
It was discussed in Sec. 2.2 that the Lattice Boltzmann method can be used to model the dynamics of a
flow on discrete grids. The collision operatorΩ dictates the evolution of the distribution function f during
the collision step and can be chosen in various ways. It was discussed that the simple BGK approach,
the lattice Bathnagar-Gross-Krook (LBGK) model, suffers from numerical instability, which happens
especially at low viscosity [15]. This is the result of non-physical terms that arise due to discretization
errors. An alternative approach, superior over the widely used LBGK, is the multi-relaxation time (MRT)
model, proposed by d’Humeriers [77]. This approach has gained increased attention over the past
decades [131]. However, it has been reported that the MRT model experiences difficulty in finding
the right relaxation rates to achieve the required accuracy and stability [68]. An alternative scheme
was proposed in 1993 by Eggels and Somers [98], the filter-matrix lattice Boltzmann method (FMLBM).
Although slightly less familiar in the LB community, this approach achieves high stability by filtering out
the non-physical terms that arise during the discretization of the Boltzmann equation.

Following [98], the lattice-Boltzmann equation is rewritten to a staggered formulation, in which po-
sition and time are shifted by half a grid spacing ci∆t/2 and time step ∆t/2, respectively:
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(
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2
, t+

∆t

2

)
= fi
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2
, t− ∆t

2

)
+Ωi(f) (3.1)

Subsequently, a Taylor expansion is applied around fi(x, t), leading to

fi
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ci · ∇fi(x, t)±

∆t

2
∂tfi(x, t) +O

(
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, (3.2)

which can also be written in terms of the collision operator by filling the above expression for fi into the
staggered LBE (Eq. 3.1),

fi
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x± ci∆t
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, t± ∆t
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)
= fi(x, t) +

∆t

2
Ω (fi) +O(∆t2). (3.3)

24
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One can express fi in terms of an equilibrium part feqi and a non-equilibrium part fneqi according to
Chapman-Enskog analysis [56]. The equilibrium part feqi is given by the discretized equilibrium distribu-
tion function in Eq. 2.19. The non-equilibrium part can be expressed in terms of physical quantities by
requiring that the Navier-Stokes equations are retrieved from Eq. 3.1 [129]. As a result, the distribution
function fi can be approximated as

fi(x, t) = ρωi

[
1 +

ci · u
c2s

+
1

2

(
(ci · u)2

c4s
− u · u

c2s

)
− ν

(
(ci ·∇) (ci · u)

c4s
− ∇ · u

c2s

)]
, i = 0, ..., N

(3.4)
where N is the amount of velocities in the adopted scheme and ωi are the corresponding weights [131,
129].

The expression for fi in Eq. 3.4 can be substituted in Eq. 3.2 and after recalling the definition of Ωi

in the LBE (Eq. 2.18), one can approximate Ωi as

Ωi(f) =
ρwi

c2s

(
(ci · ∇) (ci · u)− c2s∇ · u+ ci · g

)
, (3.5)

where g represents the specific body force. By combining Eqs. 3.3, 3.4 and 3.5, we obtain
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. (3.6)

This expression can be written as a matrix multiplication by introducing a reversible matrix Eki and a
solution vector α±, such that
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where Eki is defined to satisfy the reversibility condition ΩiEik = E−1
ki . With this condition, it is possible

to inversely express the solution vector α± as
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)
. (3.8)

The form of Eki and α± depends on the chosen velocity scheme.

3.1.1. D3Q19 Filter Matrix Method
It was mentioned in Sec. 2.2 that the most common choices for velocity sets in 3D flows are D3Q15,
D3Q19, and D3Q27 schemes. The D3Q19 velocity set is by far the most common scheme in LB
simulations as it provides a balance between reasonable computational cost and stability. It has been
applied in many 3D turbulent channel flow LES-LBM simulations with satisfying results [129, 78, 114]
and it is therefore also the chosen velocity scheme for the current work. The 19-speed filter matrix Eki

is defined as
Eki =

[
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and the corresponding solution vector is given by

α±
k =



ρ
ρux ±∆tFx/2
ρuy ±∆tFy/2
ρuz ±∆tFz/2

3ρu2x + ρ (−6v ±∆t) ∂xux + ρv∇ · u
3ρu2y + ρ (−6v ±∆t) ∂yuy + ρv∇ · u
3ρu2z + ρ (−6v ±∆t) ∂zuz + ρv∇ · u

3ρuyuz + ρ (−3v ± 0.5∆t) (∂yuz + ∂zuy)
3ρuxuz + ρ (−3v ± 0.5∆t) (∂xuz + ∂zux)
3ρuxuy + ρ (−3v ± 0.5∆t) (∂xuy + ∂yux)

−0.8, k = 10, . . . , 15
−0.95, k = 16, 17, 18



, (3.10)

for k = 0, 1, . . . , 18. The terms a±10−15 and a
±
16−18 are third and fourth-order terms that relate to the non-

physical contributions. These terms arise from discretization errors that were mentioned at the start of
the section. The filter-matrix LB method elegantly dampens these undesired contributions using factors
γ1 = −0.8 and γ2 = −0.95, which increases numerical stability of the simulation. These factors have
no specific physical meaning and are also sometimes taken to be zero [131].

3.2. Thermal Lattice Boltzmann Method
In general, there are three ways in which heat transfer can be included into the LB mechanism: the
hybrid method, the multi-speed (MS) method and the double distribution function (DDF) method. The
hybrid method decouples the computation of flow and temperature, with the latter being solved using tra-
ditional CFD methods such as finite-difference techniques. This approach compromises the simplicity
of the Lattice Boltzmann Method (LBM) [58]. The multi-speed method, as described in [4], introduces
additional particle velocities that represent temperature or energy. However, despite the increased
complexity from the expanded velocity set, the multi-speed approach suffers from numerical instability,
a limited temperature range, and a fixed Prandtl number [48]. The double distribution method does
not experience these drawbacks as thermal distributions g are tracked using an adapted version of
the classic lattice Boltzmann method. The thermodynamics can therefore be evaluated independently
while leveraging the simplicity of classic LBM.

3.2.1. Double Distribution Function
In the previous section, it has been pointed out that requiring the retrieval of the Navier-Stokes equations
from the LBE leads to an expression of fi in terms of physical flow variables (Eq. 3.6). A similar
approach can be applied to the thermal case. The thermal lattice Boltzmann method is associated
with a thermal distribution function gi(x, t), which represents the temperature contribution of velocity
population i in a specific point in space and at a specific time step [49]. The corresponding LBE is given
as

gi(x+ ci∆t, t+∆t)− gi(x, t) = ∆tΩi(g), (3.11)
and the equilibrium distribution is given by

geqi = ωiT

[
1 +

ci · u
c2s

+
(ci · u)2

2c4s
− u2

2c2s

]
. (3.12)

The macroscopic temperature is calculated as

T (x, t) =
∑
i=0

gi(x, t). (3.13)

The algorithm works precisely the same as in regular LBM; thermal distributions collide at local lattice
sites, after which they stream to neighboring sites. Again, there are several options for the choice of
collision operator, such as the BGK, MRT, or filter-matrix approach. Thermal distributions gi are influ-
enced by the flow distribution functions fi since the collision operator Ω(g) contains velocity terms. This
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accounts for the effect of thermal convection. The flow distribution function fi can also be influenced
by gi through the force term that appears in Ω(f). A thermal effect that can be a source of momentum
is, for example, buoyancy. Because the present work aims to describe a driven turbulent channel flow,
buoyancy effects are expected to have minimal influence over the large inertial forces that are already
present in the flow. Buoyancy is therefore chosen to be disregarded.

3.2.2. Enthalpy Distribution
Because the goal of this research is to describe the thermal behavior of fluids undergoing a phase
change, it is necessary to determine the temperature of both the fluid and the solid. Because the
energy of two phases is distinguished by a difference in latent heat, it becomes more convenient to
track total enthalpy rather than temperature alone. The methodology of [49] will be followed to treat the
latent-heat source term. This approach avoids iteration steps or solving a group of linear equations for
the liquid fraction calculation, which yields higher computational efficiency. We modify the temperature
distribution functions in such a way that they represent total enthalpy H, which is defined by

H = h+ flL (3.14)

with sensible enthalpy h, temperature T , liquid fraction fl, and latent heat L. Correspondingly, the
equilibrium distribution function geqi is modified to

geqi =

{
Lfl + ωih i = 0

ωih
[
1 + ci·u

c2s

]
i ̸= 0

, (3.15)

where higher order terms O(u2) have been dropped for simplicity. Following [131], one can define the
distribution function gi in the incompressible limit as
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)
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− α ci∇h
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]
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. (3.16)

It can be seen that the latent term Lfl has been added to the zero-velocity component g0. To deal
with this term during the filter-matrix collision step, it will be subtracted from g0 before the start of the
collision. After the filter-matrix operation has been applied, the latent term will again be added to g0.
This approach has also successfully been applied in the works of [10, 119]. The total enthalpy H can
be retrieved from the distribution function gi using

H(x, t) =
∑
i

gi(x, t) (3.17)

Using a similar rationale as in Sec. 3.1, one can introduce the same reversible matrix ωiEik = Eki

and a new thermal solution vector β±, such that the enthalpy distribution function gi can be described
as
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and the solution vector β± as
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Ekigi
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2
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2

)
. (3.19)

For scalar quantities that are governed by an advection-diffusion equation, such as temperature, it can
be sufficient to use a velocity scheme with fewer velocities than in an LBM that describes momentum
transfer [56]. Therefore, the D3Q7 scheme will be the primary choice in this work. This scheme has
proven to give satisfactory results in earlier turbulence studies with thermal LBM [120, 90, 114]. The
D3Q7 filter-matrix LBM has yet only been applied in the turbulent channel DDF DNS-FMLBM by [119],
who defined the corresponding filter matrix as

E7
ki =

[
1, cix, ciy, ciz, 4c

2
ix − 1, 4c2iy − 1, 4c2iz − 1

]⊤
, (3.20)
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and the thermal solution vector as

β±
k =


h

hu+ −8α±∆t
8 ∂xh

hv + −8α±∆t
8 ∂yh

hw + −8α±∆t
8 ∂zh

0, k = 4, ..., 7

 , (3.21)

where the non-physical higher-order terms have been set to zero. A D3Q19 thermal scheme would be
very similar to the D3Q7 scheme. First of all, the filter matrix Eki is replaced with the D3Q19 version
in Eq. 3.9. Second, the solution vector in Eq. 3.22 would be extended with an additional set of higher
order terms, leading to

β±
k =


h

hu+ −8α±∆t
8 ∂xh

hv + −8α±∆t
8 ∂yh

hw + −8α±∆t
8 ∂zh

0, k = 4, ..., 19

 . (3.22)

3.3. Solid-Liquid Interface
In the previous section it has been discussed how the FMLBM can be applied to a phase change
situation, where the total enthalpy is tracked rather than temperature. The latent term Lfl occurred in
the zero-velocity component g0 and determines the phase of lattice node. When a solid layer is forming,
it is necessary to impose a no-slip condition on the fluid that flows into the solid-liquid interface. This
condition will be imposed using the immersed boundary method, which is a convenient technique to
integrate phase interface treatment with the collision step. This simplifies the process by not requiring
explicit tracking of the moving boundary.

3.3.1. Immersed Boundary Method
The immersed boundary method was originally proposed by Noble and Torczynski [81], and has later
been applied in many LBM applications [99, 49, 113]. In the LBM framework, the momentum-LBE is
modified to resolve fluid-solid interaction [49] and is given by
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whereΩs is a modified collision operator andB is a weighing function that depends on the liquid fraction
fl and a parameter ζ,

B =
(1− fl) ζ

ζ
. (3.24)

The parameter ζ depends on the relaxation time τf , which occurs in the BGK approximation (Sec.
2.2.3), according to ζ = τf − 0.5. The relaxation time τf is related to the viscosity ν as [49]

ν = c2s(τf − 0.5)∆t, (3.25)

leading to the definition

ζ =
ν

c2s∆t
. (3.26)

The modified collision operator Ωs that appears in Eq. 3.23, imposes a zero-velocity bounce-back
on nodes that have fl = 0 (i.e., B = 1). To this end, it is defined as
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)
+ feqi (ρ,us)− feqj (ρ,u), (3.27)

where velocity component j corresponds to the opposite direction of velocity component i.
The global algorithm to describe phase change now becomes:

1. Calculate H with Eq. 3.17 and update fl according to Eq. 2.27.
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2. Perform normal collision and calculate Ωi, using

Ωi(f) = f∗i
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)
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where f∗ is the post-collision distribution.
3. Calculate Ωs

i using Eq. 3.27.
4. Calculate the corrected post-collision distribution fsi according to
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5. Perform a streaming step with the corrected post-collision distributions fsi .

3.4. Boundary Conditions
The situation that is being modeled in this research is the flow between infinite parallel plates. To
achieve accurate results, the boundaries of the computational domain must be described by suitable
boundary conditions (BCs) for both the momentum and thermal distributions. This section dives into
the different types of boundary conditions that will be applied at the channel walls (parallel plates) and
the stream- and span-wise directions. Sec. 3.4.1 describes the half-way bounce-back method and the
anti-bounce-back method which will be applied to model a no-slip condition and fixed temperature at
the wall, respectively. Subsequently, the application of periodic boundary conditions to model infinite
parallel plates in the stream- and span-wise directions will be discussed in Sec. 3.4.2. An overview
of the computational domain and the different boundary conditions that will be adopted is given in Fig.
3.1.

Figure 3.1: Overview of boundary conditions in the domain. Boundary conditions in blue correspond to the momentum
distribution functions f , while boundary conditions in red correspond to thermal distribution functions g. Boundary conditions on

one side of the channel are the same as boundary conditions on the opposite side of the channel. The x-direction is the
stream-wise direction and the z-direction is the span-wise direction.

3.4.1. Solid Walls
At the solid walls, no-slip conditions will be imposed on the momentum distribution functions f and a
fixed temperature should be imposed on the thermal distribution functions g.

The bounce-back method is widely adopted in the LBM framework that imposes a no-slip condition
by inverting the directions of populations that flow into a wall. The half-way bounce-back method is a
sub-category that assumes it takes one time step to invert the directions at the wall. The other option
is a full-way bounce back which assumes two time steps for this process. However, the latter method
degrades the time accuracy of the LB solution in transient problems [56] and the half-way bounce-
back method is therefore the preferred choice in the current work. The corresponding definition of the
post-streaming distribution fi

(
xb, t+

∆t
2

)
at a boundary is given by [56]
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where velocity component j corresponds to the opposite direction of velocity component i. Note that
the boundary node xb is located within the flow domain at a distance 0.5[ls] from the wall.

The anti-bounce-back scheme is similar to the half-way bounce-back scheme and can be used to
impose a wall temperature on the boundary nodes. Because the boundary nodes are located a distance
0.5[ls] from the wall, they cannot be fixed at the wall temperature. Rather, they must ”feel” the presence
of the wall, which can be accomplished using the definition of the anti-bounce-back method
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+ 2wihw, (3.31)

where hw is the sensible enthalpy at the wall and wi are the weights of the velocity scheme [56]. The
sensible enthalpy is used rather than the total enthalpy because the latent term is enclosed only in
the zero-velocity population. This implies that there is no streaming of the latent term. The sensible
enthalpy is defined in terms of the wall temperature according to Eq. 2.29.

3.4.2. Periodicity
The stream- and span-wise directions are assumed to be infinitely long by the use of periodic boundary
conditions for f and g. These conditions consider the flow to be periodic in the applied directions, such
that the fluid leaving the domain on one side re-enters the domain on the other side. Flow profiles
of turbulent flows are not periodic in reality and this assumption may lead to non-physical behavior.
However, if the domain is taken large enough for the largest turbulent structures to be well captured,
realistic turbulent statistics can be obtained. In the LB framework, periodic boundary conditions in a
channel of length L along the periodic axis can be applied using
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where ∆x = ci∆t is the grid spacing.

3.5. Sub-Grid Scale Model
The turbulent behavior will be simulated using a large eddy simulation (LES). As was explained in
Ch. 2.5.2, this implies that the turbulent structures are only resolved up to the filter width ∆ and the
unresolved eddies are modeled using a sub-grid-scale (SGS) model. It has also been explained that
Eddy-Viscosity Models are the largest and most widely used class of LES models. They introduce a
modeled SGS eddy-viscosity νt = µt/ρ for which many different approaches have been proposed over
the past decades.

3.5.1. Smagorinsky Model
The oldest and most widely used approach in determining νt is the model originally proposed by
Smagorinksy [96]. It is a popular choice for LES due to its simplicity and ease of use. In the Smagorin-
sky model, the turbulent viscosity is given by [72]

νt = C2
S∆

2|S̃ij |, (3.34)
where CS is the flow-specific Smagorinsky constant, ∆ is the cut-off length that distinguishes between
large scales and unresolved small scales, and |S̃| is expressed in terms of the resolved strain-rate
tensor S̃ij through

|S̃| =
√
2S̃ijS̃ij , (3.35)

with
S̃ij =

1

2

(
∂ũj
∂xi

+
∂ũi
∂xj

)
. (3.36)
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Although the Smagorinsky model is popular due to its simple implementation, a major downside is
its overly dissipative nature near walls [112]. Close to the walls, turbulent structures become smaller
and the flow becomes effectively laminar. However, the resolved strain-rate S̃ij does not go to zero
here, which leads to an overestimation of νt and, thus, of energy dissipation. Another problem in
the Smagorinksy model is the flow type dependence of the optimal value for CS , which has values
generally ranging from 0.05 to 0.16 [116]. A third shortcoming is that the (dynamic) Smagorinsky model
bases its calculation of the eddy viscosity only on the resolved strain-rates. However, turbulent kinetic
energy is concentrated around zones of both strain and vorticity [79]. The latter is not accounted for in
Smagorinsky-like models.

3.5.2. Improvements to the Smagorinsky Model
An attempt to overcome the over-estimation of νt near walls has been introduced in the form of damping
functions. These are functions of the wall distance that are multiplied with the Smagorinsky constant
and go to zero at the wall. A popular example is the Van Driest damping function. However, the use of
wall functions is not particularly robust in non-uniform geometries as they have a global dependence
on the dimensionless wall distance [116]. In the present research this is especially unpractical, since
there is a dynamic solid-liquid interface.

