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Highlights

The most notable contributions of the current research to existing literature are:

• The development of a novel Lattice Boltzmann by adding a wet-node boundary condition to a filter-
matrix double distribution function. With the ability of modelling conjugate heat transfer & phase
change and showing second-order accuracy for Dirichlet momentum boundary conditions

• The ability to model a MSFR freeze-plug geometry with conductive melting with a double-distribution-
filter-matrix lattice Boltzmann method
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Abstract

Nuclear reactors can offer a stable and reliant source of renewable energy, which is highly important to fill
the gaps left by intermittent renewable energy sources like solar and wind. The Molten Salt Fast Reactor
can be promising because of its reduced issues with waste management and high safety standards.
The freeze-plug safety system is an integral part of the MSFR, melting in the case of an emergency
and thereby allowing drainage of the reactor core. This research aims to develop a Filter-Matrix Lattice
Boltzmann model to simulate two crucial factors in the freeze-plug melting: convective phase change and
conjugate heat transfer. To that end, novel filter-matrix-wet-node boundary conditions are developed.

The Filter Matrix Lattice Boltzmann Method (FM-LBM) with double-distribution functions (DFF) was com-
bined with the total-enthalpy based enthalpy method and a novel wet-node-solution-vector boundary
condition (WNSV BC). The model was benchmarked with three different problems. First, it showed
good correspondence to benchmark studies for a steady-state square cavity natural convection prob-
lem. Second, modelling of steady-state conjugate heat transfer in combination with natural convection
also showed a small error with numerical benchmark studies. Third, phase change was implemented,
which showed excellent results for conduction melting with respect to two numerical benchmark studies.
However, a larger error was found for convective melting, expectedly caused by unphysical numerical
diffusion of latent heat across the phase front. Future research could examine if grid refinement near
the phase front can reduce this error.

The individual model components were combined in modelling a freeze-plug geometry, in two subse-
quent stages. First, a freeze-plug geometry combining conjugate heat transfer and conductive melting
was modelled, in very good correspondence to a benchmark study. The second stage also included nat-
ural convection and thereby convective melting, but showed severe instabilities. Future research should
look into the WNSV BC’s ability to combine conjugate BCs with the no-slip phase front BC.

Different extrapolation schemes from the wet-node-solution-vector boundary condition were examined
for their numerical performance. Two extrapolation schemes showed second-order-accuracy in mod-
elling a Poiseuille flow. The found error with the analytical solution was somewhat higher than for a
conventional half-way-bounce-back scheme. For modelling a conjugate natural convection case, an or-
der of accuracy between 1.6 − 2.0 was found. As no analytical solution for this case was available, the
order of convergence was calculated with a finest-grid approach and an approach suggested by Eça &
Hoekstra. Future research can aim to verify the second-order-accuracy in thermal flows by modelling a
case with an available analytical solution.
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Nomenclature

Symbol Definition Unit
Amush mushy constant kg/m3/s
Bf weight factor
Cϕ conversion factor for ϕ [ϕ]
ci discretized lattice speed ls/lt
cp specific heat capacity J/kg/K
cs lattice speed of sound ls/lt
d wall thickness m
E energy lJ = ls2/lt2

Eik, Eki filter matrix
fi density distribution function
fL liquid fraction
f body force N/m3

g gravitational acceleration m/s2

gi temperature distribution function
H total enthalpy J/kg
Hl liquid enthalpy J/kg
Hs solid enthalpy J/kg
h sensible enthalpy J/kg
mi enthalpy distribution function
ml

i latent enthalpy distribution function
ms

i sensible enthalpy distribution function
K constant
L latent heat J/kg
N amount of grid points
p order of accuracy
Q′′′ volumetric heat source W/m3

r grid refinement ratio
sav average phase front position
T temperature K
T0 reference temperature K
TC cold temperature K
TH hot temperature K
Tl liquidifus temperature K
Ts solifidus temperature K
t time s
u velocity m/s
v0 characteristic lattice velocity ls/lt
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Symbol Definition Unit
α thermal expansion coeff. 1/K
αk momentum solution vector
βk temperature solution vector
γk enthalpy solution vector
∆t lattice time step lt
∆x lattice spacing ls
δϕ time convergence criterion
ϵ error %
θ non-dimensional time
κ thermal diffusivity m2/s
λ conductivity W/m/K
ν kinematic viscosity m2/s
ρ density kg/m3

ρ0 reference density ls−3

σ1,2 small factor
ϕ any quantity/solution [ϕ]
ϕ0 reference quantity/solution [ϕ]
ϕin,out surface in-, out- flux lW = ls2/lt3

φ phase tag
Ωi collision operator
Ωs

i special collision operator

Non-dimensional numbers
Co Courant number
Fo Fourier number
Ma Mach number
Nu(0,H) Nusselt number (at x = 0, H)
Pe Péclet number
Pr Prandtl number
Ra Rayleigh number
Ste Stefan number

Abbreviation
BC Boundary Condition
BGK Bhatnagar-Gross-Krook
CFD Computational Fluid Dynamics
EHM Eça-Hoekstra Method
FM Filter-Matrix
GIF Generation International Forum
HBB Half-Way-Bounce-Back
LB(M) Lattice Boltzmann (Method)
LBE Lattice Boltzmann Equation
MRT Multi-Relaxation-Time
MS(F)R Molten Salt (F)ast Reactor
NSE Navier-Stokes Equations
WNSV Wet-Node-Solution-Vector



Chapter 1

Introduction

A mix of different renewable energy sources is required to limit the global temperature increase to 1.5
◦C by 2030 [1], as internationally agreed in the Paris Agreement. While renewable energy sources like
solar, wind and hydropower have been growing rapidly, their inherent intermittency limits the potential
for full-scale expansion. Therefore, nuclear energy can offer a reliable addition to the global renewable
energy mix. Nuclear energy can supply consistent, base-load power, which is vital in a world where both
industry and households are increasingly electrifying their energy demand. Although historic accidents
sometimes still shed a negative light on nuclear energy, it has gradually received renewed attention as
a part of the energy transition in recent years.

The development of nuclear technologies is coordinated by the Generation International Forum (GIF)
[2]. Previous generations of nuclear reactors have led the way from proof-of-concepts to economically
reliable reactors with advanced safety systems. The current Generation-IV reactors aim to include re-
liable passive safety systems, sustainability, efficiency and cost-effectiveness. Six different promising
nuclear reactors have been selected within Generation IV, amongst which is the Molten Salt Fast Reac-
tor (MSFR).

The MSFR research efforts are currently coordinated by SAMOSAFER [3], a consortium funded by
the EU as part of the European Energy Roadmap 2050 and of which TU Delft is one of the leaders.
SAMOSAFER’s overarching objective is to ensure the MSFR’s compliance with all expected regulations
by 2050. At the moment, the design of the MSFR is conceptual and relies on numerical modelling
to assess potential safety risks before starting construction. Central to the MSFR’s safety studying
heat transfer within the reactor core and its surrounding system. The current research is focused on
numerically modelling of heat transfer in the context of one of the safety features: the so-called freeze-
plug.

This chapter starts with an introduction to the design of the MSFR and freeze-plug in section 1.1. Rele-
vant literature studies on the freeze-plug and the numerical simulation method are discussed in sections
1.2 and 1.3, respectively. Finally, the research question and thesis outline are discussed in section 1.4.

1.1 Molten Salt Fast Reactor
The MSFR design stems from the earlier developed thermal molten salt reactor (MSR); a graphite-
moderated, liquid-fueled fission reactor first developed in the 1950s by the Oak Ridge National Lab
Despite its promising results in a test reactor [4], the program was shut down in the 1970s, partly because
its thermal neutron spectrum required intensive chemical processing to avoid neutron captures leading
to minor actinides. In the last two decades, the MSR technology regained interest, also giving rise to the
proposal of the Molten Salt Fast Reactor.

1.1.1 Design
The current MSFR design concept [5][6] is a fast-spectrum, 3 GWth, breeder reactor operating in the
thorium fuel cycle, under ambient pressure and at 750 ◦C. The MSFR is filled with a molten fuel salt
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which itself also acts as a primary coolant. The preliminary design, as shown in figure 1.1, is a single
compact cylinder (2.25m x 2.25m) filled with fuel salt and surrounded by a ring of thorium-salt in the
walls. The ring acts as a breeding blanket, in which non-fissile Th-232 is transmuted to fissile U-233
upon capturing a neutron and via two beta-decays. This happens without any solid moderator and thus
in the fast neutron spectrum. The pumps circulate the fission-heated fuel salt in the core from bottom to
top, where it flows out towards a number of identical sections. Here, the salt releases its thermal energy
to the heat exchangers for power production. In each section, a helium bubble separation system is
present, which separates the gaseous fission products and (semi-)noble metal particles from the fuel
salt, preventing corrosion in the primary circuit [5]. Lastly, a drainage towards safety tanks is present at
the bottom of the core, sealed with a freeze-plug. Section 1.1.2 will elaborate further on this freeze-plug
mechanism.

The MSFR offers several advantages with respect to conventional solid-fueled nuclear reactors [7]. First,
while one of the main arguments against nuclear energy is the need for long-term storage, the MSFR
produces waste that is mostly free of long-lived actinides. This is a result of the MSFR’s fast-spectrum
operation and its ability to perform real-time waste processing. In addition, the MSFR could offer a
solution to the waste storage problem of conventional nuclear reactors, as it is able to burn long-lived
waste as a fuel. Another main advantage of the MSFR is its inherent safety, owing to its liquid core. The
liquid is free to expand upon heating, causing a strong negative temperature reactivity feedback loop.
The liquidity of the salt also makes it possible to passively remove decay heat during accidents, via the
drainage of fuel through a freeze-plug-sealed pipe.

Figure 1.1: Schematic view of cross-section of MSFR fuel
circuit and draining system [8].

Figure 1.2: Vertical cross section of the freeze-plug design
[9]

1.1.2 Freeze-Plug
The context of this thesis is the freeze-plug, a key safety component of the MSFR. The most far-
developed design of the freeze-plug was built by Giraud [10]. A simplified, schematic overview is given
in figure 1.2. The freeze-plug consists of a barrier of solidified salt that sits in an actively air-cooled part
of the drainage pipe and stays frozen during normal operations. In case of an accident, the freeze-plug
offers a heat sink solution: its active cooling shuts off and the decay heat from the reactor will cause the
freeze-plug to melt. The opened drainage pipe allows the fuel salt to flow into emergency dump tanks,
where it is stored under sub-critical conditions. The melting time of the freeze-plug is an important fea-
ture: it must be short enough such that the decay heat in the core does not reach critical temperatures
(> 2100 ◦C[9]) in case of an emergency, as this can structurally damage the core. The adjacent, metal
drainage pipe wall can play a crucial role in enhancing the melting, as it conducts and stores decay heat
coming from the reactor core. Hence, the freeze-plug does not have to melt all the way through: melting
its outer circumference near the hot wall is enough for the freeze-plug to fall down and thereby open the
drainage pipe. In conclusion, it is of significant importance to understand the melting of the freeze-plug
and which parameters influence it to assess the MSFR’s safety.
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1.2 Review of Literature on the Freeze-Plug
Insights on the suitable design parameters of the freeze-plug can be offered through (a combination of)
experimental and numerical research. However, experimental investigations on the freeze-plug that fully
include the complexity of the MSFR and fuel salt are scarce [11]. Aji [12] conducted basic investigations
on the freeze-plug parameters and found that heat conduction within the surrounding pipe structures
substantially impacts the melting time. Aji also studied the effect of natural convection [13] and found
that it prolonged the melting time in a vertical position. However, when inclining the freeze-plug with
an angle, the effect of natural convection contributed to shorter melting times. the effect of natural con-
vection could contribute to shorter melting times when inclining the freeze plug with an angle to the
horizontal axis. Although Aji’s results provided interesting insights into the general importance of the
surrounding wall and natural convection on the melting time, they could only be generalised for non-
realistic, small-diameter plugs. Tiberga et al. [9] performed a preliminary investigation on the influence
of various design parameters (e.g. sub-cooling, recess depth) on its melting time with a numerical COM-
SOL method. The study concluded that melting only based on decay heat was likely to be unfeasible,
and recommended to further study heat transferred from the surrounding wall structures. Tartaglia [14]
studied the combination of convection, phase change and wall effects in the freeze-plug by using a 3D
OpenFOAM model and also found the significant importance of the wall effect on the melting time. How-
ever, the study simplified the wall effect by modelling it with a time-dependent temperature boundary
condition instead of considering coupled heat conduction through the wall. Therefore, Tartaglia advised
to develop a multi-region solver that is capable of dealing with the different structural components of the
freeze plug system. Pater & Kaaks [11] recently developed a numerical benchmark of the freeze-plug
and combined the modelling of phase change, conjugate heat transfer, natural convection and radia-
tion. Results were modelled with three different codes (STAR-CCM+, OpenFoam, DGFlows) and were
mostly consistent between the three of them. However, the addition of conjugate heat transfer showed
discrepancies. In conclusion, literature indicates that the effects of natural convection and conjugate
heat transfer with surrounding wall structures are of significant importance to the freeze plug’s melting
time, but numerically benchmarking these effects accurately has proved to be complicated. Therefore,
the current thesis focuses on coupling convective phase change (melting) and conjugate heat transfer
at a fluid-solid interface.

1.3 Review of Literature on the Lattice Boltzmann Method
The Lattice Boltzmann Method (LBM) is a Computational Fluid Dynamics (CFD) method that has re-
ceived increasing interest over the past decades [15]. Where conventional CFD methods (e.g. finite dif-
ference, finite volume, finite elements) take a macroscopic view on a fluid by solving the Navier-Stokes
equations, the LBM treats a fluid as an ensemble of particles described by a distribution function in a
mesoscopic view. These ensembles move through space and interact with other ensembles through
collisions. A major advantage of the LBM is that it treats non-linearity locally and is therefore highly
suitable for parallel computing.

This research uses the LBM for numerically modelling the freeze-plug and thereby spans across dif-
ferent aspects of the method: (convective) phase change, conjugate heat transfer, wet-node boundary
conditions and the filter-matrix collision scheme. The most relevant literature on those different aspects
is summarised in this section.

• Multiple studies have proven the LBM to be successful for convective phase change problems
(for example Huber et al. [16], Betrand et al. [17]). Most of these studies use a so-called enthalpy-
updating scheme [18], treating the inclusion of phase change’s latent heat into the temperature
equation in an iterative manner. As this process greatly increases the computational cost, Huang
et al. [19] proposed an alternative method to avoid iterations: the total-enthalpy-based approach.
This method has attracted much attention due to its computational efficiency and accuracy [20].