Germano et al. [37] and Lilly [64] proposed a way to calculate the Smagorinsky constant dynami-
cally, aiming to solve the flow-dependency of the model constant. In such amodel, the model coefficient
is computed dynamically and changes both in space and time. To this end, two different filter levels
are introduced to evaluate the sub-grid stresses [37]. However, the model is relatively complicated
and the permanently changing LES model may lead to instabilities, as was mentioned in [116]. One
source of instabilities is the possibility of obtaining negative values for the eddy viscosity in this pro-
cedure. The common implementation of the dynamic procedure involves ad-hoc clipping of the eddy
viscosity, which is an additional procedure that ensures a minimum eddy viscosity of zero. The dynamic
Smagorinsky model is not applied in the current work due to its relatively cumbersome implementation
and the availability of techniques that are more straightforward with superior stability, while remaining
accurate.

A choice of sub-grid scale model that does not involve additional filtering or clipping procedures and
where the calculated eddy viscosity naturally goes to zero near walls, is the Vreman model [111]. This
model is expressed in terms of the Smagorinsky constant and a combination of first-order derivatives,
making it relatively easy to implement. It has successfully been applied in several recent applications
such as the LES-FMLBM by Zhuo and Zhong [129] in 2016 and the DDF-LB by Ren et al. [90] who
combined it with a dynamic procedure to determine the model constant.

Nicoud and Ducros [79] proposed a comparable SGS model, the wall-adapting local eddy viscosity
(WALE) model. This model was developed for LES in complex geometries and does not involve explicit
filtering or stabilizing procedures, similar to the Vreman model. In addition, the WALE model accounts
for both the strain-rate and vorticity as sources of turbulence. The eddy viscosity also naturally goes to
zero near the walls, without the need for any ad-hoc damping functions. Liu et al. [67] and Zhang et
al. [125] both investigated the performance of WALE in comparison with the Vreman model in Reτ =
180 turbulent channel flow and both found a similar performance of the two models in terms of the
flow statistics with maximum deviations of 1%[67]. However, the eddy viscosity of the WALE model
reproduces proper scaling near the wall νt = O(y3), while Vreman produces νt = O(y) [125]. Due to its
simple implementation, high accuracy and accurate vanishing of eddy-viscosity near walls, the WALE
model has been chosen as the SGS model in the current work.

3.5.3. WALE Model
In the WALE model, a tensor Sd

ij is introduced, which is defined in terms of resolved velocity gradient
tensors g̃ij = ∂ũi/∂xj :

Sd
ij =

1

2

(
g̃2ij + g̃2ji

)
− 1

3
δij g̃

2
kk, (3.37)

where g̃2ij = g̃ikg̃kj [79]. Nicoud and Ducros showed that Eq. 3.37 can also be rewritten in terms of the
resolved strain-rate tensor S̃ij = 1

2 (g̃ij + g̃ij) and the resolved rotation-rate tensor Ω̃ij = 1
2 (g̃ij − g̃ji).

This argument clarifies that theWALEmodel treats both strain and vorticity as sources of eddy-viscosity.
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The WALE model expresses the eddy viscosity in terms of S̃ij and Sd
ij :

νt = (Cw∆)
2

(
Sd
ijS

d
ij

)3/2(
S̃ijS̃ij

)5/2
+
(
Sd
ijS

d
ij

)5/4 . (3.38)

The WALE model constant Cw is proportional to the Smagorinsky constant CS and takes reported
values ranging from 0.325 to 0.6, depending on grid spacing and the flow profile.[21, 79] The WALE-
DUGKS simulation of wall-bounded flow by [125] and the WALE-LBM of turbulent channel flow by [116]
both used a constant Cw = 0.50 with satisfactory results. This value was also originally proposed by
Nicoud and Ducros who observed the best results for isotropic turbulence modeling at Cw = 0.5. For
these reasons, it is decided also to use Cw = 0.5 in the current work.

The differentials will be obtained through the application of a central difference scheme on velocities
ũ, which is recommended for LES [112]. At the boundaries of the domain, a three-point scheme will
be used due to the absence of adjacent nodes at the wall; this will be a forward scheme for lower-y
boundaries and a backward scheme for upper-y boundaries. Discretization errors that are introduced
by the latter schemes should have no significance near the walls since the eddy viscosity vanishes
here.

3.5.4. SGS Eddy-Diffusivity
As was discussed in Sec. 2.5.2, the sub-grid-scale eddy-diffusivity ατ can be modeled by introducing
a turbulent Prandtl number that relates the turbulent kinematic viscosity ατ to the turbulent viscosity ντ
as

ατ =
ντ
Prτ

. (3.39)

For molecular Prandtl numbers close to unity, the practical values of Prτ range from 0.3 to 0.9.[107]
Zhuo et al. [130] used a value of 0.4 for the LBM-LES of natural circulation in a square cavity. A value of
0.5 was used in the LBM-LES of turbulent heat transfer by [66], but this value was mentioned to be too
low at the peaks of the root-mean-square temperature fluctuation, resulting in a slight overprediction. In
reality, Prτ is not spatially constant and there have been studies where it has been computed following
a dynamical procedure, such as in the turbulent channel flow LBM-LES of [106]. They used a constant
value Prτ = 0.9 as a reference and observed that the dynamical procedure affected the predicted
heat transfer only marginally, which led to the conclusion that a constant turbulent Prandtl number is
justified in further research and that Pr = 0.9 is an acceptable choice. The value Prτ = 0.9 has also
successfully been used in the wall-modeled LBM-LES of turbulent heat transfer by [57] and the LES-
LBM of a thermal impinging jet by [78]. The above arguments justify the choice Prτ = 0.9 in the current
work.

For larger molecular Prandtl numbers, one can resort to experimentally determined relations that
relate Prt to the molecular Prandtl number [47]. Sometimes the Reynolds number is also incorporated
in such relations.

3.5.5. LBM Implementation
As is the case in almost any LBM-LES application, the grid will act as an implicit filter, such that the
filter width ∆ is equal to the grid spacing ∆x, which is taken to be unity in LB units. Furthermore, the
use of an eddy-viscosity can be translated to the LBM framework by introducing an effective viscosity
νe that is to be used in the collision step. This effective viscosity can simply be determined as the sum
of the molecular viscosity ν and the eddy-viscosity ντ : [129]

νe = ν0 + νt. (3.40)

3.6. Local Grid Refinement
A suitable grid is extremely important for achieving accurate results with good computational efficiency.
In the current work, we are interested in 3D channel flows with no-slip boundary conditions and fixed
temperatures at the channel walls. As the turbulent length scales become smaller andmore an-isotropic
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near the wall, it is necessary to have a well-resolved grid for enough accuracy in this region. Towards
the center of the channel, however, this is not a requirement, so a coarser grid is preferred to increase
computational efficiency. To obtain a grid with the required characteristics, three different layers of
refinement will be constructed. As schematically shown in Fig. 3.2, there is a coarse layer in the
middle of the channel, which is enclosed by two fine layers near the walls. The coarse layer has
grid spacing ∆yc and the fine layers have grid spacing ∆yf . All cells in the grid are cubic, such that
∆xf/c = ∆yf/c = ∆zf/c.

Figure 3.2: Schematic overview of local grid refinement in the computational domain. Fine layers with grid spacing
∆xf = ∆yf = ∆zf are located near the walls; a coarse layer with ∆xc = ∆yc = ∆zc is located in the center of the channel.

3.6.1. Hierarchical Grid Refinement Techniques
A widely recognized category of local grid refinement techniques for the Lattice Boltzmann Method
adopts length and time scales in ratios of two between neighboring fine and coarse cells. These are
so-called hierarchical grid refinement techniques. Three sub-categories can be distinguished here:
cell-vertex methods, cell-centered methods, and combined methods [94]. The different grid structures
adopted in these methods are schematically shown in Fig. 3.3.

(a) Cell-vertex (b) Cell-centered (c) Combined

Figure 3.3: Interface layouts of fine-coarse grid transitions [94].

The cell-vertex approach has been implemented in many different LBM works such as [31, 65, 124,
26]. It uses a grid layout with all nodes at the cell corners, leading to overlapping fine and coarse cells
on the layer interface. This method requires scaling of the non-equilibrium part of the distribution func-
tion to avoid introducing an error to the local components of the stress tensor [92]. In the cell-centered
approach, all nodes reside at the center of their corresponding cells. Rohde et al. [92] developed a cell-
centered method that guarantees mass and momentum conservation without the need to re-scale the
non-equilibrium distribution. This becomes possible because nodes are arranged in a volumetric man-
ner where they can be considered as masses rather than densities. The last method is a combination of
both of the above methods. Fine nodes are located in the cell centers, while coarse nodes are located
in the cell corners. Distribution functions at interface nodes are obtained through decomposition into
equilibrium and non-equilibrium parts with second-order interpolation schemes [94]. The performance
of the three types of grid layouts has been tested by [94] and it was found that the cell-centered ap-
proach showed superior stability compared to the other two. Furthermore, the cell-centered algorithm
of Rohde et al. is relatively straightforward, as it uses no scaling of the non-equilibrium distribution and
no interpolation. Therefore, this algorithm will be considered for the remainder of this work.
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3.6.2. The Rohde algorithm
The working of the cell-centered local grid refinement algorithm that was developed by Rohde et al.
[92] will now be discussed. The idea is to define an interface layer between the coarse and fine grids,
on which we define both fine and coarse cells. Without communication between layers, errors would
be introduced at the end of a layer because there is no propagation source adjacent to the end of a
layer (except at domain boundaries, where boundary conditions are present). The algorithm solves this
issue by combining contributions of both layers at the interface, to end up with physical distributions
after each iteration.

The different steps of the algorithm will now be explained. They are also schematically shown in
Fig. 3.4. In the algorithm steps below, the coarse layer is denoted as C, the fine layer as F , fine cells
on the interface layer as IF , and coarse cells on the interface layer as IC . The interface layer is defined
to be a part of the coarse layer, such that

IC ⊂ C, (3.41)
IF ̸⊂ F. (3.42)

This means that coarse cells on the interface layer are considered to be part of the domain, while the
co-located fine cells are purely virtual. The algorithm is generalized for any refinement level r, which is
the ratio between coarse and fine cell lengths. The steps of the algorithm are as follows:

1. Collision step on {F,C}.

2. Homogeneous redistribution of particle densities from IC to IF . Particle distributions are copied
from coarse cells to the r3 co-located fine cells, according to

(fi(xp, t))f = (fi(x, t))c, p = 1, ..., r3 (3.43)

Only distributions that point into the fine layer are redistributed, because these are the only direc-
tions that propagate into the physical domain.

3. Propagation step on {F,C}.

4. Non-synchronous iterations. Repeat steps 4a and 4b (r − 1) times.

a Collision step on {F}.

b Propagation step on {F, IF }.

5. Homogeneous redistribution of particle densities from IF to IC . This is done by averaging
particle distributions of r3 fine cells and assigning this to the co-located coarse cell, according to

(fi(x, t))c =
r3∑
p=1

(fi(xp, t))f . (3.44)

Only distributions that point into the coarse layer are redistributed, because these are the only
directions that are non-physical due to the previous coarse propagation step (step 3).

Although this algorithm conserves both mass and momentum, a slight error is being introduced
during the non-synchronous iteration steps (step 4). After the collision step in Step 1, coarse cells
are ahead of fine cells by r − 1 fine time steps. In step 2, fine interface cells receive these advanced
distributions, which are then partly propagated onto the fine grid during step 3. In step 4, some of
the advanced distributions are falsely colliding as they now partly reside on the fine grid. Rohde et
al. observed that their technique introduced an error to the simulation that becomes larger for flows
perpendicular to the refinement interface. For a refinement factor r > 2, multiple layers of advanced
distributions propagate onto the fine grid, which leads to larger errors. However, such cases were not
investigated by Rohde et al.



3.6. Local Grid Refinement 35

Figure 3.4: Schematic overview of the local grid refinement algorithm that was developed by Rohde et al. [92]. On the
interface layer (grey) both fine and coarse cells are defined, denoted by squares (■) and circles (•), respectively. Particle

distributions after a propagation step are represented by arrows pointing toward the cell center, while particle distributions after
a collision step are represented by arrows pointing from the cell center. Virtual nodes are shown in orange, and domain nodes
are shown in black. Non-physical distributions that result from an inability to propagate at the end of a layer, are shown in red.
Physical distributions are shown in black, disregarding errors due to collisions of over-advanced distributions. The fine and

coarse layers respectively stretch downward and upward.

3.6.3. A novel algorithm
Motivated by the nonphysical behavior that results from overly collided distributions at the end of the
fine layer, a novel local grid refinement technique is presented that does not suffer from this issue.

To this end, we define an interface layer that stretches two coarse cell lengths instead of only one.
We denote the interface layer half closest to the fine layer as IF and the half closest to the coarse layer
as IC. Again, subscripts F and C denote the fine and coarse cells on the interface layer, respectively.
Now IF is defined to be part of the fine layer and IC is defined to be part of the coarse layer, such that

IFF ⊂ F, (3.45)
ICF ̸⊂ F, (3.46)
ICC ⊂ C, (3.47)
IFC ̸⊂ C, (3.48)
I = {IF, IC}. (3.49)

This means that fine cells on one half of the interface layer and coarse cells on the other half are
considered to be part of the domain, while the remaining fine and coarse cells are purely virtual. The
conceptual grid layout is shown in Fig. 3.5 To easily distinguish between the different cells in the
interface layer, each layer of fine cells in I is labeled with a label n from 1 to 2r. We count in the
direction from IF to IC . The algorithm is schematically shown in Fig. 3.6. The different steps are as
follows:

1. Collision step on all cells {F,C, I}.

2. Propagation step on {F,C, I}.

3. Non-synchronous iterations. Repeat steps 3a and 3b (r − 1) times.

a Collision step on all fine cells {F, ICF }.
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Figure 3.5: Schematic layout of the proposed layers for r = 2. C is the coarse layer, F is the fine layer, IC is part of the
interface layer that overlaps with the coarse layer, and IF is part of the interface layer that overlaps with the fine layer. Fine

cells in I (= {IF , IC}) are labeled with a label n from 1 to 2r.

b Propagation step on all fine cells {F, IF }.
4. Homogeneous redistribution of particle densities from IFF to IFC . This is done by averaging

particle distributions of r3 fine cells and assigning this to the co-located coarse cell, according to
Eq. 3.44. Only distributions that point into the fine layer are redistributed because these are the
only non-physical ones.

5. Homogeneous redistribution of particle densities from ICC to ICF . Particle distributions are
copied from coarse cells to the r3 co-located fine cells, according to Eq. 3.43. The directions that
are redistributed depend on the location of the fine cells. Assuming a similar labeling as in Fig.
3.5, the following redistribution rules for different fine cell labels n:

• n = 2r: redistribute directions pointing into the fine layer.
• n = 2r − 1: redistribute directions pointing into the fine layer and directions parallel to the
interface.

• r < n < 2r − 2: redistribute all directions. This rule occurs only when r > 2

These rules follow from the collision and propagation of non-physical directions in the interface
layer.

The advantage of this technique is that there are no collisions of over-advanced distributions which
was the case in the algorithm of Rohde et al. Its performance will be assessed in Ch. 4.

3.6.4. Coarse and Fine Lattice Units
As the fine and coarse layer have different discretization in space and time, it is necessary to adjust
the simulation variables accordingly. For each coarse time step, r fine time steps are executed. The
coarse grid spacing ∆xc and time step ∆tc are therefore related to the fine grid spacing ∆xf and ∆tf
as

∆xc = r∆xf , (3.50)
∆tc = r∆tf . (3.51)

We can now easily derive similar relations for both the viscosity and body force. To this end, we
recall the relationship between the non-dimensionalized and physical viscosity (Eq. 3.52) and body
force (Eq. 3.53):

νLB =
∆t

(∆x)2
· νphys (3.52)
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Figure 3.6: Schematic overview of the grid refinement algorithm proposed in the current work. On the interface layer (grey)
both fine and coarse cells are defined, denoted by squares (■) and circles (•), respectively. Particle distributions after a

propagation step are represented by arrows pointing toward the cell center, while particle distributions after a collision step are
represented by arrows pointing from the cell center. Virtual nodes are shown in orange, and domain nodes are shown in black.

Non-physical distributions that result from an inability to propagate at the end of a layer, are shown in red, while physical
distributions are shown in black. The fine and coarse layers respectively stretch downward and upward.

gLB =
(∆t)2

∆x
· gphys (3.53)

The above relations can be combined with Eqs. 3.50 and 3.51 to arrive at

νLB,c =
1

r
· νLB,f (3.54)

gLB,c = r · gLB,f . (3.55)

Eqs. 3.54 and 3.55 are ultimately used to scale the viscosity and body force in the coarse layer during
the collision step.

3.6.5. Convergence Measures
To accurately describe the performance of different numerical models that will be applied in this study,
it is important to define metrics that can indicate whether a time-dependent field converges towards a
steady state or aligns with an analytical solution.

A quantity that can be used to check convergence of a simulated field to a steady state is the L2
difference ϵdiff, L2. It quantifies the deviation between velocity fields at consecutive time steps, and has
been applied in various applications [13, 105]. It can be defined as

ϵdiff, L2 =

√√√√√√
∑
x
(u(x, t)− u(x, t−∆t))

2

∑
x
(u(x, t−∆t))

2 , (3.56)

where u(x, t) is the numerical field at the current time step and u(x, t − ∆t) is the numerical field at
the previous time step. When a solution converges to a steady state, ϵdiff, L2 becomes smaller with
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every time step until it approaches a value that is limited by the numerical error. According to [56], time
convergence with double precision arithmetic is typically claimed for values around ϵdiff, L2 = 10−7.

A similar quantity that can be used to assess convergence towards an analytical solution is the L2
error norm ϵerr, L2. It is also known as the root-mean-square error and can be defined as

ϵerr, L2 =

√√√√√√
∑
x
(u(x, t)− ua(x, t))

2

∑
x
(ua(x, t))

2 , (3.57)

where u(x, t) is a numerical field and ua(x, t) is the analytical field that is being approximated. A smaller
value of ϵerr,L2 implies a more accurate model.