• Conjugate heat transfer deals with the interaction of heat at a solid-fluid interface and its applica-
tion within LBM is a relatively new practise [21]. It requires defining a suitable boundary condition
at the fluid and solid interface. Wang et al [22] made a first attempt by adopting a steady-state
half-lattice division treatment for the fluid-solid interface. Other schemes using a wet-node ap-
proach, where the conjugate interface is on the lattice nodes, have also been developed [23][24].
However, they mostly required the specific capacities of the fluid and solid to be identical. Li et al.
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[25][26] recognised the importance of the interface location and proposed a method that could deal
with transient problems. However, the mathematical formulation is relatively complicated even in
a small-dimensional case and was not very computationally efficient [27]. Le et al. [28] proposed
performing extrapolation along the normal direction, transforming the conjugate boundary condi-
tion to a Dirichlet boundary condition. Second-order accuracy was achieved using this method.

• The wet-node boundary approach could offer an instinctive and elegant approach to solving
conjugate heat transfer problems. There are three well-known wet-node boundary schemes. The
equilibrium scheme (ES) [29] uses the so-called equilibrium distribution to enforce macroscopic
quantifies on the boundary. Despite its simplicity and excellent stability, it reduces the LBM to first-
order accuracy. The non-equilibrium extrapolation scheme [30] and the non-equilibrium bounce-
back method [31] propose an improvement on the ES, achieving second-order accuracy. However,
they show moderate to low stability and complex extension to more complex geometries.

• All previously mentioned work employ conventional collision schemes: Bhatnagar–Gross–Krook
(BGK) or Multiple-Relaxation-Time (MRT) collision. Eggels et al. [32] proposed an alternative
collision scheme, the Filter-Matrix (FM) method. Zhuo & Zhong [33][34] further improved the
FM-LBM and showed its superior stability with respect to BGK in incompressible thermal flows.
Another great advantage of the FM-LBM is that it gives the user great control over the macroscopic
quantities in question. Recently, the FM-LBM has proved its effectiveness in multiple MSc theses,
including transient freezing of eutectic materials [35], turbulent thermal flows [36] and flow batteries
[37][38].

1.4 Thesis Goals
This thesis’ goal is to combine the separate knowledge on (convective) phase change, conjugate heat
transfer, wet-node boundary conditions and the Filter-Matrix Lattice Boltzmann method. This will con-
tribute to the extension of LBM applications, as the FM-LBM has not been applied in combination with
wet-node boundary conditions and with conjugate heat transfer yet. In addition, it is aimed to contribute
to a better understanding of the melting of the MSFR freeze-plug through numerical modelling. This
leads to the following research question:

How can the Filter-Matrix lattice Boltzmann method be implemented to model the melting behaviour of
the freeze-plug and heat transfer in the freeze-plug’s surrounding structures?

• How can conjugated heat transfer best be modelled?
• What are suitable wet-node boundary conditions?
• What is the effect of the design parameters of the freeze-plug on its melting rate?

1.4.1 Outline
This thesis will answer the research question and test the developed algorithm. To that end, the report
has the following structure:

• Theory (chapter 2) discusses the fundamental physics of the governing equations of conjugate
heat transfer, phase change and natural convection. Also, an introduction to the theory behind the
Lattice Boltzmann Method is given.

• Numerical method (chapter 3) presents the specific implementation of the Lattice Boltzmann
method. This includes the Filter-Matrix collision operator, different boundary conditions, lattice
units and a complete overview of the used algorithm. Additionally, a remark on numerical verifica-
tion methods is made.

• Benchmark results (chapter 4) aims to verify the three individual aspects of the model: natu-
ral convection, conjugate heat transfer and convective melting. Benchmarking is performed by
comparing results to other numerical studies available in literature.

• Freeze-plug results (chapter 5) combines the individual model elements into one case, modelling
the freeze-plug. Results are compared to a numerical benchmark study.

• Wet-node boundary condition results (chapter 6) performs an analysis of the wet-node bound-
ary conditions in terms of its grid convergence, order of accuracy, time convergence and energy
conservation. Different variations in the wet-node boundary scheme are tested.

• Finally, conclusions & recommendations (chapter 7) are presented.



Chapter 2

Theory

The research question exploring conjugate heat transfer, phase change, natural convection and lattice
Boltzmann boundary conditions spans across both fundamental physics and computational methods.
This chapter is dedicated to laying out relevant theories within these topics as a fundamental basis for the
remainder of the report. Section 2.1 covers macroscopic physical governing equations for thermal flows
and phase change. Building further onto this, section 2.2 describes the theory behind three physical
phenomena which arise in the freeze-plug. Lastly, section 2.3 introduces the lattice Boltzmann method
(LBM) and its general workings, without going into depth about its numerical application yet.

2.1 Physical Governing Equations
The central equations describing the fundamental physics of convective, conjugate heat transfer and
phase change can be derived from fluid dynamics and thermodynamics. A conventional approach is
to make use of the continuum approximation: the microscopic behaviour of individual particles are
considered negligible, such that the fluid can be characterised by its continuous, macroscopic properties
[39]. The resulting conservation laws for mass and momentum are given in section 2.1.1, and for those
energy in section 2.1.2.

2.1.1 Fluid Dynamics
Conservation of mass, in absence of sources/ sinks, is defined by the rate of mass change in a volume
being equal to the mass flow rate over it’s boundaries. This is described by the continuity equation [40]:

∂ρ

∂t
+∇ · (ρu) = 0 (2.1)

with ρ the fluid density and u the fluid velocity. By assuming the fluid to be incompressible, the equation
reduces to:

∇ · u = 0 (2.2)

The conservation of momentum for incompressible, Newtonian fluids is described by the equation [40]:

ρ

(
∂u

∂t
+ (u · ∇)u

)
= −∇P + ρν∇2u+ f (2.3)

with ∇P the pressure gradient, ν the kinematic viscosity and f the external force. The left side of the
equation describes the rate of change momentum flow and convection. The right side represents the
total force due to the pressure gradient, viscous drag and external forces. The continuity- and momentum
equation together are known as the incompressible Navier-Stokes equations (NSE).

2.1.2 Thermodynamics
Similar to momentum, the energy is also conserved. This section first describes the energy equation in
terms of temperature. Thereafter, the temperature equation is modified to allow expression in terms of
enthalpy, which is more suitable when dealing with the description of phase change.

11
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The conservation of energy in an incompressible fluid with constant specific heat cp and neglecting
viscous dissipation is given by the heat equation:

ρcp
∂T

∂t
+ ρcpu · ∇T = ρcp∇κ∇T +Q′′′ (2.4)

with T temperature, cp specific heat, κ thermal diffusivity, Q′′′ a volumetric heat source/sink [W/m3]. The
left-hand side represents the rate of change of temperature in the volume and the advection of energy.
The right-hand side describes the diffusion of heat and a source term [41]. In this thesis, the energy
equation in terms of temperature T is used when dealing with domains without phase changes.