3.7. Initialisation
To study the behavior of turbulent channel flow, it is necessary to construct an initial flow profile that not
only satisfies the relevant flow parameters but also exhibits the desired chaotic turbulent characteristics.
To this end, existing flow data of developed turbulence with known Reynolds numbers are used as an
initial condition for the simulations.

3.7.1. Initial Data
Initial data sets will be extracted from DNS profiles of Van Bemmelen [105], who constructed turbulent
velocity profiles with characteristics as listed in Tab. 3.1.

Table 3.1: Numerical settings for turbulent channel flow as constructed by [105].

Reτ Reoutτ Rem Nx x Ny x Nz u+ ∆y+ ν g
180 180.2 5590 256 x 128 x 128 6.667e-3 2.8 2.37e-3 6.94e-7
395 398.3 14040 460 x 230 x 230 5.714e-3 3.4 1.66e-3 2.84e-7

These profiles were constructed through direct numerical simulation of disturbed laminar flow fields that
developed until sustained turbulence was achieved. All flow cases showed good qualitative agreement
to benchmark results overall [105], except for slight deviations in RMS velocity and vorticity fluctuations
near the walls. These deviations were attributed to a lack of grid refinement compared to the used
benchmark studies.

3.7.2. Linear interpolation
To incorporate this data into the current project, it must be projected onto the new, locally refined grid
while preserving its original turbulent properties. This is done through linear interpolation of the original
velocity and density arrays such that the new set of arrays matches the new grid. The interpolated
flow data is then converted to distribution arrays by calculating solution vectors α− using Eq. 3.10 and
subsequently calculating distribution functions fi using Eq. 3.18. This procedure increases the cut-off
length of the sub-grid scale eddies in regions where the grid becomes coarser. The resolved eddies will
still have their original shape, leading to similar flow characteristics of scales above the cut-off length. It
is therefore expected that linear interpolation will be successful in constructing the initial turbulent field.

The calculation of α− is performed with the original body force and viscosity in Tab. 3.1, for both
fine and coarse layers. This is necessary because the calculation of α− implies a time step −∆t/2
that must be the same for the whole grid to be synchronous in time. Also, there is no propagation
associated with the initialization procedure so differences in grid spacing are irrelevant here.

3.8. Code Implementation and Testing
The simulation will be performed using a Graphical Processing Unit (GPU) to parallelize the execution
of calculations across the domain. The CUDA module from the Numba package in Python will facili-
tate communication with the GPU. Furthermore, a base code will be provided with basic CPU-based
propagation, collision, and boundary condition algorithms. This base code is capable of simulating a
simple laminar flow without grid refinement or heat transfer. This section will discuss concepts related
to the adopted code implementation and the testing approach.
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3.8.1. Grid Setup
Following the structure of the provided LBM base code, the current implementation will use a row of
ghost nodes on the edges of the domain, which are used to store inverted distributions in the half-way
bounce-back method. This yields an additional 2 cells in the wall-normal direction. In the streaming
step, distributions located on these ghost nodes flow into the fluid domain. Second, the stream- and
span-wise directions are extended such that one periodic unit of the flow domain is of the sizementioned
in 3.1. In the stream- and span-wise directions, this yields an additional 2r + 2 cells for the fine layer
and an additional 4 cells for the coarse layer. The need for these cells becomes clear in Fig. 3.7, which
shows a periodic flow unit in the stream-wise direction (stretching from first cell B to second cell A).
The 2 ghost nodes in the stream- and span-wise directions are not necessary, but they are included for
correspondence between different versions of the code.

The GPU kernel grid will have a 3D setup with the number of threads and blocks in each direction
equal to the number of cells in the grid, rounded up to the nearest multiple of 32. This allows us to
distinguish between thread blocks that fall within the fine layer and thread blocks that fall within the
coarse layer. Each thread corresponds to an x-coordinate, while each block corresponds to a y- and
z-coordinate.

Figure 3.7: Schematic overview of the grid layout in the stream-wise direction. Cells with the same color and letter correspond
to the same cells in different periodic units. The periodic fluid domain is 256 fine cells long, while the full grid has an additional
2r + 2 fine cells and 2 coarse cells. The grid layout in the span-wise direction has the same amount of additional cells at the

ends of the periodic unit.

3.8.2. GPU Implementation
Performance optimization of CUDA-based GPU implementations relies on four main strategies:

1. Maximize parallel execution to achieve maximum utilization
2. Optimize memory usage to achieve maximum memory throughput
3. Optimize instruction usage, which refers to
4. Minimize memory thrashing, which refers to allocating and deleting memory unnecessarily often.

One can resort to [84] for precise descriptions and recommendations based on these guidelines. These
will be pursued in the written code.

Concerning optimizing memory usage, all input variables that are relevant to the simulation will be
pre-transferred to the GPU. It is possible to insert CPU constants into GPU kernels, but this will cause
them to be transferred to the GPU repetitively at each time step. Additionally, it has been recommended
by [105, 119] to apply shared memory into the algorithms, so this will also be attempted.

Furthermore, concerning achieving maximum utilization, there will be a set of threads in the coarse
layer that is unused due to the local grid refinement algorithm. This is because the coarse layer only
has Nx,c = (Nx − 2Nx,f )/r cells in the stream-wise direction, leading to Nx − Nx,c unused threads.
To correct for this under-utilization, the propagation and collision algorithms will be adapted such that
the unused threads are assigned to a new row of cells in the stream-wise direction. Some blocks are
also unused, but this is less of an issue because no thread is executing anything, so they are quickly
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processed by the streaming multiprocessor. Unused threads in blocks that are partly utilized, however,
occupy space on the streaming multiprocessor until the other threads in the same block have finished
computing. This is undesired as was explained in Sec. 2.6.

3.8.3. Automated Testing
It has been explained in Sec. 2.6 that parallel programming on the GPU introduces additional sources
of error and, at the same time, makes debugging more difficult due to limited functionalities and error
messaging. In addition, the GPU that will be used in the current work is located on the external DelftBlue
supercomputer, provided by the TU Delft [24]. For efficient execution of the project, it is therefore
important to develop code that is robust and can be tested locally. Robust and testable code requires
a modular software design, which yields the use of independently working modules that can easily be
tested, integrated, or used in other simulations. Modules can be any independent piece of coding that
serves a clear purpose, for example, specific functions, classes, files, or folders. Modules should have
no or just a few dependencies upon other modules. [30]

Automated tests are implemented using Python’s ’unittest’ framework [104]. This framework en-
ables one to write a large number of classes and methods that use a set of dummy variables to test
the relevant algorithms. A large number of tests can be run simultaneously, after which one gets a
clear overview of passing and failing tests. This leads to the efficient development of sound code. If
possible, tests are made suitable for CPU execution, so they can be performed locally. To quickly ex-
ecute GPU-based tests, the Tesla T4 GPU of Google Colab [41] is used to avoid waiting times for the
DelftBlue GPUs.



4
Validation of Local Grid Refinement

In this research, steady-state freezing of turbulent channel flow is simulated using a Large Eddy Simula-
tion. As was mentioned in Sec. 2.5.2, LES needs refinement near the walls due to the local an-isotropic
turbulent behavior and small turbulent length scales. Because this is not the case in the center of the
channel, significant computational acceleration can be achieved by adopting a local coarse grid here.
This chapter will validate the two approaches of Local Grid Refinement (LGR) that were discussed in
Sec. 3.6.2 and 3.6.3. The first approach is a GPU-based version of the method developed by [92],
while the second approach is a novel one that aims to overcome some of the non-physical behavior
encountered in the first approach. Both are tested using a grid convergence study, after which the
best-performing option is selected for further use. The aim of this chapter is not to assess the code
acceleration achieved by the GPU; this becomes relevant in the turbulent simulations that will be dis-
cussed in Ch. 5.

4.1. Computational Setup
In this work, a D3Q19 scheme has been adopted in the Filter-Matrix Lattice Boltzmann framework.
A base code has been made available within the RPNM department of TU Delft that can simulate a
Poiseuille flow profile on the CPU using an FMLB-D3Q19 scheme. This base code has been con-
verted such that it can run on a Graphical Processing Unit. All simulations in the current research are
performed on an NVIDIA Tesla A1000 GPU, which is facilitated by the DelftBlue supercomputer of the
TU Delft [24]. The hardware specifications of the used GPU are listed in Tab. 4.1. The simulations
are written in Python and all communication with the GPU is realized using the CUDA back-end that is
included in the Numba library [83].

The flow case for validating the LGR models is a laminar channel flow between parallel plates on
which no-slip conditions are imposed. To this end, the stream- and span-wise directions have periodic
boundary conditions, while a half-way bounce-back scheme is adopted in the wall-normal direction. The
initial velocity of the simulations is set to zero by initializing the domain with a zero-velocity equilibrium
distribution (Eq. 2.19) on all nodes. At t = 0, a body force (fb, 0, 0) is imposed in the stream-wise
direction and the simulation runs until a steady-state developed profile is obtained. The domain is split
into two levels of refinement with a fine layer adjacent to each wall and a coarse layer in the center
of the channel. The fine layers both have Nyf

cells along the y-dimension, while the coarse layer has
Ny,c = Ny − 2Ny,f cells along the y-dimension. The ratio between coarse and fine cell spacing is
determined by the refinement factor r = ∆yf

∆yc
. The grid cells are cubic, such that the local cell spacing

is the same in all Cartesian directions. The setup is schematically shown in Fig. 4.1b. The fine layer
at low-y is referred to as the ”first” fine layer and the fine layer at high-y is referred to as the ”second”
fine layer.

To study the performance of the LGR algorithms, simulations have been performed at different grid
resolutions by varying the number of cells in the grid. The same physical situation is retrieved over
different grid resolutions by correspondingly scaling the input parameters. If Nx is increased by a
factor s, the dimensions Ny and Nz, viscosity ν, and body force fb are also scaled. The correct scaling
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Table 4.1: Specifications of the used GPU hardware [24, 85]

GPU Model NVIDIA Tesla V100S
Number of SM 4
Single precision Cores / SM 64
Threads / warp 32
Max warps / SM 64
Max threads / SM 2048
Max blocks / SM 32
Max 32-bit registers / SM 65536
Max registers / block 65536
Max registers / thread 255
Max threads / block 1024
Shared Memory / SM (kB) 64-96
Local Memory per Thread (kB) 512
Global Memory (GB) 32
Memory Bandwidth (GB/s) 1134
Peak Float32 FLOPS 15.7

(a) (b)

Figure 4.1: (a) The 3D laminar flow case with periodic boundary conditions in the stream- and span-wise directions and a
half-way bounce back scheme in the wall-normal direction. (b) The adopted grid uses fine cells near the walls and coarse cells

at the center of the channel.

follows from dimensional analysis and is given by

Ny,1 = sNy,0, (4.1)

Nz,1 = sNz,0, (4.2)

ν1 = sν0, (4.3)

fb,1 =
1

s
fb,0, (4.4)

where subscript 1 denotes the new value and subscript 0 denotes the initial value. The parameters
that correspond to the lowest applied grid resolution are summarized in the middle column of Tab. 4.2,
expressed in fine lattice units. The right column contains the scaling factors that must be applied to
retrieve a variable in coarse lattice units. The simulation was repeated for the following y-dimensions:

Ny = {32, 48, 72, 96, 120, 144, 168, 192} (4.5)

4.2. Algorithm Performance
The performance of the two LGR algorithms have been assessed using the L2 error norm that was
introduced in Sec. 3.6.5. This has been done for the grid configurations that correspond to the listed
values of Ny in Eq. 4.5. The simulation was ended when either one of these conditions were fulfilled:
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Table 4.2: Input parameters to the LGR simulations with the coarsest grid. The values are given in terms of fine and coarse
units. Refinement factors and numbers of cells have no unit, so their values are given in the rightmost column. Parameters of

simulations with finer grids follow from Eqs. 4.1-4.4. The refinement factor does not change over different resolutions.

Description Quantity Fine units Coarse units No unit
x-dimension of grid Nx 8 4 -
y-dimension of grid Ny 32 16 -
z-dimension of grid Nz 8 4 -
Refinement factor r - - 2
Number of fine layer cells along y Ny,f - - 8
Number of coarse layer cells along y Ny,c - - 8
Viscosity ν 1/9 2/9 -
Body force g 0.000075 0.00015 -

1. The L2 difference reached a value ϵdiff, L2 < 10−7;
2. The L2 difference stopped decreasing.

The choice for a threshold at 10−7 in the first condition was substantiated in Sec. 3.6.5. For the definition
of ϵdiff, L2, one can resort to Eq. 3.56.

Simulations have been performed for the novel algorithm at r = 2 and for the Rohde algorithm at
r = 2 and r = 4. Rohde et al. [92] have already proven the performance of their algorithm on a CPU in
the r = 2 case, but, to the writer’s knowledge, the r = 4 case has not yet been applied up to now. An
additional simulation has been performed without refinement, or equivalently, r = 1.

4.2.1. Time Convergence
The L2 differences have been plotted in Fig. 4.2 against the simulation time for the finest grid (i.e.,
Ny = 192). It can be seen that the novel algorithm does not converge to a steady state where ϵdiff, L2 <
10−7; around time step t = 5 · 103, the L2 difference stagnates at ϵdiff, L2 = 10−2. This is in contrast to
the results of the Rohde algorithm, which showed a logarithmic time convergence to a steady state for
both the r = 2 and the r = 4 case.

When zooming in on the velocity profiles of the different simulations in Fig. 4.3a, it can be observed
that all simulations follow the analytical solution very well, except for the novel algorithm which shows
an overshoot of 2.6%. When plotting velocity derivatives dux/dy in Fig. 4.3b, jumps are observed in
the profile of the novel algorithm around y = 48 and y = 144, which corresponds to the locations of the
fine-coarse layer interfaces. From these results, it can be concluded that information is not accurately
transferred between adjacent layers, which leads to a false estimation of the flow profile.

4.2.2. Grid Convergence
Next, L2 errors ϵL2, err have been calculated for the different simulations at the resolutions mentioned in
Eq. 4.5. The definition of ϵL2, err in Eq. 3.57 has been used and the analytical solution is given by the
Poiseuille flow expression in Eq. 2.7. In Fig. 4.4, the errors have been plotted against the reciprocal
of the domain size in the y-direction, measured in fine units.

From the plotted errors, it can be observed that the error ϵL2, err of the Rohde profiles (both r = 2
and r = 4) relates to 1/Ny as

log (ϵL2, err) = C + p · log
(

1

Ny

)
, (4.6)

whereC is a constant and p is the order of convergence. From the figure, it can be determined that p ≈ 2
for both refinements of the Rohde algorithm, which is also observed for the r = 1 simulation. The latter
error originates from the half-way bounce-back method that is applied at the solid walls [92]. Because
the order of convergence is the same for both Rohde algorithms, it can be concluded that the leading
term of the truncation error is not caused by the introduction of the local grid refinement technique [28].
The novel algorithm does not show grid convergence, however, meaning that the truncation error is
not dominant here. Instead, there is an error associated with the model that causes inaccuracies on all
levels of refinement.
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Figure 4.2: The L2 difference of the Ny = 192 grid plotted against simulation time in fine lattice units. Results are shown for
the Rohde algorithm at refinement factors r = 2 and r = 4, and for the novel algorithm at r = 2. Results from a benchmark

simulation without refinement (r = 1) are also shown.

4.2.3. Sources of Inaccuracy
When looking at the different steps in the novel algorithm, the most likely source of the observed in-
accuracies is the information transfer from coarse to fine cells (step 5 in Sec. 3.6.3). In this step, the
information of one coarse cell is equally distributed over multiple co-located fine cells, which is the only
step in the algorithm that yields a loss of information.

This hypothesis is substantiated by Qi et al. [87], who also applied a 3D hierarchical grid refinement
technique similar to the one proposed in the current work. They similarly applied an interface region
consisting of two coarse cells (i.e., two fine ghost cells and one coarse ghost cell). A major difference is
that they adopted a space-time interpolation scheme to project coarse cells onto the fine layer, thereby
suppressing information loss on the fine grid level. This approach was proven to be successful. It is
therefore interesting to apply a comparable type of grid interpolation to the algorithm presented in the
current work. However, because the Rohde algorithm gave satisfactory results and given the already
broad scope of the current research, it was not attempted to improve the novel algorithm.

Furthermore, although the Rohde algorithm is second-order convergent, its errors are larger for
increasing refinement as can be seen by the different offsets of the unrefined r = 1, Rohde r = 2, and
Rohde r = 4 lines in Fig. 4.4. For the refined simulations, an error is introduced by the non-physical
over-collisions that appear in the fine layer during the non-synchronous step in the algorithm. The
mechanism of over-collisions has been explained in Sec. 3.6.2. There are more over-collisions for the
r = 4 case due to a larger number of asynchronous steps, which causes a greater error. This error is
complemented by an increased truncation error that results from the larger size of coarse cells.

4.3. Conclusion
It has been shown that the Rohde algorithm performed superior to the novel grid refinement technique
proposed in the current work. This conclusion is based on both time and grid convergence studies,
which showed that the novel algorithm introduces inaccuracies near the fine-coarse layer interface that
results in a laminar flow solution with a grid-independent leading error. On the other hand, the Rohde
algorithm proved to be second-order accurate for both the r = 2 and r = 4 algorithms with laminar
flow parallel to the layer interface. The latter algorithm is applied in the remainder of this study and its
performance is further investigated for turbulent channel flows in the next chapter.
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Figure 4.3: (a) Velocity profiles ux and (b) derivatives dux/dy for the different algorithms, compared to the analytical Poiseuille
profile. The simulation results represent intersections at x = Nx/2 and z = Nz/2.
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Figure 4.4: L2 error norm against the inverse y-dimension of the grid, measured in fine cells. Results are given for the Rohde
algorithm at r = 2 and r = 4, the novel algorithm at r = 1, and a non-refined case at r = 1. The novel algorithm shows no grid

convergence, while the latter algorithms show second-order grid convergence.