Phase Change: Enthalpy Equation
When dealing with phase change it is more convenient to work with the energy equation in terms of
total enthalpy H, instead of temperature. This section aims to find the energy equation in terms of H,
based on a derivation by Bus & Rohde [42]. Phase change is defined by a change in total enthalpy H,
consisting of a change in sensible enthalpy h (due to a change in temperature T ) and in latent enthalpy
∆H (due to the internal energy released or required to enable the phase change):

H ≡ h+∆H = cpT + fLL (2.5)

with fL the local liquid fraction and L the latent heat. The liquid fraction defines the phase of the current:
0 for solid, 1 for liquid and between 0 and 1 the so-called mushy zone. The absorption/release of latent
heat L forms a heat sink/source Q′′′ in equation 2.4, which can be described by [43]:

Q′′′ = −∂(ρ∆H)

∂t
= −∂(ρfLL)

∂t
(2.6)

The equation for sensible enthalpy h can be found by filling in Q′′′ from equation 2.6 into the heat
equation 2.4 and using the definition of h stated in 2.5. This gives the following expression:

ρφ
∂hφ

∂t
= ρφu · ∇hφ = ∇(ρφκφ∇hφ)− ρφ

∂fφ
LL

∂t
(2.7)

in which the definition φ = [liquid, solid,mushy] is introduced, to describe h for the whole domain in one
equation. To arrive at the conservation equation for total enthalpy H, the two transient terms in equation
2.7 are combined, and the following assumptions are made:

• cφp ≈ constant, ρφ ≈ constant, i.e. the density and specific of the material are approximately
constant within the same phase.

• ∇fLL ≈ 0 [43], i.e. the advection of latent heat can be ignored hence changes in fL are only
incorporated in the time derivative. This can be assumed because velocities near the mushy zone
are approximately zero.

Finally, this leads to the energy equation in terms of total enthalpy H:

∂Hφ

∂t
+ u · ∇hφ = ∇ ·

(
κφ∇hφ

)
(2.8)

With this equation, the explicit temperature dependency in solving for energy is eliminated - called the
total enthalpy-based approach [43]. In other words, by solving equation 2.8 the temperature and en-
thalpy are tracked simultaneously, instead of needing an implicit scheme to iteratively include the latent
source term into the temperature equation (the enthalpy-updating approach [18]).

The temperature can be retrieved from the temperature-enthalpy relationship, which in liquid-solid phase
change is characterized by a jump in enthalpy at the melting point. This is visualised in figure 2.1, in
which an instantaneous jump is seen for pure materials (Tm = Ts) and a transition regime for so-called
eutectic materials (Tm = Ts + δ). In a formula, this is given by:

T =


H/csp if H < Hs

Ts + fL(Tl − Ts) if Hs ≤ H < Hl

Tl +
H−Hl

clp
if H > Hl

(2.9)
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with Ts, Tl the solidifus- and liquidifus temperature and Hs, Hl are the solid and liquid enthalpy. The
latter are given by Hs = cspT , Hl = Hs + L. The calculation of the liquid fraction fL is given by:

fL =



0 if H < Hs

H −Hs

Hl −Hs
if Hs ≤ H < Hl

1 if H ≥ Hl

(2.10)

When the thermophysical properties specific heat and thermal conductivity have different values for
different phases, their value in the mushy zone can be set by their respective fractions [44]:

cmp =
csp + clp

2
, λm =

λs
p + λl

p

2
(2.11)

Figure 2.1: Left: H(T ) function for a pure substance, with a step at the melting temperature. Right: H(T ) function for eutectic
substance, with a linear rise in melting range. [44]
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2.2 Phenomena in the Freeze-plug
In the context of the freeze-plug, this research studies (the combination of) three physical phenomena:
natural convection, conjugate heat transfer and convective melting. This section introduces the theory
behind these phenomena and, if applicable, their governing equations and related non-dimensional
numbers.

2.2.1 Natural Convection
Natural convection is the flow in a fluid driven by temperature differences. Its effect on a fluid can be
described by using the Bousinessq approximation. It assumes that local temperature differences are
small and can therefore be linearised around a reference temperature T0. Also, it assumes that density
changes are induced only by these temperature changes (i.e. pressure variations are negligible), such
that it can also be linearised around a reference density ρ0: ρ = ρ0 + ∆ρ, with ∆ρ << ρ0. Thereby, a
Taylor approximation leads to [41]:

ρ(T ) ≈ ρ0 − ρ0 α
(
T − T0

)
(2.12)

with α the thermal expansion coefficient. In the momentum equation (2.3) it is assumed that density is
constant (ρ = ρ0), except for in the gravitational force term. The latter is called the buoyancy force and
is given by the following definition:

f =
(
ρ(T )− ρ0

)
g = αρ0(T − T0)g (2.13)

Natural convection problems can be characterised with the non-dimensional numbers Rayleigh (Ra) and
Prandtl (Pr). The Rayleigh number captures the intensity of natural convection and is defined as the
ratio of the timescale of diffusive thermal transport to the timescale of convective thermal transport:

Ra =
gα(T − T0)L

3

νκ
(2.14)

with L the characteristic length of the geometry. The Prandtl number Pr indicates the relative thickness
of momentum and temperature boundary layers in a natural convection domain, and thereby the rate
of heat transfer. The formulation of Pr is given by the ratio between momentum diffusivity and thermal
diffusivity:

Pr =
ν

κ
(2.15)

2.2.2 Convective Melting
Melting of the freeze-plug is expected to be influenced by heat transfer through natural convection [12].
A case of convective melting can be illustrated by the geometry shown in figure 2.2. A two-dimensional
box is filled with ice and the left boundary is kept at hot temperature T = T1, making the ice to melt over
time. It is commonly accepted that this transient convective melting problem consist of four transition
regimes [16][45]. The first regime is for short melting times, when the heat transfer is entirely defined
by conduction. The melting front is still parallel to the vertical wall and the width of the molten area is
too small for natural convection to develop. In the second regime the liquid boundary layer has grown
and convection starts taking place mostly in the top part, making it melt faster than in the bottom part.
This is called the mixed regime because both conduction and convection play a role. In the next regime,
the convection zone extends to the entire height of the cavity, and conduction is negligible. Finally, the
melting front has reached the right boundary the sold starts shrinking.

In addition to non-dimensional numbers Ra, Pr, convective melting is also described by the Stefan
number (Ste). The latter is defined as the ratio between sensible heat and latent heat L and thereby
expresses the rate of phase change:

Ste =
cp∆T

L
(2.16)
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Figure 2.2: i) Conduction regime ii) Mixed regime iii) Convection regime iv) Shrinking solid [16].

2.2.3 Conjugate Heat Transfer
Conjugate heat transfer refers to the interactive heat transfer between fluid and an adjacent solid. It is
mostly characterised by the combination of conduction (in the solid) & convection (in the fluid) and its
complexity lies in the boundary interface that couples the two domains. On this interface, the following
boundary conditions for temperature hold:

Tf,W = Ts,W (2.17)

−λf
∂T

∂n

∣∣∣∣∣
f,W

= −λs
∂T

∂n

∣∣∣∣∣
s,W

(2.18)

in which subscripts f, s note the respective fluid and solid domain, subscript W the spatial position of the
shared interface, λ the thermal conductivity ( λ = κ/(ρcp)) and n the normal direction of the interface.

When solving conjugate problems numerically, there are mainly two different methods of conjugating
the solid and fluid domain solutions. The first method is a direct approach in which the complete set of
equations is solved in both the domains simultaneously. The second method is the iterative approach
where the fluid and solid domains are solved separately and only their solutions are conjugate at the
interface.