5
Turbulent Flow Validation and Results

The goal of this work is to investigate solidification of turbulent salt flow through a cooled MSFR channel.
Because heat transfer in a turbulent flow is not only influenced by diffusion, but also by convection, it is
important to get an accurate description of the flow field. This chapter assesses the different methodolo-
gies that have been applied in simulating turbulent channel flow. In particular, the local grid refinement
technique by Rohde et al. [92], which was found to be accurate in the laminar regime in Ch. 4, has been
applied to a DNS- and an LES-FMLBM simulation at different Reynolds numbers. To assess the accu-
racy of these simulations, existing turbulent statistics of previously performed simulations have been
compared with current results. Studies that have been selected are discussed in Sec. 5.2. Results of
simulations without the use of a sub-grid scale model (i.e., DNS) are discussed in Sec. 5.3, and results
of simulations where sub-grid scales were modeled using the WALE model (i.e., LES) are discussed in
Sec. 5.4. The obtained computational speed-ups that resulted from the present GPU-implementation,
are presented in Sec. 5.5.

5.1. Computational Setup
In this thesis, turbulent flow simulations have been performed at Reτ = {180, 395} and at refinement
levels r = 1, 2, 4 using the Rohde algorithm with a fine-coarse layer interface at y+ = 40. This is similar
to the location of the interface in Rohde et al. [92], who also investigated the performance of the r = 2
grid. To the author’s knowledge, the r = 4 grid with a Rohde algorithm has not been investigated yet.
Half-way bounce-back boundary conditions are used in the wall-normal direction and periodic boundary
conditions are used in the stream- and span-wise directions. A schematic overview of the simulated
situation is given in Fig. 5.1. Simulations have been performed both with and without the WALE SGS
model.

The input parameters to the Reτ = 180 and Reτ = 395 simulations with refinement r = 2 have been
specified in Tab. 5.1 and 5.2, respectively. Simulation parameters for the r = 1 and r = 4 simulations
can be deduced following the description in Sec. 3.6.4. The initial turbulent velocity and density fields
have been provided by [105]. The corresponding initialization procedure has been described in Sec.
3.7. Linear interpolation of initial fields has only been applied for simulations with refinement r > 1.
Due to the use of initial data, the present simulation needed effectively no start-up time to reach a
statistically steady state.

For the Reτ = 180 simulation, snapshots of the flow have been taken at 80 evenly spaced time
intervals of size ∆Tsave = 6400 in fine lattice units. This interval corresponds to a distance of 2.5
channels traveled at the bulk velocity. The first snapshot was immediately taken at t = 6400 as it
was observed that no settling of the flow was necessary to achieve a statistically steady state on the
interpolated grids. This led to a total simulation time ofNt,max = 512000 in fine lattice units. Similarly, the
simulation time for the Reτ = 395 simulation was Nt,max = 960000, and the same amount of snapshots
have been using ∆Tsave = 12800.

With the current GPU implementation, this corresponds to a total simulation time of less than 2
hours for the Reτ = 180 simulation with r = 2. This is a tremendous speed-up compared to the
same simulation by Rohde et al. in 2004 [92], which needed two weeks of simulation time using eight
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Figure 5.1: The simulated turbulent channel flow situation. HBB boundary conditions are used at the walls and periodic
boundary conditions are used in the stream- and span-wise directions.

Table 5.1: Input parameters to the turbulent channel flow simulation with Reτ = 180 and refinement factor r = 2. Quantities
are given in fine and coarse units.

Description Quantity Fine units Coarse units
Size of the domain (ls3) Nx ×Ny ×Nz 256× 128× 128 128× 64× 64
Size of the fine grid, bottom channel (ls3) Nx,f ×Ny,f ×Nz,f 256× 14× 128 -
Size of the fine grid, top channel (ls3) Nx,f ×Ny,f ×Nz,f 256× 14× 128 -
Size of the coarse grid (ls3) Nx,c ×Ny,c ×Nz,c - 128× 50× 64
Grid spacing (ls) ∆y+ 2.81 5.62
Viscosity (ls2 · lt−1) ν 2.37 ·10−3 1.185 ·10−3

Body force (ls2 · lt−1) g 6.94 · 10−7 1.388 · 10−6

Input density (ls−3) ρ0 1.0 1.0
Wall shear velocity (ls · lt−1) uτ 6.67 ·10−3 6.67 ·10−3

Number of time steps (lt) Nt,max 256 000 512 000

CPUs. Sec. 5.5 provides a comparison between the computational efficiencies achieved in the different
simulations.

5.2. Benchmark Studies
To evaluate the accuracy of the performed simulations, a set of previously published studies, similar to
those carried out in this research, was selected. In order of publication date, the studies of interest are
summarized below. Four DNS studies are summarized first, after which one LES study is summarized.

DNS Studies
1. Kim et al. (1986) – Reτ = 180 [55]:

The first detailed DNS of turbulent channel flow at Reτ = 180 has been performed by Kim, Moin,
and Moser (KMM) in 1986 [55] and is still used as a reliable benchmark nowadays. They applied
a spectral method for modeling the dynamics of the flow and used a function to determine the y+
coordinate of the j’th grid cell from the lower wall:

y+j ≡ zuτ/ν = 180(1− cos((j − 1)π/(Ny − 1))),

were N = 129 is the number of cells in the wall-normal direction. This led to a very fine spacing
∆y+ = 0.05 near the walls and a coarser spacing ∆y+ = 4.4 at the center of the channel.

2. Amati et al. (1999) – Reτ = 180 [6]:
Amati, Succi, and Piva (ASP) performed a DNS simulation of turbulent channel flow with Reτ =
180 in 1999, using the same grid and input parameters as have been used in the Reτ = 180
simulation of the current work. It is convenient to compare results with an identical simulation for
proper benchmarking. ASP used an LBGK framework with a constant grid spacing ∆y+ = 2.8.
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Table 5.2: Input parameters to the turbulent channel flow simulation with Reτ = 395 and refinement factor r = 2. Quantities
are given in fine and coarse units.

Description Quantity Fine units Coarse units
Size of the domain (ls3) Nx ×Ny ×Nz 460× 230× 230 230× 115× 115
Size of the fine grid, bottom channel (ls3) Nx,f ×Ny,f ×Nz,f 460× 12× 230 -
Size of the fine grid, top channel (ls3) Nx,f ×Ny,f ×Nz,f 460× 12× 230 -
Size of the coarse grid (ls3) Nx,c ×Ny,c ×Nz,c - 230× 103× 115
Grid spacing (ls) ∆y+ 3.43 6.87
Viscosity (ls2 · lt−1) ν 1.664 ·10−3 8.32 ·10−4

Body force (ls2 · lt−1) g 2.839 · 10−7 5.678 · 10−7

Input density (ls−3) ρ0 1.0 1.0
Wall shear velocity (ls · lt−1) uτ 5.71 ·10−3 5.71 ·10−3

Number of time steps (lt) Nt,max 460 000 920 000

Table 5.3: Specifications of previously conducted turbulent channel flow simulations that are comparable to simulations in the
current work.

Author Abbrev. Reτ (Nx, Ny, Nz) ∆+
y,min ∆+y,max Dynamics SGS model

Kim et al. KMM 180 (192, 129, 160) 0.05 4.4 Spectral -
Amati et al. ASP 180 (256, 128, 128) 2.8 2.8 BGK-LBM -
Rohde et al. RKD 180 (256, 128, 128) 2.8 5.6 FMLBM -
Moser et al. MKM 395 (256, 193, 192) 0.02 6.5 Spectral -
Zhuo et al. ZZ 180 (270, 135, 90) 4 4 FMLBM Vreman

ZZ 180 (540, 270, 180) 2 2 FMLBM Vreman

3. Moser et al. (1999) – Reτ = 395 [76]:
Moser, Kim, and Mansour (MKM) performed DNS simulations at Reynolds numbers Reτ =
{180, 395, 590} using the same approach as KMM. The Reτ = 395 case will be used for bench-
marking in the current work. The corresponding grid spacing is calculated in the same way as
KMM, which leads to a spacing∆y+ = 0.02 at the wall and∆y+ = 7.7 at the center of the channel.

4. Rohde et al. (2006) – Reτ = 180 [92]:
Rohde, Kandhai, Derksen, and van den Akker (RKD) performed the same DNS simulation as
ASP but applied a filter-matrix LB scheme with an r = 2 grid refinement following the Rohde
algorithm, which is also applied in the current work. The fine-coarse interface was located at
y+ = 40, which corresponds to Ny,f = 14 fine cells measured from the wall. This led to a grid
spacing ∆y+ = 2.8 in the fine layer and ∆y+ = 5.6 in the coarse layer.

LES Study
1. Zhuo and Zhong (2016) – Reτ = 180 [129]:

Zhuo and Zhong performed an LES-FMLBM simulation of turbulent channel flow with Reτ = 180
and constant grid spacing. They adopted the Vreman SGS model, which was discussed in Sec.
3.5.2. Simulations were performed for two types of grids; a coarse grid with homogeneous∆y+ =
4 and a fine grid with homogeneous ∆y+ = 2.

The specifics of the above studies are summarized in Tab. 5.3.

5.3. Direct Numerical Simulation
The obtained turbulent statistics of the performed DNS simulations are now compared with the DNS
simulations discussed in the previous section. The statistics of interest are the mean stream-wise
velocity, the RMS velocity fluctuation, and the Reynolds stress.

Mean Velocity
Fig. 5.2a shows the mean stream-wise velocity profile of the Reτ = 180 simulation with refinements
r = 2 and r = 4 and the Reτ = 395 simulation with refinement r = 2. The former is compared with data
of KMM and ASP and the latter is compared with data of MKM, both with analytical formulas that give
expected profiles in the viscous sub-layer and log layer. As was also observed by RKD for Reτ = 180,
the r = 2 velocity profiles approximate the results for a uniform, fine grid very closely. For both Reynolds
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Figure 5.2: Mean stream-wise velocity u+ against the wall distance y+ for turbulent channel flow at (a) Reτ = 180, and (b)
Reτ = 395. The grid has cubic cells of size ∆+ = 2.8 in the range of y+ = 0–40 and ∆+ = 5.6 elsewhere. The results of
Amati et al. [6] and Kim et al. [55] are also shown for comparison. Theoretical profiles are included for both the viscous

sublayer and the log-layer.

numbers, there is a slight underestimation compared to KMM and MKM, which was also observed by
ASP at Reτ = 180 and attributed to a lack of grid resolution ∆y+ near the wall. In contrast, the r = 4
velocity profile shows a significant deviation of up to 12% from the benchmark, which develops around
the refinement interface (y+ = 40).

The reason for the observed inaccuracy at r = 4 is two-fold. First of all, the lower resolution in the
coarse layer leads to decreased accuracy because less turbulent structures can be resolved. The local
Kolmogorov length scale in the logarithmic layer follows ηuτ/ν = (κy+) [86], where κ ≈ 0.4 denotes the
Von Karman constant. This yields a value ηuτ/ν ≈ 2 at the refinement interface (y+ = 40), while the
coarse grid spacing with r = 4 is∆y+ = 10.2. Generally, a grid cell can be roughly twice as large as the
Kolmogorov length scale [92], so the large grid cells are too large for suitable resolution. To see if the
inaccuracy could be resolved by modeling the sub-grid scales, an LES with r = 4 was performed using
a similar procedure as will be discussed in the next section. No improvement was observed compared
to the r = 4 DNS, so, likely, a lack of grid resolution is not the only cause of inaccuracy.

The second reason for the inaccuracy at r = 4 lies in the non-zero y-velocity component inherent in
turbulent flows, directed normally to the fine-coarse layer interface. This conclusion is further supported
by RKD’s experiments, where laminar flow studies with various orientations revealed that a velocity
normal to the grid transition interface introduced a staggered solution. As mentioned in Sec. 3.6.2, the
Rohde algorithm introduces an error due to additional non-physical collisions in the non-synchronous
iteration step. Nonetheless, no significant error is observed for the r = 2 mean stream-wise velocity.
This discrepancy arises because there is only one non-synchronous iteration step for r = 2, while there
are three non-synchronous iteration steps for r = 4. As a result, the non-physical collisions for r = 2
occur in only one row of cells adjacent to the interface, as opposed to three rows of cells for the r = 4
case.

Due to the substantial deviations observed in the r = 4 velocity profiles, only refinement factors up
to r = 2 will be considered for the remainder of this study.

RMS Velocity Fluctuation
The root mean square (RMS) velocity fluctuations of the Reτ = 180 and Reτ = 395 simulations with
refinement r = 2 are depicted in Figure 5.3a and 5.3b, respectively. The results of KMM, ASP, and
MKM are included for comparison. For Reτ = 180, the data of the full channel is presented, whereas,
for Reτ = 395 only the first 100 wall units are displayed to enable a clear comparison with MKM.
Furthermore, the data of ASP and KMM are slightly asymmetric in y/H = 1, so to facilitate better
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Figure 5.3: RMS velocity fluctuation components √
uαuα normalized by shear velocity uτ against the wall distance y+ for

turbulent channel flow at (a) Reτ = 180, and (b) Reτ = 395. The grid has cubic cells of size ∆+ = 2.8 in the range of
y+ = 0–40 and ∆+ = 5.6 elsewhere. The results of Amati et al. [6] and Kim et al. [55] are also shown for comparison.

Theoretical profiles are included for both the viscous sublayer and the log-layer.

comparison, the area between the original RMS profile and the mirrored version is highlighted for both
studies.

For Reτ = 180, the urms profile of the current study almost completely overlaps with the highlighted
ASP region, which leads to the conclusion that r = 2 refinement barely influences the RMS fluctuation
in the stream-wise direction. For Reτ = 395, the urms results are also relatively accurate, except for
a slight deviation from MKM around y/H = 0.25, which can also be observed when comparing the
Reτ = 180 results with KMM. According to ASP, this was caused by a lack of resolution near the
wall. Because MKM and KMM adopted a similar approach with a high near-wall resolution, the same
explanation is valid for the Reτ = 395 case.

In the wall-normal and span-wise directions, a slight dip is observed around the refinement interface
for both Reynolds numbers. The same was observed by RKD, who mentioned the grid refinement
technique and a lack of grid resolution at y+ > 40 as potential reasons for the smaller values.

Reynolds Stress
The Reynolds stress profiles are shown in Figs. 5.4a and 5.4b for the Reτ = 180 and Reτ = 395 simula-
tions, respectively. For the former simulation, the results are clearly in good agreement with the data of
KMM and ASP. However, for the Reτ = 395 simulation, a slight under-prediction of 6% is observed at
the peak. Similar FMLB simulations have been performed in the MSc Theses of Van Bemmelen [105]
and Wortelboer [119], who both used a continuous grid with ∆y+ = 3.4. Interestingly, Van Bemmelen
did not observe an under-prediction of the Reynolds stress with Reτ = 395, while Wortelboer observed
an under-prediction of 2%. However, van Bemmelen found an under-prediction of 3-5% for Reynolds
stress with Reτ = 180 in the region 0.15 < y/H < 0.6. Such under-prediction was not observed in cur-
rent simulations, nor in simulations by RKD. Because these works found under-predictions of Reynolds
stress across different simulations, the observed deviation in Fig. 5.4b is assumed to be acceptable.

Furthermore, a slight staggering of the Reynolds stress data points is observed in the fine layer
for both Reynolds numbers. At r = 1 this was not observed, so this can be attributed to the adopted
refinement technique. However, it must be noted that the staggering was less intense in the results of
RKD.

5.4. Large Eddy Simulation
In an attempt to obtain a more accurate and complete description of turbulent channel flow, a Large
Eddy Simulation (LES) has been implemented using the WALE model with Cw = 0.5, following the
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Figure 5.4: Reynolds stress against the wall distance y+ for turbulent channel flow at (a) Reτ = 180, and (b) Reτ = 395. The
grid has cubic cells of size ∆+ = 2.8 in the range of y+ = 0–40 and ∆+ = 5.6 elsewhere. The results of Amati et al. [6] and
Kim et al. [55] are also shown for comparison. Theoretical profiles are included for both the viscous sublayer and the log-layer.

methodology that was described in Sec. 3.5. The only other FMLBM-LES study of 3D turbulent channel
flow was performed by Zhuo and Zhong [129] (ZZ), who implemented the Vreman model that was
mentioned in Sec. 3.5.2. However, a WALE model implementation has not yet been encountered in
the filter-matrix approach. In addition, this thesis is the first to implement LES-FMLBM using a local
grid refinement technique.

The turbulent statistics of the LES simulations will now be discussed and compared with the DNS
and LES simulations that were discussed in Sec. 5.2. The statistics of interest are the mean stream-
wise velocity, the RMS velocity fluctuation, the Reynolds stress, and the mean eddy viscosity.

Mean Velocity
In Fig. 5.5a and 5.5b, the mean stream-wise velocity profiles of the performed LES r = 2 simulations
have been compared with the corresponding DNS results that were introduced in the previous section.
The data of KMM, ASP, MKM, and the analytical formulas have also been included for completeness.
A promising observation for both Reynolds numbers is that the LES profiles are closer to the fine-grid
results of KMM and MKM, compared to the performed DNS simulations. This is improvement is most
significant around y+ = 25 for Reτ = 180 and around y+ = 35 for Reτ = 395. For both LES results,
the maximum deviations from KMM and MKM are halved. Because the Reτ = 180 DNS results were
already very accurate, the improvement is hardly visible in Fig. 5.5a. For Reτ = 395, however, the
deviation of the DNS result compared to MKM is slightly larger. Hence, the improved accuracy of the
corresponding LES simulation is clearer. In the WALE-LES of Reτ = 180 turbulent channel flow by
[125], who applied a discrete unified gas-kinetic scheme (DUGKS), it was also observed that the use
of a sub-grid scale model led to a slightly larger mean stream-wise velocity, compared to DNS. The
obtained results are therefore not surprising.

RMS Velocity Fluctuation
The RMS velocity fluctuations are plotted in Fig. 5.6a and 5.6b. It is noted that all three components
show similar behavior to the DNS data. Thus, the performed LES introduces no improvement for the
RMS fluctuation. The stream-wise velocity fluctuation urms shows slightly higher peaks for the LES
data, while vrms and wrms are slightly lower around the fine-coarse layer interface. In the LES of ZZ,
a comparable overshoot with respect to KMM was also observed in the stream-wise direction. Similar
to the previously mentioned hypothesis of ASP, ZZ attributed the overshoot to a lack of grid resolution
as they observed better results for a finer grid (∆y+ = 2 instead of ∆y+ = 4).
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Figure 5.5: Mean stream-wise velocity u+ against the wall distance y+ for turbulent channel flow at (a) Reτ = 180, and (b)
Reτ = 395. The grid has cubic cells of size ∆+ = 2.8 in the range of y+ = 0–40 and ∆+ = 5.6 elsewhere. The results of
Amati et al. [6] and Kim et al. [55] are also shown for comparison. Theoretical profiles are included for both the viscous

sublayer and the log-layer.

Reynolds Stress
The Reynolds stress results of the LES and DNS simulations are shown in Fig. 5.7a and Fig. 5.7b. The
profiles overlap very precisely, hence, the LES does not significantly influence Reynolds stress in the
current simulations. The same result was found in the WALE-LES of turbulent channel flow by [125],
who applied a discrete unified gas-kinetic scheme (DUGKS).

Mean Eddy Viscosity
The mean eddy-viscosity profiles for both Reynolds numbers are shown in Fig. 5.8. No benchmark has
been plotted, due to the dependency of νt on the adopted grid. Furthermore, separate eddy-viscosity
profiles are often not reported in the literature. From a qualitative point of view, the shapes of the
plotted profiles make sense as they resemble the shape of the RMS velocity fluctuations in Fig. 5.6.
As explained in Sec. 2.4.1, the sum of squared velocity fluctuations is proportional to the turbulent
intensity. This quantity is a measure for the sub-grid scale dissipation and, consequently, for the eddy-
viscosity.

Another observation is that the Reτ = 395 profile has higher values than the Reτ = 180 profile. This
can be explained by (1) the larger dimensionless grid spacing ∆y+ = 3.4 for Reτ = 395, compared to
∆y+ = 2.8 for Reτ = 180; (2) the smaller turbulent scales of the Reτ = 395 simulation, which follows
from the relation η/ℓ0 ∼ Re−3/4 in Eq. 2.67. These two arguments yield a higher concentration of
turbulent energy in the sub-grid scales. Thus, the eddy-viscosity is expected to be larger.

It can also be observed that slight dips are present at the layer interfaces. This is a similar obser-
vation to the dips in the vrms and wrms profiles, which lead to a dip in turbulent intensity. This will have
contributed to the dips observed for the eddy-viscosity profiles.

5.5. GPU Performance
All simulations have been performed on an NVIDIA Tesla V100S GPU with specifications as listed in
Tab. 4.1. In this section, the performance of the DNS and LES simulations of turbulent channel flow
will be presented. In addition, attempts for speeding up calculations are evaluated.

5.5.1. Measure of Performance
The speed of an LB algorithm can be measured in terms of the number of cell evaluations per second,
better known as lattice updates per second. Because this number is often very large for modern com-
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Figure 5.6: RMS velocity fluctuation components √
uαuα normalized by shear velocity uτ against the wall distance y+ for

turbulent channel flow at (a) Reτ = 180, and (b) Reτ = 395. The grid has cubic cells of size ∆+ = 2.8 in the range of
y+ = 0–40 and ∆+ = 5.6 elsewhere. The results of Amati et al. [6] and Kim et al. [55] are also shown for comparison.

Theoretical profiles are included for both the viscous sublayer and the log-layer.

puters, one commonly speaks of million lattice updates per second (MLUPS). This quantity is defined
as

MLUPS =
NcellsNT,max

T
· 10−6, (5.1)

where Ncells is the number of cells in the flow domain, NT,max is the number of time steps, and T is the
simulation time. The simulation time is taken in fine units.

The theoretical maximum performance of a GPU is determined by its memory bandwidth BW, which
is 1134 GB/s for the NVIDIA Tesla V100S (see Tab. 4.1), and the amount of memory that is accessed by
each node within one iteration step [123]. Variables are stored with single precision, which corresponds
to 4 bytes of memory per variable. One thread (a grid node) accessesNvars variables at each time step,
which comprises of 19 velocity components fi that are accessed multiple times and some auxiliary
variables. Based on this amount, the maximum theoretical MLUPS becomes

MLUPSmax, theory =
BW

4Nvars
· 10−6. (5.2)

In the MRT-LBM of [123], which used a D3Q19 + D3Q7 thermal model, each node accessed 143
variables per time iteration. Because the current simulations have no thermal model yet, a rough
estimate of 105 variables per node per time step is assumed. The theoretical maximum performance
then amounts to 2700 MLUPS. However, according to [23] and [34], the maximum performance is
around 80% of the theoretical maximum, resulting in a maximum achievable performance of 2160
MLUPS with the current GPU.

5.5.2. Simulation Speed
This section discusses the achieved simulation speed for the different types of simulations that have
been performed. Fig. 5.9 gives an overview of the MLUPS per simulation type. A distinction has been
made between LES and DNS, r = 1, r = 2, r = 4, and Reτ = 180 and Reτ = 395 simulations. First, the
differences in simulation speed among the performed simulations are discussed. Subsequently, the
observed performance is compared with the achievable maximum that was discussed in the previous
section.



5.5. GPU Performance 54

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
y/H

0.8

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8
u′

v′
/u

2
Re  = 180, r = 2

KMM
ASP
DNS
LES

(a)

0.0 0.2 0.4 0.6 0.8 1.0
y/H

0.8

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

u′
v′

/u
2

Re  = 395, r = 2
MKM
DNS
LES

(b)

Figure 5.7: Reynolds stress against the wall distance y+ for turbulent channel flow at (a) Reτ = 180, and (b) Reτ = 395. The
grid has cubic cells of size ∆+ = 2.8 in the range of y+ = 0–40 and ∆+ = 5.6 elsewhere. The results of Amati et al. [6] and
Kim et al. [55] are also shown for comparison. Theoretical profiles are included for both the viscous sublayer and the log-layer.

Observed Performance
The highest amount of observed MLUPS is 419 and has been achieved in the unrefined r = 1 DNS
simulation with Reτ = 395. This is an improvement of 20% compared to the highest performing simula-
tions in the MSc theses of [105] and [119], who also adopted a CUDA implementation using the Numba
library in Python.

The Reτ = 395 simulations performed slightly better than the Reτ = 180 simulations, which can be
attributed to the different ’blocks per grid’ (bpg), and ’threads per block’ (tpb) settings. These settings are
based on the different grid sizes, as mentioned in Sec. 3.8, and impact the performance of simulations.
This is further discussed in Sec. 5.5.3.

Furthermore, the r = 2 DNS simulations showed a performance of less than 50%, compared to
the r = 1 simulations. Similarly, the r = 4 simulation performs 26% less than the r = 2 simulation.
However, the total simulation times were still significantly smaller for the r = 2 and r = 4 simulations,
compared to the r = 1 simulation. This is indicated by the striped bars in Fig. 5.9, representing the
’effective MLUPS’, which assumes a homogeneous fine grid in Eq. 5.1. The effective MLUPS for r = 2
is given by

MLUPSeff =
Ncells,r=1NT,max,r=2

Tr=2
· 10−6 (5.3)

This means that the number of cells Ncells of the r = 1 grid is inserted in the MLUPS calculation of the
r = 2 simulation. In Fig. 5.9, it can be observed that the effective MLUPS of the r = 2 simulations is
40% higher for the Reτ = 180 simulation and 240% higher for the Reτ = 180 simulation, compared to
their regular MLUPS. These percentages also give the corresponding reductions in simulation time in
comparison with the unrefined simulations.

The performance reduction of the r = 2 simulations is a result of the non-homogeneous grid in the
local grid refinement implementation. In the coarse layer, the number of cells is halved in the stream-
and span-wise directions, compared to the number of cells along these directions in the fine layers.
This means that there is a reduced occupancy in the coarse grid. Nonetheless, the overall simulation
time of the r = 2 simulation was reduced. This results from a significantly reduced amount of required
memory to store the large distribution function arrays. These arrays are stored in global memory and
the time it takes for threads to read and write values from/to them is the bottleneck of simulation speed.
Smaller arrays allow faster evaluations per cell and therefore lead to an increase in effective MLUPS.

The r = 4 simulation does not show much increase in performance, compared to the r = 2 simula-
tions. This is because the bottleneck in simulation time lies in the fine layers. A reduction of cells in the
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Figure 5.8: Mean eddy-viscosity normalized by the molecular viscosity in fine units against wall-normal position y/H. A grid
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for Reτ = 180 and 0.1 < y/H < 1.9 for Reτ = 395).

coarse layer does not have much influence on the total amount of cells. Simulation time is therefore
not significantly reduced.

Gap with GPU Potential
As mentioned before, a maximum of 419 MLUPS has been achieved in the performed simulations.
This is only 19% of the potential 2160 MLUPS that was identified in the previous section. The lack of
shared memory usage in the stream and collision stages is the primary difference between the current
GPU implementation and more efficient simulations such as [102, 122]. This improvement significantly
speeds up access to intrinsic and neighboring distributions inside a block. These studies also combined
the collision and propagation steps into one kernel.

Although more sophisticated algorithms were tried, race conditions could not be prevented using
the current implementation of the Numba library in Python. Numba does not yet contain all CUDA-
functionalities that C-oriented languages have [83]. It might be more convenient to implement more
sophisticated kernels using these programming languages. An example of missing functionality is
dynamic parallelism, which is a functionality that allows the kernel to call other kernels [1], or cooperative
groups, which allow synchronization of grouped threads across different blocks [84].

5.5.3. Speed-up Attempts
Throughout the coarse of this research, several attempts have been made to increase the speed of the
present GPU-based algorithms. These will be summarized below.

• Determining optimal blocks per grid (bpg) and threads per block (tpb) settings. This was found
to have a large impact on the performance of separate kernels. Furthermore, one choice of
configuration could be optimal for one kernel, while it performed poorly for another kernel. It is
highly recommended to configure the optimal bpg and tpb independently for each separate kernel.
This could ideally be automated at the start of a simulation. Note also that the optimal bpg and
tpb are not only kernel-dependent but also GPU-dependent.

• For the locally refined simulations, it was attempted to assign unused threads in the stream-wise
direction to a new row of cells during the collision and propagation steps. This led to a 50%
reduction of blocks along the wall-normal direction in the coarse layer, but only a slight increase
in performance was observed (∼ 5%).
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Figure 5.9: Million lattice updates per second (MLUPS) achieved in the turbulent flow simulations. Results for the actual used
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• Store 4D distribution arrays as 1D flattened arrays: This had a significant impact and increased
computation speed by a factor ∼2. Index functions were used to convert 1D indices to 3D and
vice versa. This methodology was originally recommended by [105] and [119].

• Pre-load variables on GPU: In speed tests with separate kernels this was observed to increase
speed significantly. Impact on the speed of a full simulation has not been tested.

• Reduce unnecessary variable declarations in the kernel to minimize register spilling (see Sec.
3.8). This led to no apparent improvements. However, the amount of unnecessary variable dec-
larations was already quite low, so the amount of register spilling might not have been significant.

• Use of constant memory. This was found to not affect the Numba implementation. As was
explained Sec. 3.8 this is specific to Numba, as global constants in the global memory are auto-
matically transferred to the constant memory. Other programming languages might benefit from
the constant memory.

5.6. Conclusion
It has been shown that both DNS and WALE-LES implementations could accurately describe the dy-
namics in turbulent channel flows with Reτ = 180 and Reτ = 395. This conclusion follows from a
comparison of the obtained turbulent statistics with previous studies. The LES simulations yield an
improved approximation of the mean stream-wise velocity, a slight overshoot in the RMS fluctuation,
and no change in the Reynolds stress.

The computational performance in lattice updates per second was shown to be superior for high
Reynolds number simulations without refinement. Although the use of local grid refinement led to an
efficiency reduction, the effective simulation time was reduced. The achieved performance (MLUPS)
surpassed recent simulations that also adopted the Numba framework. However, there is still room for
improvement, particularly through the adoption of more sophisticated algorithms, for which C-based
languages offer greater potential.



6
Heat Transfer and Solidification

Results

In this chapter, an extension will be made to the modeling of phase change in turbulent channel flows,
now that the LES-FMLBM application has been proven to be accurate. The adopted computational
setup is introduced in Sec. 6.1. Then, a new method is proposed in Sec. 6.2 that stabilizes the
DDF-LBM in turbulent channel flows. In sec. 6.3, the obtained thermal statistics will be discussed
and compared with previous data. In sec. 6.4, an extension will be made to the modeling of a devel-
oped ice layer in steady-state flow. The results will be compared with analytical solutions and Nusselt
correlations from experimental data. Results for non-eutectic fluids will also be presented.

6.1. Computational Setup
The case that is being simulated in this chapter is turbulent flow through flat parallel plates with a
constant temperature difference. The upper wall temperature is set at T = TU and the lower wall
temperature at T = TL. The physical setup is schematically shown in Fig. 6.1. In Sec. 6.2, TL is
assumed to be above the freezing point of the fluid, while in Sec. 6.4, it is assumed to be below the
freezing point. An ABB scheme is used as the thermodynamic boundary condition at the walls, and
periodicity of the thermal field is assumed in the stream- and span-wise directions. This has also been
described in Sec. 3.4.

Figure 6.1: Schematic overview of turbulent channel flow through parallel plates with fixed temperatures TU and TL for the
plates at y = 2H and y = L, respectively.

Simulations have been performed using the DDF-FMLBM WALE-LES model, again adopting a
WALE model constant Cw = 0.5. The turbulent Prandtl number was set at Prτ = 0.9, following the
reasoning in Sec. 3.5.4. The initial temperature field is set at a constant value Tinit. The Reynolds
number is set at Reτ = 180 and a Prandtl number of Pr = 0.71 is chosen, which is a canonical case

57
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Table 6.1: Input parameters to the performed thermal simulations in physical and LB units. LB units of domain size, viscosity,
density, and temperature have been chosen. The conversion factors for other quantities can be obtained using dimensional

analysis.

Description Quantity Physical units LB units
Size of the domain Nx ×Ny ×Nz 10× 5× 5 cm 256× 128× 128 ls3
Viscosity ν 1.7 · 10−6 m2/s 2.37 · 10−3 ls3/lt
Body force g 5.99 N/m3 6.94 · 10−7 ls/lt2
Density ρ 1000 kg/m3 1 lm/ls3
Thermal diffusivity (s/l) αs/l 9.58/2.39 · 10−6 m2/s 13.4/3.34 · 10−3 ls2/lt
Specific heat capacity (s/l) Cp,s/l 2.1/4.2 · 103 J/kg K 623/1246 lJ/lm lK
Latent heat L 3.34 · 105 J/kg 9.91 · 104 lJ/lm
Liquidus temperature Tl 273.15 K 273.15 lK
Solidus temperature Ts 273.15 K 273.15 lK

that has been used in many previously performed simulations [53, 120, 90]. This allows for a good
comparison of results. The refinement is set at r = 1, because the choice r = 2 leads to instabilities in
the coarse layer, as will be explained in Sec. 6.2.

The domain size and kinematic input parameters remain unchanged compared to the Reτ = 180
situation in the previous chapter. The assumed thermal properties of the fluid were mainly based on
water. An exception is the thermal diffusivity which was determined as α = ν/Pr, using Pr = 0.71
instead of Pr ≈ 10 which is valid for water at T ∼ 280 K [115]. The collection of input parameters is
listed in Tab. 6.1, given both in physical and LB units. Note that the temperature conversion factor is
chosen to be unitary, following the implementation by [10] and [119].

6.2. Stabilizing the Thermal Field
This section discusses the fluctuations and instabilities that were observed in thermal simulations using
the enthalpy-based DDF-LBM approach, which was described in Sec. 3.2.2. Subsequently, a set of
transformation rules is proposed that is shown to solve these issues. This is a novel approach that
solves the same difficulties observed in a recent previous study of DDF-LBM in turbulent channel flows
by Wortelboer [119]. Lastly, the maximum stable Prandtl number is discussed.

6.2.1. Thermal Fluctuations and Instability
This section describes the thermal fluctuations and instabilities that were encountered when the phys-
ical temperatures were used as inputs to the simulation. This means that the temperature conversion
factor is CT = 1.

Currently, our interest is to simulate a thermal flow without freezing. To this end, the top and bottom
wall temperatures are chosen to be

TL = 275 K, TU = 280 K, (6.1)

where TL corresponds to the temperature at y = 0 and TU corresponds to the temperature at y = 2H.
The initial temperature in the channel is set to a constant value Tinit = 277.5 K. Because there is no
phase change involved yet, it suffices to define the enthalpy using the simple relation

h = Cp,lT. (6.2)

When performing a simulation with this set of parameters, and using DDF-FMLBM with a D3Q19
momentum scheme and a D3Q7 thermal scheme, instabilities were observed that led to a diverging
temperature field after O(104) time steps. Also very early on in the simulation, significant fluctuations
are observed. To illustrate this, a snapshot of T (x, y, z = H) is taken at t+ = 0.11, which is equivalent
to 500 time steps. The result is shown in Fig. 6.2a. To better quantify the size of the fluctuations, the
same simulation is also performed with a constant temperature

Tinit = TL = TU = 277.5K (6.3)

throughout the whole channel. The resulting profile is shown in 6.2b. It can be seen that the most signif-
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(a)
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Figure 6.2: Instantaneous temperature profiles T (x, y, z = H) using a D3Q7 thermal scheme with initial temperature
Tin = 277.5 K and wall temperatures given by (a) TL = 275 K and TU = 280; (b) TL = TU = 277.5 K. Coordinates x and y are
measured in lattice units, such that H = 64 [ls]. A snapshot is taken at t+ = 0.11 to show the spatially fluctuating temperature

early on in the simulation.

icant temperature fluctuations are around 3 K. This is an undesirable amount given that the fluctuation
is of the same order of magnitude as the original temperature difference (TU − TL).