2.3 Fundamentals of the lattice Boltzmann method
In previous sections, fluid dynamics has been described by viewing it at the macroscopic scale. How-
ever, in fact three different physical scales can be used to describe fluids: microscopic, mesoscopic
and macroscopic. Where the microscopic scale tracks individual particles and the macroscopic scale
treats properties like density, velocity and temperature, the mesoscopic scale lies in between the two. It
describes the fluid flow by the distribution of particles. In this research the fluid- and thermodynamics
will be modelled in a mesoscopic approach, by using the Lattice Boltzmann Method (LBM).

Section 2.3.1 starts by introducing kinetic theory on which the LBM is based, and the resulting Boltzmann
equation is discretized in section 2.3.2. Thereafter, section 2.3.3 introduces the basic concept of a LBM’s
basic algorithm. Chapter 3 will further elaborate on the specific algorithm implementation.

2.3.1 Kinetic Theory
Kinetic theory is a gas and fluid representation on the mesoscopic scale, in which the central quantity
is the particle distribution function f(x, ξ, t). The particle distribution function describes the behaviour
of an ensemble of atoms or molecules, at each point in space x, moving with microscopic velocity ξ at
each moment of time t. The distribution function is connected to macroscopic variables density ρ and
velocity u, by integrating over all possible velocities ξ at (x, t) [15]:

ρ(x, t) =

∫
f(x, ξ, t)d3ξ (2.19)

ρ(x, t)u(x, t) =

∫
ξf(x, ξ, t)d3ξ (2.20)
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The time evolution of distribution function f is described by the so-called Boltzmann equation:

∂f

∂t
+ ξ · ∇xf +

F

ρ
∇ξf = Ω(f) (2.21)

This can be interpreted as a kind of advection equation. The left hand side shows the distribution function
f being advected with particle velocity ξ and the forces F affecting this velocity. On the right hand side
the source term is represented by a so-called collision operator Ω(f). The collision operator imitates
inter-molecular behaviour as distributions move forwards and collide with each other. As in all physical
collisions, the quantities mass, momentum and energy must be conserved and the collision operator
takes care of that. It also ensures that distribution function f will locally evolve to an equilibrium feq.
Chapter 3 will elaborate further on how to define the collision operator within the LBM.

2.3.2 Discretization of the Boltzmann Equation
In order to solve the Boltzmann equation 2.21 numerically, the distribution function f needs to be dis-
cretized. Discrete distribution function fi(x, t) is defined in a square lattice of points x with lattice spacing
∆x [ls] and at times t with lattice time steps ∆t [lt]. The units ls and lt refer to lattice space and lattice
time. Subscript i in fi refers to its discretization in a set of velocities ci. The choice of spatial discretiza-
tion dimension (d) and number of discrete velocities (q) together result in a discretization scheme called
DdQ9. In this research, the 2D space is discretized via the D2Q9 scheme. A visualisation for the re-
sulting fi with i = 0, 1, .., 8, in one lattice point is shown in figure 2.3. The discretized velocity set ci is
completed by attributing corresponding weights wi to each direction, for D2Q9 given by:

wi =


4
9 for i = 0
1
9 for i = 1, 2, 3, 4
1
36 for i = 5, 6, 7, 8

(2.22)

Based on the discretizations, the lattice Boltzmann equation (LBE) now takes the form:

fi(x+ ci∆t, t+∆t)− fi(x, t) = ∆tΩi(x, t) (2.23)

with Ωi(x, t) the discretized collision operator. Furthermore, the macroscopic momentum variables can
be found from the distribution function via a similar method as in the continuous case (equations 2.19,
2.20):

ρ(x, t) =
∑
i

fi(x, t) (2.24)

ρ(x, t)u(x, t) =
∑
i

cifi(x, t) (2.25)

Lastly, the equilibrium distribution function is given by

feq
i = wiρ

(
1 +

ci · u
c2s

+
(ci · u)2

2c4s
+

u · u
2c2s

)
(2.26)

Figure 2.3: Schematic of the directions i = 0, 1, ..., 8 in the velocity set D2Q9 of {ci, wi} [46].
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Chapsman-Enskog Analysis
Having found a suitable LBE to use for solving fluid dynamics, the question might remain how the LBE
exactly relates to a problem’s macroscopic governing equations (section 2.1). The answers lies in the so-
called Chapsman-Enskog analysis, which shows that the Navier-Stokes equation can be retrieved from
the LBE. The full analysis lies beyond the scope of this report, but the interested reader can employ
[15] for reference. An important point that arises from the Chapman-Enskog analysis, is that second-
order accuracy in LBM can be achieved by assuming certain higher-order-terms to be negligible. This
assumption is valid as long as the Mach number remains small. The resulting stability requirements are
discussed in section 3.3.

LBM for Thermodynamics
Until this point, only the density distribution function fi has been discussed, which can solve for macro-
scopic properties density and velocity. In the context of thermal- & phase change flows, the energy is
to be solved as well. Several methods exist to include energy into a LBM, for example the hybrid [47]
and multi-speed [48] approach. The method that is employed in this thesis, is the double-distribution
function, which treats heat in a very similar manner as momentum. The idea is to introduce a second dis-
tribution function to describe the flow of heat, next to the distribution function fi for momentum. The two
distributions are then explicitly coupled in the collision step. In this way, all calculations are performed
within the LBM method (unlike for example the hybrid method), which proves to be very successful in
terms of stability, accuracy and parallezability [49].

The Navier-Stokes momentum equation 2.3 and the heat equation 2.4 have strong similarities, which
are visible when making the following changes to the NSE:

ρu → ρcpT, ρu∇u+∇P → ρcpu · ∇T, ν → κ, f → Q′′′ (2.27)

Thereby, the heat equation could in fact be understood as a NSE for heat [15], making it easy to adapt
the LBM to temperature and enthalpy problems. The discretization of temperature distribution function
g and enthalpy distribution function h in the D2Q9 follows the same set ci, wi and their evolution is
described by:

gi(x+ ci∆t, t+∆t) = gi(x, t) + ∆tΩ
(g)
i (x, t) (2.28)

mi(x+ ci∆t, t+∆t) = mi(x, t) + ∆tΩ
(m)
i (x, t) (2.29)

Similarly to equations 2.24 and 2.25, the macroscopic temperature T and total enthalpy H can be
recovered from distribution functions gi and mi:

T (x, t) =
∑
i

gi(x, t) (2.30)

H(x, t) =
∑
i

mi(x, t) (2.31)

2.3.3 Collision and Streaming
When solving the discretized distribution function equations (2.23, 2.28, 2.29) in a numerical algorithm,
two subsequent processes take place in each time step. These are called collision and propagation
and are illustrated in figure 2.4, taking fi as an example. In the collision step, distribution function fi is
redistributed at each lattice node by a collision operator (Ω(fi), resulting in a post-collision function f∗:

f∗
i (x, t) = fi(x, t) + ∆tΩi(x, t) (2.32)

Subsequently, the post-collision populations f∗ are propagated from the lattice node x to neighbouring
node x+ ci∆t, following their individual lattice directions ci. Thereby one time step ∆t [lt] is completed:

fi(x+ ci∆t, t+∆t) = f∗
i (x, t) (2.33)

This general structure in the LBM’s algorithm also provides intuition for its (earlier introduced) suitability
in parallel computing. Namely, the computational expensive process (collision) happens locally, while
the computationally in-expensive process (streaming) happens non-locally. Or in Succi’s [50] words:
’Non-linearity is local, while non-locality is linear’.
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Figure 2.4: Schematic of general LBM algorithm [38]. Distributions are redistributed during collision. Propagation streams the
distributions to their adjacent nodes



Chapter 3

Numerical method: Lattice Boltzmann

This chapter describes the implementation of the lattice Boltzmann method for a thermal fluid dynamics
model including conjugate heat transfer and phase change. The Filter-Matrix is used as a collision
scheme, described in section 3.1. Various options for the treatment of boundary conditions within LBM
are described in section 3.2. Thereafter, section 3.3 comments on how conversion parameters and
lattice units are used within the LBM. This concludes all ”mathematical ingredients” of the used LBM.
How these are formed into a LBM algorithm is described in section 3.4. Finally, section 3.5 moves away
from the LBM, and elaborates on methods for verification of numerical simulations.

3.1 Collision Schemes
In the previous chapter, collision operator Ωi was introduced. Mulitple schemes to model Ωi exist, the
simplest and most commonly used one being the Bhatnagar-Gross-Krook (BGK) operator. In short, the
BGK-operator brings the distribution function towards its local equilibrium feq

i on a timescale defined by
relaxation time τ . The relaxation time is bound to a numerical range in which stability and accuracy are
ensured, which is directly related to the kinematic viscosity ν. Therefore, the main disadvantage of BGK
is that it is viscosity dependent: high viscosities result in reduced accuracy while low viscosities lead to
instabilities [15]. Another collision scheme named the Filter-Matrix (FM) has shown to be more stable
than the conventional BGK scheme. It also has the advantage of giving the user great control over the
macroscopic quantities in question, as will be experienced in section 3.2.2.

This thesis utilises the FM-LBM for all three different distributions functions. The current section intro-
duces the formulas associated with the FM-LBM. First this is done by example of the density distribution
function fi (section 3.1.1). Application on the temperature- and enthalpy distribution is very similar and
given in sections 3.1.2 and 3.1.3, respectively. Note that later on, section 3.4 will show how to implement
the FM-LBM model in an iterative algorithm.

3.1.1 Filter-Matrix for Momentum
The FM-LBM makes use of a staggered coordinate-time definition of the particle distribution fi, i.e.
equation 2.23 is shifted half a grid- and time step:

fi

(
x+

ci∆t

2
, t+

∆t

2

)
− fi

(
x− ci∆t

2
, t− ∆t

2

)
= ∆tΩi(f) (3.1)

By combining a second-order Taylor expansion around fi(x, t) on equation 3.1 and a first-order expan-
sion on equation 3.14, the staggered formulation can be rewritten into:

fi

(
x± ci∆t

2
, t± ∆t

2

)
= fi(x, t)±

∆t

2

(
ci · ∇ ± ∆t

2
∂t

)
fi(x, t) +O(∆t2)

= fi(x, t)±
∆t

2
Ωi(fi) +O(∆t2)

(3.2)

(3.3)

19
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By using the Chapsman-Enksnog analysis [51], a definition of the collision operator Ωi(f) in terms of
macroscopic properties can be found. This is written in the following form of a matrix multiplication:

fi

(
x± ci∆t

2
, t± ∆t

2

)
=
∑
k

ωiEikα
±
k (x, t) (3.4)

in which Eik and α±
k are the so-called filter-matrix and solution vector. The superscript ± indicates the

pre- and post-collision solution vectors. The filter matrix is reversible (with ωiEik = (Eki)
−1), such that

the solution vector can be found with a reverse operation:

α±
k (x, t) =

∑
i

Ekifi

(
x± ci∆t

2
, t± ∆t

2

)
(3.5)

Filter-matrix Eik is independent of time and position and in the D2Q9 scheme, it is defined by:

Eik =
[
1, 3cix, 3ciy,

3c2ix−1
2 , 3cixciy,

3c2iy−1

2 ,
3cix(3c

2
iy−1)

2 ,
3ciy(3c

2
ix−1)

2 ,
(3c2ix−1)(3c2iy−1)

2

]
(3.6)

The solution vector is time and position dependent and changes every time step due to collision. It is
defined by a set of macroscopic properties, for the D2Q9 scheme:

α±
k (x, t) =



ρ

ρux ± ∆t

2
fx

ρuy ±
∆t

2
fy

3ρuxux + ρ(−6ν ±∆t)
∂ux

∂x

3ρuxuy + ρ
−6ν ±∆t

2

(
∂ux

∂y
+

∂uy

∂x

)
3ρuxuy + ρ(−6ν ±∆t)

∂uy

∂y
T±
1

T±
2

F±



(3.7)

The last three terms T±
1 , T±

2 , F± are higher-order, unphysical terms that originate from the O(∆t2) term
in equation 3.2. Therefore they are set to zero in calculations.

3.1.2 Filter Matrix for Temperature
The FM-LBM for temperature is set up in a manner very similar to momentum. The staggered formulation
for temperature density function gi is given by:

gi

(
x+

ci∆t

2
, t+

∆t

2

)
− gi

(
x− ci∆t

2
, t− ∆t

2

)
= ∆tΩi(g) (3.8)

Collision is also performed by a matrix multiplication with filter matrix Eki and now with temperature
solution vector β±

k :

gi

(
x± ci∆t

2
, t± ∆t

2

)
=
∑
k

ωiEikβ
±
k (x, t) (3.9)

β±
k (x, t) =

∑
i

Ekifi

(
x± ci∆t

2
, t± ∆t

2

)
(3.10)

The filter matrix Eik is unchanged with respect to momentum, thus given by equation 3.6. As the so-
lution vector deals with macroscopic quantities, and β±

k now describes temperature, it ofcourse defined
differently than the momentum solution vector α±

k . For D2Q9, the temperature solution vector β±
k is given

by [33]:

β±
k (x, t) =

[
T, uxT +

−6κ±∆t

6

∂T

∂x
, uyT +

−6κ±∆t

6

∂T

∂y
, S±

1 , S±
2 , S±

3 , T±
2 , T±

2 , F±
]T

(3.11)

where S±
1,2,3, T±

1,2 and F± are the higher-order terms and set to zero in calculations.
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3.1.3 Filter Matrix for Enthalpy
Although the FM-LBM is also very similar for enthalpy, a slight alteration is required before presenting its
collision scheme. Namely, the total enthalpy distribution function mi is split into a sensible part ms

i and
a latent part ml

i, similarly to equation 2.5:

mi = ms
i +ml

i (3.12)

ml
i = [fL · L, 0, 0, 0, 0, 0, 0, 0]T (3.13)

Thereby, the latent heat is only part of the static population (i = 0) and the collision can be performed
with the sensible enthalpy distribution function ms

i . This approach was first introduced in the MSc thesis
by Besseling [52] and originally inspired by Huang et al. [43].

Apart from this alteration, the formulations for enthalpy are similar to those of momentum and tempera-
ture in respective sections 3.1.1 and 3.1.2. The staggered formulation defined for the sensible enthalpy
distribution function is given by:

ms
i

(
x+

ci∆t

2
, t+

∆t

2

)
−ms

i

(
x− ci∆t

2
, t− ∆t

2

)
= ∆tΩi(m

s
i ) (3.14)

The collision is again performed with the same filter matrix Eki and with the enthapy solution vector γ±
k :

ms
i

(
x± ci∆t

2
, t± ∆t

2

)
=
∑
k

ωiEikγ
±
k (x, t) (3.15)

γ±
k (x, t) =

∑
i

Ekim
s
i

(
x± ci∆t

2
, t± ∆t

2

)
(3.16)

γ±
k (x, t) =

[
h, uxh+

−6κ±∆t

6

∂h

∂x
, uyh+

−6κ±∆t

6

∂h

∂y
, 0, 0, 0, 0, 0, 0

]T
(3.17)

in which the higher-order terms are set to zero.