In an attempt to stabilize the simulation, a thermal D3Q19 scheme was adopted as it is reported to
preserve Galilean invariance as opposed to the D3Q7 scheme [130], which leads to increased stability.
The collision step is still executed using an FMLB approach. With a larger velocity set, additional
higher-order error terms are filtered out in the filter-matrix approach, as was mentioned in Sec. 3.2.2.
A snapshot of the resulting profile at t+ = 0.11 is shown in Fig. 6.3a. As was done in the D3Q7-D3Q19
approach, an additional simulation with a constant temperature Tin = TL = TU = 277.5 was performed
to be able to quantify the fluctuations (see Fig. 6.3b). It can be seen that the fluctuations in the off-wall
region have decreased to around 0.5 K, which is a factor 6 smaller than what was observed in the D3Q7
simulation.

This result is surprising given the successful prior studies on heat transport in turbulent channel
flows using the lattice Boltzmann framework, such as the MRT-LES of Ren et al. [90], which used
a comparable grid spacing of ∆+ = 3. However, the difference with the current work is that Ren et
al. conveniently defined their flat plate temperatures as TL = 0 lK and TU = 1 lK. Due to their use
of a temperature updating scheme, their distribution function remains of the order O(1). In contrast,
the current study adopts an enthalpy updating scheme, resulting in a distribution function of the order
O(CpT ), which, with the current parameters, leads to the order O(105). Given that all other parameters
are comparable to the parameters of Ren et al., the different orders of magnitude of the distribution
functions may have contributed to the unexpected instabilities and fluctuations. To test whether this is
the case, the enthalpy was scaled such that
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Figure 6.3: Instantaneous temperature profiles T (x, y, z = H) using a D3Q19 thermal scheme with initial temperature
Tin = 277.5 K and wall temperatures given by (a) TL = 275 K and TU = 280; (b) TL = TU = 277.5 K. Coordinates x and y are
measured in lattice units, such that H = 64 [ls]. A snapshot is taken at t+ = 0.11 to show the spatially fluctuating temperature

early on in the simulation.

hU = 1 lJ/lm, hL = 0.9821 lJ/lm,

leading to an order of magnitude of the distribution function that is similar to the order in the simulations
of Ren et al. The corresponding temperatures are now

TU = 7.885 · 10−4 lJ/lm, TL = 8.028 · 10−4 lJ/lm.

Interestingly, this scaling led to the same temperature profile and fluctuations as in the unscaled case
of Fig. 6.3a. This means that the fluctuation scales directly with the local value of the temperature or
enthalpy. Hence, to suppress these fluctuations, it is logical to increase the relative difference between
the minimum and maximum enthalpies, denoted as hmin and hmax, respectively. Since fluctuations
are proportional to h, increasing the gap between hmax and hmin should result in less significant fluc-
tuations relative to (hmax − hmin). We term this a ”stretched” enthalpy spectrum, indicating a broader
distribution of enthalpy values. This concept resembles contrast stretching in imaging, where intensities
are expanded across a wider range to increase contrast. The idea is visualized in Fig. 6.4.

Several simulations with stretched enthalpy spectra were performed. It was found that the enthalpy
stretching procedure only gave a stable result when the maximum enthalpy was not too large. For
example, the combination

hmax = hU = O(103), hmin = hL = 0

led to an unstable field, while

hmax = hU = O(102), hmin = hL = 0
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Figure 6.4: Influence of scaling and stretching on the sensible enthalpy fluctuation. The fluctuation is dependent on the
absolute value of h; it can be suppressed by increasing the relative difference between hmin and hmax

was stable. Phase change remains disregarded. These findings lead to the formulation of two condi-
tions that need to be met for a stable thermal simulation. These are

1. The maximum absolute enthalpy in the domain must be small

hmax < O(102) (6.4)

2. The maximum relative enthalpy difference in the domain must be large

(hmax − hmin)/hmax ≈ 1 (6.5)

6.2.2. Transformation Rules
To obtain a stable simulation that is still physically meaningful, transformation rules for temperature,
enthalpy, and latent heat are proposed that ensure correspondence with conditions 6.4-6.5. The trans-
formation rules for enthalpy and temperature are

ĥ = (h− hmin)
ĥmax − ĥmin

hmax − hmin
+ ĥmin, (6.6)

T̂ = (T − Tmin)
ĥmax − ĥmin

hmax − hmin
+ T̂min, (6.7)

where a hat indicates a transformed variable and no tilde indicates a physical variable. Variables ĥmin

and ĥmax are the desired transformed minimum and maximum sensible enthalpy, which correspond
to wall temperatures TL and TU . These can be chosen in a way that conditions 6.4-6.5 are satisfied
(e.g., ĥmin = 0 and ĥmax = 1). The values hmin and hmax denote the physical minimum and maximum
sensible enthalpies. The transformed minimum temperature T̂min that appears in Eq. 6.7 can be
determined as

T̂min =


ĥmin

Cp,s
Tmin < Ts

T̂s +
ĥmin−ĥs

Cp,m
Ts ≤ Tmin ≤ Tl

T̂l +
ĥmin−ĥl

Cp,l
Tmin > Tl,

(6.8)

where the transformed solidus temperature T̂s and liquidus temperature T̂l are given by

T̂s =
ĥs
Cp,s

, (6.9)
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T̂l = T̂s +
ĥl − ĥs
Cp,m

. (6.10)

Because the goal of this research is to simulate phase change, it is also necessary to define a trans-
formed latent heat. The latent heat expresses a difference in total enthalpy and must therefore be
scaled directly without the use of an offset (as opposed to Eqs. 6.6-6.7):

L̂ = L
ĥmax − ĥmin

hmax − hmin
. (6.11)

The enthalpy, temperature, and latent heat are now transformed according to Eqs. 6.6 - 6.11, leading
to the set of transformed simulation variables listed in Tab. 6.2. At the end of the simulation, the enthalpy
and temperature are transformed back using inverse relations that can easily be derived from Eqs. 6.6
- 6.11.

This procedure gave the desired result as the simulation ran without instabilities or significant fluctu-
ation. A snapshot of the temperature profile after ∼ 1.6M time steps is shown in Fig. 6.5. Qualitatively,
clear turbulent structures can be observed that consist of equithermal packets of the fluid, and there is
no significant fluctuation.

The accuracy of the obtained thermal statistics is assessed in the next section. The observed
fluctuations in Figs. 6.2-6.3 are found to be an inherent effect of the LBM streaming algorithm. A
detailed explanation for this can be found in App. A.

Figure 6.5: Instantaneous temperature profile T (x, y, z = H) after 1.6 · 106 time steps, using the proposed transformations of
the enthalpy field. The end-profile is transformed back with inverse relations.

Table 6.2: Thermal simulation variables given in physical, LB, and transformed units. Transformations have been performed
using Eqs. 6.6 - 6.11. Note that the latent heat plays no role in the simulation since hs and hl are below the minimum enthalpy
hL. For convenience, Cp,l = Cp,s = 4.2 · 103J/kgK has been chosen, which does not impact the thermodynamics as there is

no solid layer.

Description Quantity Physical units LB units Transformed units
Lower wall temperature TL 275 K 275 lK 0
Upper wall temperature TU 280 K 280 lK 8.03 ·10−4

Solidus temperature Ts 273.15 K 273.15 lK -2.97 ·10−4

Liquidus temperature Tl 273.15 K 273.15 lK -2.97 ·10−4

Lower wall sensible enthalpy hL 1.16 ·106 J/kg 3.43 ·105 lJ/lm 0
Upper wall sensible enthalpy hU 1.18 ·106 J/kg 3.49 ·105 lJ/lm 1
Solidus sensible enthalpy hs 1.15 ·106 J/kg 3.40 ·105 lJ/lm -0.37
Liquidus sensible enthalpy hl 1.15 ·106 J/kg 3.40 ·105 lJ/lm -0.37
Latent heat L 3.34 ·105 J/kg 9.91 ·104 lJ/lm 4.72
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6.2.3. Maximum Prandtl number
It was found that the maximum stable Prandtl number had a value of Pr ≈ 0.8. At higher Prandtl
numbers, thermal fluctuations occurred in the computational domain, which led to instability.

Fluctuations are commonly encountered in flows with Pr ≳ 1 and are referred to as ”wiggles” [42].
They are numerical dispersion errors that arise due to a mismatch between the time scales for flow and
thermal fields. This mismatch can lead to serious instability [25]. However, in the performed simulations,
instabilities were also observed at Pr ≈ 1, while at lower Prandtl numbers (Pr < 0.8) the simulations
remained stable.

Because there is in principle no mismatch between viscous and thermal time scales at Pr = 1,
the observed instabilities are likely related to the size of thermal diffusivity α. When α becomes too
low, instabilities are observed. With ν = 0.00237 ls2/lt and a maximum Prandtl number Pr = 0.8, this
corresponds to a minimum value αmin = 0.0030 ls2/lt at which the simulation remains stable. This
hypothesis is substantiated by the following observations:

• No instabilities were observed for high-Prandtl laminar flows, which could easily reach Pr ∼
O(10). The viscosity of simulated laminar flows was ν = 0.17, which yields a thermal diffusivity
that remains well above the minimum stable value for such Prandtl numbers.

• When a local grid refinement with r = 2 was adopted to the turbulent thermal simulations, the
maximum stable Prandtl number was halved. The thermal diffusivity in the coarse layer is scaled
by a factor 1/2, so the sameminimum stable value αmin = 0.0030 ls2/lt remains valid in the coarse
layer.

The vast majority of turbulent thermal LB studies are also restricted to Pr = 0.71 or lower, but clear
stability regions are mostly not mentioned. There are several studies such as [90] and [42], where new
methods were developed to simulate high Prandtl numbers Pr ≫ 1. However, such methods were
outside the scope of this research. A more detailed description of these studies is given in Sec. 6.5.1.

To stay within the observed stability limits, the remainder of this thesis considers only Pr = 0.71
and adopts no local grid refinement (r = 1) for the aforementioned reasons.

6.3. Thermal Statistics
The transformation rules presented in the previous section have been applied to DNS and LES simula-
tions of turbulent flows with a D3Q19-D3Q19 scheme for momentum and temperature. The initial field
was set at Tinit = (TU + TL)/2 and the simulations were run until the maximum allowed simulation time
of 24h was reached on Delftblue. For the DNS, this resulted in a total of 1.95M time steps, and for the
LES, this number was 1.7M. Saving started after 1M and 1.2M timesteps, respectively, with a total of
80 snapshots for both simulations. This offset was chosen to ensure a developed temperature field.

The thermal turbulent statistics will now be compared with previous studies that simulated a similar
case. The thermal turbulent statistics of interest are the mean temperature, the RMS temperature
fluctuation, and the turbulent heat flux. The first study that is used for comparison is the DNS by
Kawamura et al. (KAS) [53], who applied a spectral method and a very fine spacing ∆y+ = 0.40 near
the walls that gradually increased towards the center of the channel where ∆y+ = 11.5. The second
study is the MRT-LBM-LES by Ren et al. (RSH) [90], who applied a Vreman model with a dynamically
computed model coefficient. RSH adopted a D3Q19 momentum scheme and a D3Q7 thermal scheme,
using a temperature-based DDF approach with TL = 0 and TU = 1. They adopted a spacing∆y+ = 1.5
for the first layer of cells at the walls and a spacing ∆y+ = 3 elsewhere. The specifics of these studies
are summarized in Tab. 6.3.

Table 6.3: Specifications of previously conducted thermal turbulent channel flow simulations that are comparable to
simulations in the current work. For RSH, the amount of nodes in the y-direction

Author Abbrev. Reτ Prt (Nx, Ny, Nz) ∆+
y,min ∆+

y,max Dynamics SGS model
Kawamura et al. KAS 180 0.71 (128, ?1, 128) 0.40 11.5 Spectral -
Ren et al. RSH 180 0.71 (256, 122, 96) 1.5 3 MRT-LBM Vreman

1Amount of nodes in y-direction of KAS is unknown, but the mesh dimensions (x+, y+, z+) are (1152× 360× 576).
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Mean Temperature
The mean temperature profile, RMS temperature fluctuation, and turbulent heat flux of the LES and
DNS are shown in Figs. 6.6a-6.6c. The mean temperature profiles in Fig. 6.6a follow the data of KAS
and RSH very precisely. A steep slope is present near the walls, which is caused by the dominant
diffusive heat transfer in the viscous sublayer, and a more shallow profile is present towards the center
of the channel, which is caused by the dominant convective heat transfer in the bulk.

Temperature Fluctuation
The RMS temperature fluctuations are shown in Fig. 6.6b. There are three extrema of the temperature
fluctuation: two near the walls and one at the center of the channel. Debusschere and Rutland [22]
analyzed temperature fluctuations in similar plane channel flow and gave a reason for the extremum at
the center. They observed that fluid from the walls travels to the centerline, forming packets of hot or
cold fluid. These packets travel along with the mean flow, causing large temperature fluctuations along
the centerline. This mechanism is also visible in the temperature snapshot of Fig. 6.5. The other two
extrema, near the walls, follow the shape of the velocity fluctuation and result from a combination of
high turbulent intensity and a strong temperature gradient near the wall [120].

When comparing the present results with the data of RSH and KAS, a slight under-prediction of is
observed at the center of the channel. Compared to the data of KAS, this under-prediction is 4.5% for
the DNS and 2.5% for the LES. In the MRT-LES by Wu et al. [120], who used a dynamic Smagorinsky
model, a 3.6% under-prediction of the temperature fluctuation was observed, compared to KAS. The
deviation in the current work is therefore assumed to be within an acceptable margin. BecauseWu et al.
use a slightly different measure for their temperature fluctuation, their results have not been included
in the figure.

The LES shows a slightly higher estimation of the RMS temperature fluctuation in the center of the
channel than the DNS. It is therefore in closer agreement with the data of KAS and RSH. At the local
minima, a slight asymmetry is observed in the LES profile. This is a result of the shorter simulation
time of the LES, which resulted from restrictions on the allowed computing time on the Delftblue su-
percomputer, which is 24 hours. As mentioned, the LES needed 24 hours for 1.7M time steps and the
DNS needed 24 hours for 1.95M time steps. Saving of data started in the last 40% of the simulations
to ensure a developed profile. However, in the future, it is recommended to use developed profiles as
input to the simulation. Longer effective simulation times can then be achieved.

For comparison, RSH simulated for an equivalent 2.4M time steps and also used the last 40% for
saving data. This means they only simulated ∼1M time steps for extracting turbulent statistics. In the
current simulation, this is achievable within ∼14 hours if an initial turbulent thermal field is used.

Turbulent Heat Flux
The results in Fig. 6.6c demonstrate that the turbulent heat flux is in good agreement with the data of
RSH and KAS. Note that the data of KAS is slightly asymmetric, resulting in a small discrepancy near the
minimum. The extrema follow the peaks of the streamwise velocity fluctuation and the anti-symmetric
profile results from the shape of the mean temperature [53].

6.4. Steady-State Freezing
This section presents and discusses results that were obtained in the freezing simulations of turbulent
channel flow. This is done without local grid refinement to stay within stability limits, as mentioned
in Sec. 6.2.3. The WALE-LES model was found to give accurate results in the previous section and
has been applied in the remainder of this work. The difference with the previous situation is that the
lower wall temperature is now set below the freezing point. The no-slip condition on the liquid-solid
interface is imposed using the immersed boundary method that was described in Sec. 3.3. First,
analytical expressions are derived in Sec. 6.4.1 for the steady-state ice thickness in a channel with a
fixed temperature difference, which will be used for benchmarking later on. Second, a revised version
of the immersed boundary method is discussed in 6.4.2 which was necessary to obtain stable results.
Then, the steady-state ice thickness of a zero-velocity system will be presented and compared with the
analytical solution in Sec. 6.4.3. Then, results will be discussed for turbulent flows of eutectic fluid and
compared with analytical solutions using Nusselt correlations. Lastly, the same is done for turbulent
flows of non-eutectic fluids.
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Figure 6.6: Thermal turbulent statistics of the performed DNS (no SGS model) and LES (WALE model) simulations. The shown
statistics are (a) mean temperature normalized by the temperature difference ∆T = TU − TL, (b) RMS temperature fluctuation
normalized by the friction temperature, (c) turbulent heat flux normalized by the friction temperature and wall shear velocity.
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The thermal diffusivities, specific heats, solidus and liquidus temperatures, and latent heat are the
same as listed in Tab. 6.1. An exception is encountered in the non-eutectic case, where the liquidus
temperature is set at Tl = 275.15 K, while the solidus temperature remains at Ts = 273.15 K. For all
simulations, the upper wall temperature is set at TU = 300K, the initial temperature is set at Tinit =
285 K throughout the domain, and the lower wall temperature is varied to obtain different solid layer
thicknesses. The initial Reynolds number and the Prandtl number remain atReτ,0 = 180 and Pr = 0.71,
respectively. The enthalpy, temperature, and latent heat transformation rules that were introduced in
Sec. 6.2 have been applied to ensure stability and reduce fluctuations.

6.4.1. Steady-state Ice Thickness
In this section, a convenient analytical expression of ice layer thickness in a steady-state channel flow
is derived. This expression later serves as a benchmark solution for the performed simulations. The
methodology is based on the balancing of heat fluxes at different locations in the channel.

Consider two flat plates with spacing L, upper plate temperature TU , and lower plate temperature
TL, as sketched in Fig. 6.7. Because the situation is steady-state, heat flux ϕ′′1 through the upper wall

Figure 6.7: Developed ice layer with thickness d in a channel flow with steady-state heat transfer. The upper and lower walls
are set at TU and TL, respectively, and have spacing L. The bulk temperature of the flow, temperature at the interface, liquid
thermal conductivity, and solid thermal conductivity are denoted by Tb and Ti, λ1 and λ2, respectively. The heat flux through

the upper wall, solid-liquid interface, and lower wall are denoted by ϕ′′
1 , ϕ′′

2 , and ϕ′′
3 , respectively.

is the same as heat flux ϕ′′2 through the solid-liquid interface, which is also the same as heat flux ϕ′′3
through the lower wall:

ϕ′′1 = ϕ′′2 = ϕ′′3 . (6.12)
Each heat flux results from a local temperature gradient according to Fourier’s law:

ϕ′′ = −λdT
dy
, (6.13)

where λ is the heat conductivity of the medium. In the solid layer, there is a linear temperature profile
from TL to Tf , resulting in the following expression for ϕ′′3 :

ϕ′′3 =
λ2
d
(Ti − TL) ≡ h3(Ti − TL). (6.14)

Here, h3 is the heat transfer coefficient and in the solid layer it is defined as

h3 =
λ2
d
. (6.15)

Similarly, fluxes ϕ′′1 and ϕ′′2 can be defined from the local temperature gradient in the fluid. However,
the steady-state temperature profile in a turbulent channel flow is not linear from one boundary to the
other. Instead, there is a small fluid layer near the wall where a mean temperature profile develops
linearly. Beyond this layer, there exists a nearly constant bulk temperature Tb due to temperature
mixing, which is a characteristic of turbulent flows. Fluxes ϕ′′1 and ϕ′′2 are therefore expressed in terms
of the bulk temperature as

ϕ′′1 = h1(TU − Tb), ϕ′′2 = h2(Tb − Ti). (6.16)
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The corresponding heat transfer coefficients now also contain information about the flow and can be
expressed as

h1 =
λ1

L− d
Nu1, h2 =

λ1
L− d

Nu2, (6.17)

where Nu1 and Nu2 are the Nusselt numbers at the upper wall and the solid-liquid interface, respec-
tively. The Nusselt number is a non-dimensional quantity that gives the ratio between total and diffusive
heat transfer [52]. Thus, it represents the impact of the flow on the heat flux. It is generally a function
of the Prandtl number Pr and Reynolds number Re, and many experiments have been performed to
determine corresponding relationships in different flow scenarios.

By setting ϕ′′1 = ϕ′′2 in Eq. 6.16, it is possible to express Tb in terms of TL and Th, yielding

Tb =
h1TU + h2Ti
h1 + h2

. (6.18)

Now, after filling the above expression in to the definition of ϕ′′1 in Eq. 6.16, we obtain

ϕ′′1 = h1

(
TU − h1TU + h2Ti

h1 + h2

)
= h1h2

TU − Ti
h1 + h2

.

(6.19)

Subsequently, one sets ϕ′′1 = ϕ′′3 using the above definition for ϕ′′1 and the definition in Eq. 6.14 for ϕ′′3 ,

h1h2
TU − Ti
h1 + h2

= h3(Ti − TL). (6.20)

After inserting the definitions for h1, h2, and h3 in Eqs. 6.17 and 6.15, the following equality is obtained:(
λ1

L− d

)2

Nu1Nu2
TU − Ti

λ1

L−d (Nu1 +Nu2)
=
λ2
d
(Ti − TL). (6.21)

Simplifying leads to
d

L− d
≡ A =

(
1

Nu1
+

1

Nu2

)
λ2
λ1

Ti − TL
TU − Ti

. (6.22)

Now d can be isolated and expressed in terms of A, which yields

d =
A

1 +A
L. (6.23)

Eqs. 6.23 and 6.22 provide an expression of the steady-state ice layer thickness in channel flows with
given Nusselt numbers. Note that the fraction of λ1 and λ2 can be expressed in terms of heat diffusivity
α and specific heat Cp using λ = αρCp. For a uniform density, this leads to

λ2
λ1

=
(αCp)2
(αCp)1

. (6.24)

Zero Velocity
Another convenient flow case is a stationary fluid with zero velocity. Because there is no convection
now, the thermodynamics are dictated by diffusive heat transfer only. This means that the fluid layer
effectively becomes a solid and fluxes ϕ′′1 and ϕ′′2 can simply be described as

ϕ′′1 = ϕ′′2 =
λ1

L− d
(TU − Ti). (6.25)

Following a similar approach as in the non-zero flow scenario, the factor A that appears in Eq. 6.23
now reduces to

A =
λ2
λ1

Ti − TL
TU − Ti

. (6.26)
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6.4.2. Revised Phase Interface Treatment
Before continuing to discuss the performed simulations, a revision to the immersed boundary method
will be introduced that was necessary to get meaningful results. In addition, a recommendation on the
choice of ζ will be given, which is the parameter that occurs in the definition of B in Eq. 3.24.

It has been observed that the immersed boundary method as described in Sec. 3.3 introduced a
negative stream-wise velocity in the fluid, right after the solid-liquid interface. Because this error only
occurred in the presence of a phase interface, the most likely source of inaccuracy is the modified
collision operator Ωs which activates when fl < 1 (see Eq. 3.23). From the definition of Ωs in Eq. 3.27,
a regular zero-velocity bounce-back is represented by the first two terms fj − fi, while an additional
correction is introduced by the last two terms feqi −feqj . The latter is likely the source of any non-physical
velocities since the regular bounce-back term inherently sets all velocities to zero.

This hypothesis led to the implementation of a simplified version of Ωs, which is similar to a version
used by [99], and omits the last two equilibrium distribution terms. The result is a regular bounce-back
that inherently sets all velocities with fl = 0 to zero:

Ωs
i = fj

(
x− ci∆t

2
, t− ∆t

2

)
− fi

(
x− ci∆t

2
, t− ∆t

2

)
. (6.27)

This approach gave the desired result and removed the negative velocity and non-physical temperature
fluctuation. This version will therefore be considered in the remainder of this work.

Furthermore, it was observed that the parameter ζ gave rise to instabilities when chosen atO(10−3)
or smaller. It is recommended to use a value no smaller than 0.01, or ideally, apply the definition in
Eq. 3.26 if possible. For eutectic flows, the choice of parameters was not observed to influence the
resulting solutions, however. This is likely because the value ζ influences the mushy zone only and, for
non-eutectic fluids, this zone spans only one row of cells.

6.4.3. Zero-velocity System
The first case that was simulated is a channel with zero velocity. It was initiated using a zero-velocity
equilibrium distribution on all nodes. In addition, the body force was set to zero, so the fluid remained
at zero velocity throughout the simulation. Due to the simplicity of this flow case, a convenient set of
parameters was chosen that allowed quick convergence of the simulation. As such, the grid size was
set at (32 × 96 × 32) and the solid and liquid thermal diffusivities at αs = 0.9390 and αl = 0.2347, re-
spectively. The simulation was run for 2 · 105 time steps, which allowed ample time for the solid layer to
develop as the thickest solid layer was already at its final thickness after 1.37 · 104 time steps. Further-
more, the lower wall temperatures were varied across different simulations. The input temperatures
are listed in Tab. 6.4, together with the corresponding temperature fractions (Ti−TL)/(TU −Ti), where
Ti = Ts = Tl is the temperature at the solid-liquid interface. Temperatures TU and TL are 300K and
273.15K, respectively. The specific heat and latent heat are the same as listed in Tab. 6.1.

Table 6.4: Lower wall temperatures TL used in zero-velocity freezing simulations. The upper wall and interface temperatures
are set at TU = 300K and Ti = 273.15K, respectively. The corresponding fraction (Ti − TL)/(TU − Ti) is given as well. The
transformed lower wall temperatures T̃L, interface temperatures T̃i, and upper wall temperatures T̃H are also listed. This

corresponds to h̃min = 0 and h̃max = 1.

Simulation no. TL(K) (Ti − TL)/(TU − Ti) T̃L (lK) T̃i (10−6 lK) T̃U (10−6 lK)

1 272.83 0.0118 0 2.82 240
2 271.90 0.0464 0 10.8 244
3 270.78 0.0882 0 20.1 248
4 268.68 0.167 0 36.6 256
5 265.92 0.269 0 56.5 266
6 262.17 0.409 0 80.8 279
7 259.73 0.5 0 95.2 286

The analytical profile that describes the steady-state solid layer thickness in this situation was de-
rived in Sec. 6.4.1 and is given by

d =
A

1 +A
L, (6.28)
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where L = 2H is the channel width and A is given by

A =
(αCp)s
(αCp)l

· Ti − TL
TU − Ti

. (6.29)

The solid layer thicknesses d/L of the different simulations are shown in Fig. 6.8. The analytical
solution is plotted as a reference. The results follow the shape of the analytical profile well. However,
for all results, a constant under-prediction of ∆(d/L) = 0.010 − 0.014 is observed, which corresponds
to approximately 1 − 1.3 cells. An error of one grid cell is not surprising, because the evaluation of
the liquid fraction is based on the average temperature in one cell. However, this does not explain
why only under-predictions are observed, and no over-predictions. This cannot be due to the adapted
immersed boundary scheme in Eq. 6.27, since this scheme imposes a zero-velocity in the solid and the
mushy zone, which is already zero throughout the domain. It is therefore not different from the normal
immersed boundary scheme here.
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Figure 6.8: Steady state ice layer thickness normalized by the channel height L in a static channel for different values of the
temperature fraction (Ti − TL)/(TU − Ti)

Despite the slight deviations, the simulation proved to be relatively accurate in determining the ice
layer thickness. One can conclude that solidification in a static system with diffusive heat transfer is
well described using the immersed boundary method in an FMLBM framework. The next section will
expand the model with convective heat transfer by introducing a turbulent flow.

6.4.4. Turbulent Flow with Eutectic Fluid
The results of the simulations of freezing in turbulent channel flow will now be discussed. The simulation
has been initialized with a Reτ = 180 turbulent flow field following the procedure explained in Sec. 3.7.
No local grid refinement has been applied to remain within stability limits for the thermal conductivity
(i.e., Prmax ≈ 0.8). The same viscosity, body force, and grid size have been applied as in the r = 1
simulations that were described in Ch. 5. The initial temperature in the channel was set at T = 285
K. The simulations operated continuously for approximately 17 hours, resulting in a cumulative total of
1.3 million time steps.

Again, the lower wall temperature TL has been varied across different simulations and the interface
temperature is still Ti = Tl = Ts = 273.15K. The input temperatures of the different simulations can be
found in Tab. 6.5, together with corresponding temperature fractions (Ti − TL)/(TU − Ti). The thermal
diffusivities, specific heats, and latent heat are the same as listed in Tab. 6.1.
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Table 6.5: Lower wall temperatures TL used in turbulent freezing simulations. The upper wall and interface temperatures are
set at TU = 300K and Ti = Ts = Tl = 273.15K, respectively. The corresponding fraction (Ti − TL)/(TU − Ti) is given as well.
The transformed lower wall temperatures T̃L, interface temperatures T̃i, and upper wall temperatures T̃H are also listed. This

corresponds to h̃min = 0 and h̃max = 1.

Simulation no. TL(K) (Ti − TL)/(TU − Ti) T̃L (lK) T̃i (10−6 lK) T̃U (10−6 lK)
1 271.21 0.0723 0 16.6 246
2 269.21 0.1469 0 16.6 246
3 267.14 0.2238 0 47.9 262
4 263.55 0.3575 0 72.2 274
5 258.98 0.5278 0 99.4 288
6 254.09 0.7098 0 125 300

Gnielinski's Nusselt Correlation
To properly evaluate the results obtained from the simulations in comparison with an analytical solution
for a steady-state ice profile, it is necessary to select an appropriate Nusselt correlation. As described
in Sec. 6.4.1, an expression for the Nusselt number must be inserted into Eqs. 6.22 and 6.23, to arrive
at a useful expression for steady-state ice thickness d.

The Nusselt correlation that will be used is the Gnielinski correlation [39]. This is a more accurate
correlation at lower Reynolds numbers (Rem < 104) than more traditional relations such as the Dittus-
Bolter or Colburn relations [100], and it is valid at 4 · 103 ≤ Rem ≤ 106 and 0.5 ≤ Pr ≤ 200. Assuming
an infinitely long channel and a constant Prandtl number throughout the domain, the Nusselt number
is expressed as

Nu =
ξ
8 (Rem − 1000)Pr

1 + 12.7
√

ξ
8

(
Pr2/3 − 1

) , (6.30)

where ξ denotes the friction factor for smooth tubes and is calculated as

ξ = (1.82 logRem − 1.64)−2. (6.31)

Note that the above Nusselt correlation depends only on the Prandtl and the bulk Reynolds number.
Because the bulk Reynolds number is dependent on the channel height and the bulk velocity, which

are both influenced by the development of an ice layer, it must be adjusted accordingly before calcu-
lating Nu. The corrected channel height is simply given by the wet channel height L− d, and the bulk
velocity is calculated at the end of the simulation, using its definition in Eq. 2.45.

Results
Figs. 6.9a and 6.9b show the final instantaneous temperature profile T (x, y, z = Nz/2) and absolute
velocity |u(x, y, z = Nz/2)| of simulation 4 (Tab. 6.5). Note that a smooth ice layer has developed
with homogeneous temperature development and zero velocity. For all simulations, the final ice thick-
ness d/L has been plotted against the corresponding temperature fractions (Ti − TL)/(TU − Ti) in
Fig. 6.10. The theoretical ice thickness, given by the Gnielinski Nusselt correlation, is plotted for the
same temperature fractions. They have been calculated using the final bulk Reynolds numbers Rem,f

that were determined at the end of each simulation. To this end, average bulk velocities have been
calculated using velocity data of all time steps in the final 5% of the simulation. The velocities have
been averaged over space (d < y < L) and time (0.95NT,max < t < NT,max). The final bulk veloci-
ties, Reynolds numbers, and Nusselt numbers of the simulations are listed in Tab. 6.6. The simulation
number corresponds with Tab. 6.6.

Examining Fig. 6.10, it is clear that the predicted ice layer thickness d/L exceeds the expected value
by approximately 30% in each simulation. To provide context for this variation, we turn to the work of
Meyer et al. [73], who analyzed the performance of the Gnielinski correlation across various pipe flow
scenarios documented in the literature. For low Nusselt numbers ofNu < 20, which corresponds to the
values encountered in this thesis, they found a significant deviation of > ±20% for all low-Nu studies,
i.e., [7, 70, 12]. However, Meyer et al. also did two experiments of their own for Nu < 20 and found a
slightly better agreement with a maximum deviation of 10%.
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(a)

(b)

Figure 6.9: (a) Instantaneous temperature and (b) instantaneous velocity profiles of the turbulent freezing simulation with lower
wall temperature TL = 263.55 K (simulation 4). Snapshots have been taken at z = Nz/2 after 1.3M time steps.

To see the impact of a±20% deviation from the predicted Nusselt number, corresponding error bars
have been plotted in Fig. 6.10. It is visible that the ice layer thickness of the performed simulations
approximately coincides with the upper error margins, corresponding to a Nusselt number ∼ 20% lower
than predicted using the Gnielinsky correlation. As such deviations are not uncommon in reported
experimental data of low-Pr pipe flows, decent accuracy of the performed simulations may still be
assumed. To the author’s knowledge, there are currently no other numerical simulations of steady-
state ice layer development in turbulent channel flows. It would be interesting to see the results of
comparable simulations to better assess the accuracy achieved in this research.

6.4.5. Turbulent Flow with non-eutectic Fluid
This research aims to simulate the freezing of MSFR salt in turbulent channel flows. Up to now, it has
been assumed that the fluid has a single solidus and liquidus temperature Ts = Tl, corresponding to a
eutectic fluid. In reality, however, MSFR salts are non-eutectic and have different solidus and liquidus
temperatures Ts < Tl, leading to a mushy region in which the fluid is in an intermediate state between
liquid and solid. In the mushy region, the fluid is a mixture of liquid and solid particles and therefore
has different properties compared to the purely liquid or solid phase.

First of all, the solid particles in the mushy region act as a momentum sink for the liquid particles
that flow through. This is conveniently accounted for by the immersed boundary method since a liquid
fraction 0 < fl < 1 leads to a combined effect of collision operators Ωs and Ω (Eq. 3.23). The former
collision operator imposes zero velocity on a node when fl = 0, but it imposes only a reduced velocity
when 0 < fl < 1. To ensure a stable field, the adapted immersed boundary method in Eq. 6.27 will



6.4. Steady-State Freezing 72

Table 6.6: The final bulk velocity, Reynolds number, and Nusselt number at the end of each simulation. The subscripts f
denote that the quantities relate to the end of the simulation. The Nusselt number is determined using the Gnielinski correlation.

The simulation numbers correspond to Tab. 6.5.

Simulation no. um,f (ls/lt) Rem,f Nuf
1 0.1018 5378 17.8
2 0.0998 5156 17.2
3 0.0989 4969 16.6
4 0.0950 4531 15.3
5 0.0913 4082 13.8
6 0.0868 3626 12.3
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Figure 6.10: Steady state ice layer thickness normalized by the channel height L in a turbulent channel for different values of
the temperature fraction (Ti − TL)/(TU − Ti). The interface temperature is defined as Ti = Ts, where Ts is the solidus

temperature. The ice layer thickness d is defined as the average amount of solid nodes in the wall-normal direction at the end
of the simulation.

again be used to calculate Ωs.
Second, the physical properties of the fluid are also changed in the mushy zone. For simplicity,

it is assumed that only the specific heat and thermal diffusivity are changed, while other parameters
such as viscosity remain unchanged from the liquid phase. It must be noted that the specific properties
of MSFR salts are different from the ones that were used in this simulation. This is decided because
the current research serves as a proof of concept of the applied methodologies and techniques. This
research does not aim to model the exact behavior of specific MSFR salts.

For this reason, most of the input parameters of the performed eutectic simulations (Sec. 6.4.4) have
been re-used for the non-eutectic simulations. All parameters are the same as in Tab. 6.1, except for
the liquidus temperature, which is set at Tl = 275.15. This yields a mushy region between 273.15 <
T < 275.15. Again, the temperature field is transformed following the procedure in Sec. 6.2.2, using
h̃min = 0 and h̃max = 1. The input temperatures are listed for all non-eutectic simulations in Tab. 6.7.
The Prandtl number remains at Pr = 0.71 and no local grid refinement is applied.

Following the recommendation of [10], the specific heat and thermal diffusivity of the mushy zone
are both assumed to be averages of the solid and liquid phases. The ice layer thickness d is defined
as the thickness of the solid layer, excluding the mushy zone.