3.2 Boundary Conditions
The formulation of boundary conditions (BCs) in the LBM is typically a non-trivial task, as rather than
specifying the macroscopic variables of interest (such as velocity and temperature), LB boundary con-
ditions apply to the distribution functions. This gives rise to more degrees of freedom in the distribution
functions than the available set of macroscopic variables. A wide range of different LBM BC methods is
available, which can be divided into two general families: link-wise, and wet-node. Their main charac-
terics are described in the following way:

• The link-wise boundary scheme is shown in figure 3.1(a): the computational boundary is located
on the lattice links, i.e. the computational- and physical boundary do not coincide. BCs are mostly
modelled with so-called bounce-back methods.

• The wet-node boundary scheme is shown in figure 3.1(b): the computational boundary is located
on the lattice nodes, i.e. the computational- and physical boundary are the same. Or to be precise:
the boundary node is assumed to lie infinitesimally close to the actual boundary, but still inside the
fluid domain. Therefore the standard LBM steps that apply in the bulk (i.e. collision and streaming),
also apply in the same way on the wet-node.

The different geometries that will be modelled in this thesis require different macroscopic boundary
conditions types: (1) no-slip and isothermal (i.e. Dirichlet) BCs on an outer edge, (2) adiabatic (i.e.
Neumann) BCs on an outer edge, (3) conjugate BCs at a solid-fluid interface and (4) no-slip BCs on the
phase front. The following sections will describe the rationale and mathematics of the used methods for
those four macroscopic BC types.

Note that the sections are categorized by LB boundary method rather than by macroscopic boundary
condition type. Section 3.2.1 describes the conventional, link-wise half-way-bounce-back (HBB) method
for a no-slip BC. Section 3.2.2 describes the newly introduced wet-node-solution-vector BC that can deal
with Dirichlet, Neumann and conjugate BCs. Lastly, section 3.2.3 describes two different methods for
describing the no-slip at a phase front.
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Figure 3.1: Two discretizations of the same domain with (a) link-wise and (b) wet-node boundary conditions. Fluid nodes are
illustrated as open circles, boundary nodes as solid circles [15]

3.2.1 Half-Way-Bounce-Back: No-Slip
Mostly, solid boundaries have a no-slip boundary condition, which states that the fluid velocity at the
boundary must be zero. In the LBM it is very common to apply this with a bounce-back method, thanks
to the scheme’s simplicity and inherent mass conservation [15]. A disadvantage is that bounce-back
methods only guarantee higher than first order accuracy if the surface is located exactly half-way and
aligned with the lattice. It is also viscosity dependent when used together with the BGK scheme [15][53].

The principle of a bounce-back scheme is that populations at the wall are reflected back to where they
came from. The half-way-bounce-back-method (HBB) is pictured in figure 3.2: distributions leaving the
boundary node meet the surface halfway through the streaming step (at (t+ ∆t

2 ), are reflected back with
velocity cj = ci and arrive at the boundary at the end of the streaming step (at t + ∆t). Therefore, the
the HBB boundary scheme is mathematically described by [15]:

fj

(
xb, t−

∆t

2

)
= fi

(
xb, t+

∆t

2

)
(3.18)

in which xb is the position of the boundary and subscript j denotes the opposite direction of i. In this
thesis, the HBB scheme is only used in chapter 6 for comparison to a wet-node boundary technique.

Figure 3.2: Half-way-bounce-back boundary method: distribution is bounced-back over the course of one lattice time step ∆t [15].

3.2.2 Wet-Node-Solution-Vector: Dirichlet, Neumann, Conjugate
This research applies a new boundary condition, originally proposed and derived by M. Rohde, that
combines a wet-node boundary approach with the Filter-Matrix collision scheme: the wet-node-solution-
vector (WNSV) boundary condition. Its main idea is to take advantage of a shared ability of both wet-
nodes and the FM-LBM: easy accessibility and control of macroscopic values. For the FM-LBM, this
’easy control’ can be easily understood by recalling the form of the solution vectors αk (3.7), βk (3.11)
and γk (3.17) for respectively momentum, temperature and enthalpy. Namely, one can see that its
formulation enables to intuitively ”switch” (or ”filter”, hence the name) between the macroscopic- and LB
(mesoscopic) space at every point x. Thereby, on the one hand: when the solution vector is known,
the local macroscopic quantity in question can be retrieved from the solution vector’s elements by ρ =
α0 , ux,y = α1,2/α0, T = β0, h = γ0. And the other way around: when a local macroscopic boundary
condition is implied, the values can be substituted into its solution vector and filtered back to LB space.
The WNSV BC will use this property to easily imply a macroscopic boundary value for a distribution
function.
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The WNSV BC consists of three steps and works both for different distribution functions (fi, gi,mi) as for
different types of boundary conditions (Dirichlet, Neumann, conjugate). In the remainder of this section,
the three-step-method of the WNSV BC will first be explained by the example of temperature, for all three
BC types. Thereafter, the small changes in the method are presented for it to also apply to enthalpy and
momentum.

Temperature boundary conditions
Step1. Initial guess to find (βi=0

k )extrp

First, the known domain-node solution vectors β
(i>0)
k are extrapolated to find an initial guess of the

solution vector at the boundary (βi=0
k )extrp. See figure 3.3 for a visualisation. The extrapolation can

be executed with a variation of different schemes, for instance by a 0th order spatial, 1st order spatial,
1st order spatial & temporal, 2nd order spatial or 2nd order spatial & 1st order temporal extrapolation,
respectively given by:

(βi=0,t
k )extrp =



βi=1
k

2βi=1
k − βi=2

k

βi=1,t
k − βi=1,t−1

k + βi=0,t−1
k

5
2β

i=1
k − 2βi=2

k + 1
2β

i=3
k

βi=0,t−1
k − 2βi=1,t−1

k + βi=2,t−1
k + 2βi=1,t

k − βi=2,t
k

(3.19a)

(3.19b)

(3.19c)

(3.19d)

(3.19e)

in which ubscript i indicates the spatial position aa t the time instance.

Step 2. Imply desired boundary value
Second, the vector elements in (βi=0

k )extrp are adjusted with the desired macroscopic boundary value
to find βi=0

k . Based on the standard formulation of βk (3.11) this is done in the following manner:

βi=0
k = (βi=0

k )extrp −


Textrp,
uxTextrp

uyTextrp

0, 0, 0, 0, 0, 0

+


TBC ,
uxTBC

uyTBC

0, 0, 0, 0, 0, 0

 (3.20)

In which it is defined that Textrp ≡ (βi=0
0 )extrp and TBC is the imposed boundary value, which value

depends on the type of imposed boundary condition:

• Dirichlet (Ti=0 = TW ) - No additional operation is required, as the temperature value is simply
already known:

TBC = TW (3.21)

• Neumann (dT/dn|i=0 = 0) - The known flux is transformed into a Dirichlet BC by expanding it in
the first- or second order, respectively given by:

TBC =

{
βi=1
0

4
3 β

i=1
0 − 1

3β
i=2
0

(3.22a)

(3.22b)

in which it was used that T i = βi
0 (see equation 3.11).