The resulting ice layer thickness is shown in Fig. 6.11 for both the eutectic and non-eutectic fluids.
Note that the ice layer is slightly thicker for the non-eutectic fluid than for the eutectic fluid. This is a
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Table 6.7: Lower wall temperatures TL used in non-eutectic turbulent freezing simulations. The upper wall, solidus, and
liquidus temperatures are set at TU = 300K, Ts = 273.15K, and Tl = 275.15K, respectively. The corresponding fraction
(Ts − TL)/(TU − Ts) is given as well. The transformed lower wall temperatures T̃L, solidus temperatures T̃s, liquidus

temperatures T̃l, and upper wall temperatures T̃H are also listed. This corresponds to h̃min = 0 and h̃max = 1.

Simulation no. TL(K) (Ts − TL)/(TU − Ts) T̃L (lK) T̃s (10−6 lK) T̃l (10−6 lK) T̃U (10−6 lK)

1 271.21 0.0723 0 16.6 33.7 246
2 269.21 0.1469 0 32.6 49.1 246
3 267.14 0.2238 0 47.9 63.9 262
4 263.55 0.3575 0 72.2 87.3 274
5 258.98 0.5278 0 99.4 113 288
6 254.09 0.7098 0 125 138 300
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Figure 6.11: Steady state ice layer thickness normalized by the channel height L in a turbulent channel for different values of
the temperature fraction (Ti − TL)/(TU − Ti). Results for a eutectic and a non-eutectic fluid are given. The interface

temperature is defined as Ti = Ts for both simulations, where Ts is the solidus temperature. The ice layer thickness d is
defined as the average amount of solid nodes in the wall-normal direction at the end of the simulation.

sensible result, since the heat conductivity λ = ραCp is larger in the mushy zone than in the liquid. This
means that heat from the fluid is more effectively being conducted towards the cold wall. A thicker ice
layer is thus expected.

In the absence of comparable simulations or experimental data on steady-state non-eutectic freez-
ing at varying liquidus temperatures, a quantitative comparison could not be performed. There are
studies, such as Mahdaoui et al. [69], that investigate transient ice fronts in laminar flow of binary non-
eutectics for different mushy regions. However, changing the concentrations of the binary components
changes both the solidus and liquidus temperatures. The independent effect of a varying liquidus tem-
perature can therefore not be determined from such results. In the MSc thesis of Bus [10], transient ice
layer growth was compared for eutectic and non-eutectic laminar flows. However, a qualitative com-
parison with the current steady-state results is not possible, because (1) their latent heat was taken
significantly higher for the non-eutectic case, leading to a slower developing non-eutectic ice front, (2)
their non-eutectic solidus temperature was chosen to be higher than the eutectic freezing temperature.

Thus, the absence of steady-state freezing results and the discrepancy with simulation parameters
of existing transient studies leads to an inability to make accurate comparisons with a reference case.
It would be interesting to see comparable simulations of non-eutectic freezing simulations in the future,
which can be compared with results obtained in this thesis.



6.5. Conclusion and Discussion 74

6.5. Conclusion and Discussion
It has been shown that the DDF-FMLBM WALE-LES implemented in this research is suitable for simu-
lating turbulent channel flow in conjunction with heat transfer. A novel set of transformation rules has
been introduced that reduces fluctuations and instabilities in thermal simulations of turbulent channel
flow. These fluctuations are dependent on the relative difference between the minimum and maximum
enthalpies in the domain. Both DNS and LES yielded accurate turbulent statistics that were in good
agreement with selected benchmark studies. In addtion, LES proved to be superior to DNS in predicting
the turbulent statistics at the center of the channel.

Moreover, the development of a steady-state ice layer has been simulated using the immersed
boundary method. An alternative approach to the standard method has been applied to prevent non-
physical velocities and temperature fluctuations near the solid-liquid interface. Accurate results were
obtained for a stationary channel with zero velocity and a close agreement with the analytical solution
was observed. However, an under-prediction of approximately one cell was found in all simulations.

Simulations of freezing in turbulent channel flows have been performed using the samemethodology
and were benchmarked with analytical solutions using Gnielinski’s Nusselt correlation. The obtained
ice layers were ∼ 30% thicker than expected from the analytical solutions, which corresponds to a 20%
over-prediction of the Nusselt number by Gnielinski’s correlation. However, previously performed ex-
periments showed deviations of a similar order and the results are therefore still within acceptable limits.
Furthermore, simulations of non-eutectic fluids were also performed, which yielded slightly thicker ice
layers in comparison with the eutectic simulations. This was expected due to the higher heat conduc-
tivity in the mushy region, compared to the liquid phase.

6.5.1. High Prandtl Numbers
The goal of this research was to simulate the solidification of non-eutectic MSFR salt in turbulent chan-
nel flow. Although many aspects of this goal have been achieved, the most important oversimplification
in this work is the choice of Prandtl number. While this work restricted itself to Pr = 0.71, preventing
instabilities, the actual Prandtl numbers of realistic MSFR salts lie in the range 7.5 ≤ Pr ≤ 20 [33]. The
low Prandtl restriction was caused by instabilities that occurred when the thermal diffusivity became
too low. When simulating laminar flows, a high Prandtl number poses no immediate problems because
the viscosity can generally be much higher compared to turbulent flows.

The difficulty in studying high Prandtl turbulent flows in the LBM framework is widespread. Most
thermal studies of turbulent channel flow restrict themselves to Pr ≤ 1. However, there are recent
studies that introduce additional stability to the simulation, such as Gruszczynski and Laniewski-Wollk
[42], who implemented a novel collision kernel, a D3Q27 lattice, and interpolated boundary conditions
to reach very high Prandtl numbers (up to 1000 with minimum thermal conductivities of O(10−5)).

A study that might be particularly promising for the filter-matrix LBM is the new LBM approach that
was introduced for the SRT and MRT framework in 2021 by Du et al. [25]. This approach enabled them
to reach values up to Pr = 56.2. They proposed a modification of the thermal equilibrium distribution
function using a scaling factor η and included the same factor in the definition of the Prandtl number.
This factor makes it possible to reach high Prandtl numbers while ensuring stability during the collision
step. Because this approach was constructed in the SRT framework, it might be relatively straight-
forward to translate the same methodology to the FMLBM framework. The derivation of an adjusted
solution vector and/or filter matrix was excluded from the scope of this research but is recommended
for future implementation.
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Conclusion and Recommendation

This thesis investigated freezing of non-eutectic fluids in 3D turbulent channel flows. To this end, a
large eddy simulation has been implemented in the FMLB framework with local grid refinement to
model turbulent flow, heat transfer, and solidification in a channel bounded by infinite parallel plates. To
accelerate the simulation, a GPU implementation was adopted for parallel calculations. This chapter
discusses the conclusions that follow from the performed work and follows up with recommendations
for future research.

7.1. Conclusion
The conclusions from this work are now stated and provide an answer to the research questions formu-
lated in Ch. 1. Conclusions are given on (1) the local grid refinement implementations, (2) the modeling
of turbulent channel flow using WALE-LES in FM-LBM, and (3) the modeling of phase change of eutec-
tic and non-eutectic fluids. These will be integrated with conclusions on adopted BCs, input parameters,
and comparisons with reference cases.

7.1.1. Local Grid Refinement
In this research, a large eddy simulation (LES) is implemented, which does not fully resolve turbulent
scales beyond a specific cut-off length, defined as the grid spacing. For channel flows, LES permits
a coarser grid spacing in the central region while requiring full resolution at the walls. To leverage
this coarser grid spacing, two local grid refinement techniques were evaluated: the Rohde algorithm
developed by [92] and a novel algorithm introduced in this study. Unlike the Rohde algorithm, the new
approach avoids additional non-physical collisions.

For laminar flows, the new technique did not converge to the analytical Poisueille profile over time
and no grid convergence was observed. This was attributed to a loss of information during the redistri-
bution from coarse to fine cells in the interface layer. Better results were expected when an interpolation
scheme is used during this step, as was also done in a similar approach by [87]. However, the Rohde
algorithm was both time-convergent and second-order grid-convergent for the r = 2 and r = 4 versions.
This led to its implementation in subsequent simulations.

During the turbulent channel flow simulations, the r = 2 Rohde algorithm closely agreed with the
data by [6, 55, 76]. However, slight dips in the RMS velocity fluctuations in the wall-normal and span-
wise directions were observed near the refinement interface. This behavior was also observed by [92]
and was attributed to non-physical steps in the algorithm. The r = 4 algorithm was also tested for
turbulent flows but showed significant over-prediction of the velocity and it was therefore not deemed
useful.

Furthermore, the r = 2 algorithm yielded effectively 40% higher efficiency for Reτ = 180 and 240%
for Reτ = 395, compared to the unrefined simulations. It can therefore be concluded that a local grid
refinement technique significantly reduces computation time, without noticeably affecting the accuracy
of the obtained results. However, the MLUPS of the local grid refinement simulations were more than
halved, compared to the unrefined cases. Higher computational performance is expected for the local
grid refinement technique when using better management of threads and blocks.

75
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7.1.2. WALE-LES in Turbulent Channel Flow
Multiple LES simulations of turbulent channel flows were performed using the WALE sub-grid scale
model. They were compared to DNS simulations with the same input parameters and conditions. The
WALE model constant was set to Cw = 0.5, based on recommendations in prior work. For both Reτ =
180 and Reτ = 395 simulations, the WALE-LES approach gave a superior estimation of the mean
stream-wise velocity compared to the performed DNS. The detailed DNS by [55] and [76] were used
as reference cases.

It was found that deviation from the reference cases was halved using LES, compared to the per-
formed DNS simulations, for both Reτ = 180 and Reτ = 395. Results from the Reτ = 395 DNS gave
a larger deviation from the reference case than the Reτ = 180 DNS, so the largest absolute error re-
duction was achieved in the Reτ = 395 LES. The difference in accuracy for the two Reynolds numbers
was attributed to the coarser Reτ = 395 grid compared to the Reτ = 180 grid (∆y+ = 3.4 vs∆y+ = 2.8,
respectively). Additionally, LES is more effective for larger Reynolds numbers, because more turbulent
energy is concentrated at the smaller scales.

7.1.3. Thermal Simulations
A thermal simulation of turbulent flow between walls with a fixed temperature difference was imple-
mented, assuming a fully liquid phase. When the relative temperature differences (TU − TL)/TU be-
tween the upper and lower walls were small, significant fluctuations appeared in the thermal field. This
resulted in an unstable simulation that diverged after O(104) time steps. This is a known problem that
was also encountered in earlier work, where it could not be resolved. In this thesis, it was shown that
the fluctuations scale directly with the local enthalpy, which led to the introduction of transformation
rules for temperature, enthalpy, and latent heat. They lead to a lower fluctuation with less relative sig-
nificance because the temperature and enthalpy spectra are broadened. This led to stable simulation
results without significant fluctuation.

Using this transformation procedure, thermal statistics were obtained from thermal DNS and LES
simulations. The mean temperature and turbulent heat flux agreed closely with data of [90, 53] for both
LES and DNS. The temperature fluctuations showed a slight undershoot, compared to the reference
data, with LES results being slightly more accurate. A comparable undershoot was also observed in
the LES of [120], so the observed deviation falls within a reasonable margin.

In the thermal simulations, no local grid refinement was tested, because the lower thermal diffusivity
in the coarse layer causes instability at Pr = 0.71.

7.1.4. Phase Change
Thermal simulations with phase change were incorporated using the standard immersed boundary
method by [81]. This gave rise to a negative stream-wise velocity close to the freezing interface, which
was resolved by applying an adapted collision operator Ωs that inherently sets all velocities in the solid
phase to zero. Furthermore, a value ζ > 0.01 was recommended for the parameter ζ, which appears
in the definition of the parameter B in the adapted LBE of the immersed boundary method. A lower
value for ζ led to instability.

The first freezing simulations were performed with a eutectic zero-velocity system and a cold wall
temperature below the freezing point. Each simulation had a different cold wall temperature and the
resulting steady-state ice thicknesses were compared with analytical solutions. A close agreement was
observed with an undershoot of one cell thickness across all simulations.

Subsequently, freezing simulations with non-zero velocity were conducted using a eutectic turbulent
fluid, and results were compared with analytical solutions using Gnielinski’s Nusselt correlation. Across
all simulations, the ice thickness was found to be over-predicted by 30%, corresponding to a Nusselt
number 20% lower than estimated by the Gnielinski correlation. Deviations of ±20% are within the
expected range based on a prior study on the accuracy of Nusselt correlations by [73]. This discrep-
ancy is attributed to the inherent limitations of Nusselt correlations in accurately capturing individual
experimental scenarios. These correlations provide an average representation based on numerous
experiments and may not precisely match specific cases.

Lastly, freezing simulations of a non-eutectic turbulent fluid were performed. It was observed that
the steady-state ice layer thickness was slightly larger in the presence of a mushy zone when using a
higher liquidus temperature than in the eutectic case, keeping other thermal inputs the same. This was
expected due to the higher thermal conductivity in the mushy zone, compared to the liquid phase.
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7.2. Recommendation
Recommendations for further research are now presented. They can be categorized into local grid re-
finement recommendations, recommendations on LB-LES applications, recommendations on thermal
LB, and GPU-related recommendations.

Local Grid Refinement Recommendations
• Increased refinement levels: This study employed only two levels of refinement, resulting in
excessive refinement in the central channel area. By incorporating additional refinement levels,
optimal refinement can be achieved at every location in the channel. In determining the amount
of refinement levels, one must balance the computational gain with the increased complexity.

• Adaptive refinement for tracking solid-liquid interface: The fine-liquid interface behaves as
a solid no-slip wall, and therefore requires a fine grid in this region. Due to the dynamic nature of
the interface, an adaptive grid is beneficial. This approach prevents unnecessarily fine grids at
the start of the simulation and ensures that the solid-liquid interface remains adequately resolved
throughout the process.

Thermal LB and Phase Change
• Adapted schemes for high Prandtl numbers: Due to stability restrictions, the simulated Prandtl
number in this research was 0.71, while MSFR salt generally has a value 7.5 ≤ Pr ≤ 20. It is
recommended to implement advanced methods that allow for high Prandtl number calculations
in turbulent flows. Potential options are a modification to the equilibrium distribution function, as
proposed by [25], or one of the approaches that were proposed by [42].

• Inflow and outflow Boundary Conditions: This research investigated periodic boundary con-
ditions in the stream-wise direction. However, nearly all research on freezing turbulent channel
flow assumes the inflow of an equithermal fluid at the inlet which leaves the system at the outlet.
To allow for extensive benchmarking, it is recommended to simulate the in- and outflow of salt,
instead of a periodic flow.

GPU Implementation
• Advanced Collision and Propagation Algorithms: The slowest steps in the algorithm are the
propagation step (slowest) and the collision step (second slowest). A more efficient use of mem-
ory can lead to a significant reduction in computation time. This can be achieved with more sophis-
ticated algorithms, as was implemented in [102, 122], and by implementing a combined collision
and propagation kernel. C-based languages offer greater potential for this than the Numba library
in Python because they have more CUDA functionalities available.

For more hands-on recommendations on GPU-based LBM, one can resort to Sec. 5.5.3.
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A
Temperature Fluctuation in DDF-LBM

As was mentioned in Sec. 6.2, a larger relative temperature or enthalpy difference resulted in a reduced
relative fluctuation of the local temperature field. To illustrate the reason behind this result, we consider
a simplified system with two adjacent nodes in a D3Q7 scheme (see Fig. A.1). Both nodes have an
equal sensible enthalpy h0 = 500 lJ/lm, initialized with the equilibrium distribution. The nodes have
different velocities, such that:

u1 =

 u1
0
0

 , u2 =

 0
u2
0

 , (A.1)

where
x1 = (x, y, z), x2 = (x, y − 1, z). (A.2)

Furthermore, it is assumed that all boundaries of the two-node system satisfy Neumann conditions,
such that streaming from the boundaries does not change the initial system’s properties.

We simplify by assuming a liquid fraction of fl = 0 everywhere on the domain. The enthalpy equi-
librium distribution of Eq. 3.15 then reduces to

geqi =

{
ωih i = 0

ωih
[
1 + ci·u

c2s

]
i ̸= 0

, (A.3)

We can now insert the velocities of Eq. A.1 into the equilibrium distribution of Eq. A.3 to obtain the
following expressions for the thermal distributions at nodes 1 and 2:

g1 =



ω0h
ω1h(1 +

u1

c2s
)

ω2h(1− u1

c2s
)

ω3h
ω4h
ω5h
ω6h


, g2 =



ω0h
ω1h
ω2h

ω3h(1 +
u2

c2s
)

ω4h(1− u2

c2s
)

ω5h
ω6h


. (A.4)

We will now perform a streaming step. Because Neumann boundary conditions are assumed, the
only new information that flows into node 1 comes from node 2 and vice versa. After streaming, we
therefore obtain the following distributions for node 1 and 2:

g1post =



ω0h
ω1h(1 +

u1

c2s
)

ω2h(1− u1

c2s
)

ω3h(1 +
u2

c2s
)

ω4h
ω5h
ω6h


, g2post =



ω0h
ω1h
ω2h

ω3h(1 +
u2

c2s
)

ω4h
ω5h
ω6h


. (A.5)
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Figure A.1: Initial situation of two-node system with constant sensible enthalpy h1 = h2 = h0. The nodes have different
velocities u1 and u2. Neumann conditions are assumed to simulate adjacent nodes with the same initial distribution functions.

Now, the post-stream enthalpy of the two nodes is calculated by summing the components of the
distribution functions. This leads to

h1,post =
∑
i

g1i,post =
∑
i

ωih+
u2
c2s

= h0 +
u2
c2s
, (A.6)

h2,post =
∑
i

g2i,post =
∑
i

ωih+
u1
c2s

= h0 +
u1
c2s
. (A.7)

It is found that the enthalpies in node 1 and 2 are increased by u2

c2s
and u1

c2s
, respectively, which is

the equivalent of a temperature fluctuation. Such fluctuations occur when the two adjacent nodes have
different velocities along the line that connects them, or equivalently, in regions with high vorticity. This
explains why fluctuations were observed after the first few streaming steps of the simulations in Sec.
6.2. Although the grid was initialized with a constant enthalpy, the presence of the turbulent flow field
caused significant fluctuations in the thermal field. The fact that vorticity is a source of fluctuation also
explains why the fluctuations in Figs. 6.2-6.3 resembled the eddy shapes.
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