• Conjugate boundary (see 2.17, 2.18) - A similar strategy as for the Neumann case can be em-
ployed. By writing out expansions of equations 2.17 and 2.18 and combining for TBC , one achieves
for respectively first- and second order:

TBC =


1

λs + λl

(
λlβ

i=1
0,l + λsβ

i=1
0,s

)
1

3(λs + λl)

(
λl(−βi=2

0,l + 4βi=1
0,l ) + λs(β

i=2
0,s − 4βi=1

0,s )
) (3.23a)

(3.23b)

See figure 3.4 for a visualisation of adjacent fluid and solid.
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Step 3. Transform back to LB space
The constructed boundary solution vector βi=0

k can now be filtered back to the LB space with the the FM
matrix multiplication:

gi(x = 0, t) =
∑
k

ωiEikβ
i=0
k (3.24)

Important to note is that this is not the same as in the collision matrix multiplication 3.9, as at the
boundary no additional (staggered) time-stepping is performed. In fact all three steps have taken place
in the same time step.

Figure 3.3: Nodes in fluid domain with local
temperature solution vector βi

k

Figure 3.4: Nodes in the solid (grey) and fluid (white) domain, with
corresponding temperature solution vectors βk,s/l and thermal conductivity

λs/l

Enthalpy-temperature boundary conditions
The same three steps are performed, but now replacing the temperature properties for enthalpy prop-
erties. i.e. solution vector β −→ γ in equations 3.19, 3.20, 3.23, 3.24, replacing Textrp −→ hextrp in
equation 3.20 and replacing gi −→ ms

i in equation 3.24.

However, a small alteration is needed in step 2, as the found TBC for an imposed temperature boundary
condition (via either equation 3.19, 3.22 or 3.23) needs to be transformed to an enthalpy boundary
condition HBC This relation is given by a rewritten form of 2.9:

HBC =


cp,sTBC if f i=0

L = 0

cp,sTs + f i=0
L L if 0 < f i=0

L < 1

cp,sTs + cp,l(TBC − Tl) + L if f i=0
L = 1

(3.25)

Momentum boundary conditions
For momentum, only a no-slip boundary condition (i.e. Dirichlet) BC is employed in this research. The
same three-step method is employed for momentum with the obvious replacements: β −→ α in equa-
tions 3.19, 3.24 and replacing gi −→ fi in equation 3.24.

hOWEVER step 2 (equation 3.20 is defined a little differently due to the different formulation for the
momentum solution vector, while the idea remains exactly the same:

(αi=0
k )BC = (αi=0

k )extrp −



0
ρ(ux)extrp
ρ(uy)extrp
3ρ(u2

x)extrp
3ρ(uxuy)extrp
ρ(u2

y)extrp
0
0
0


+



0
(ρux)BC

ρ(uy)BC

3ρ(u2
x)BC

3ρ(uxuy)BC

ρ(u2
y)BC

0
0
0


(3.26)

In which uBC is only ever given by no-slip boundary conditions in this research.
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3.2.3 Enthalpy-Porosity and Immersed-Boundary: Phase Front
When modelling phase change, a boundary condition should be imposed that sets the velocity in the bulk
of the ice and on the phase front to zero (i.e. no-slip). As the phase front moves and is typically of a com-
plex shape, implementation of the regular HBB no-slip boundary method (section 3.2.1) would become
non accurate and cumbersome. Two methods that have proven to be successful in previous studies for
the no-slip BC at the phase front are the enthalpy-porosity method and the immersed-boundary method.

Enthalpy-Porosity
The enthalpy-porosity method introduces a Darcy momentum sink Sx,y in the Navier-Stokes equation
[18]:

ρ
(∂ux,y

∂t
+ ux,y∇u

)
= − ∂P

∂x, y
+ ρ∇(ν∇ux,y)− Sx,yux,y (3.27)

Sx,y represents an frictional resistance force per unit mass, given by:

Sx,y = Amush
(1− fL)

2

f3
L + σ1

. (3.28)

Amush is a constant which is commonly set to an universal value of 104−108 [kg/m3/s], and σ1 is a small
value which prohibits division by zero (when fL = 0). The formulation of Sx,y effectively ensures that in
phase-changing cells, the porous medium resistance term dominates over the transient, convective and
diffusive effects originating out of molecular interaction mechanisms. On the other hand, in totally solid
elements (fL = 0), the term Sx,y has a large value, forcing any velocity to zero. In a fully liquid element
(fL = 1), the term is zero, and the usual Navier-Stokes equations are retrieved.

Chakraborty & Chatterjee [18] implemented the enthalpy method in a hybrid BGK-LBM. In the MSc thesis
by Bus [35], it was successfully implemented in FM-LBM, by proposing a modification to the definition of
the momentum solution vector: α±

k :

α±
1,2 =

(
ρ∓ ∆t

2
Sx,y

)
ux,y ±

∆t

2
fx,y (3.29)

Giving also that velocities can be found by:

ux,y =
α−
1,2 +

∆t
2 fx,y

ρ+ ∆t
2 Sx,y

(3.30)

Immersed-Boundary
The immersed-boundary method [54] makes uses of an altered collision operator ΩS

i that is a function
of the liquid fraction. In this way, a special post-collision distribution function fS

i is introduced, which
remains unchanged in the liquid phase (fL = 1) but will impose zero velocity in the solid region (fL = 0)
and a no-slip on the liquid-solid interface:

fS
i

(
x+

ci∆t

2
, t+

∆t

2

)
− fi

(
x− ci∆t

2
, t− ∆t

2

)
=
(
(1−Bf )Ωi +BfΩ

S
i

)
∆t (3.31)

Bf is a weighting factor that depends on the local solid fraction:

Bf =
(1− fL)σ2

fL + σ2
(3.32)

in which σ2 is a term that is orignially defined by the dimensionless relaxation time [54], and is taken as
a small term to avoid division by zero. The collision term Ωi is given by its usual formulation (3.1) and
the special collision term Ωs

i is given by:

Ωs
i = fj

(
x− ci∆t

2
, t− ∆t

2

)
− fi

(
x− ci∆t

2
, t− ∆t

2

)
− feq

j (ρ,u) + feq
i (ρ,us) (3.33)

in which subscript j denotes the opposite direction of i, feq is given by equation 2.26 and solid velocity
us = 0.
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3.3 Lattice Units
3.3.1 Conversion Parameters
Lattice Boltzmann simulations are mostly performed in dimensionless lattice units. The non-dimensional
value ϕ∗ is obtained by dividing a dimensional physical quantity ϕ by a reference quantity called the
conversion factor Cϕ: ϕ∗ = ϕ/Cϕ. In this report, the following basic non-dimensionalisations are used:

CL =
∆x

∆x∗ = ∆x, Cν =
ν

ν∗
, Cρ =

ρ

ρ∗
= ρ, CT = 1 (3.34)

The lattice spacing, lattice time step and reference density are set to unity: ∆x∗ = ∆t∗ = ρ∗ = 1, which
is a common choice within LBM [15]. Note that the temperature is not set to lattice units. Also note that
for a link-wise grid CL is given by CL = Lx/Nx, while for a wet-node grid this is CL = Lx/(Nx − 1).
The four conversion factors as defined in 3.34 from a complete set: all other conversion factors can be
derived from them by either using the law of similarity (dimensionless numbers must be identical in all
unit systems) or by matching units. This leads to:

Ct =
C2

L

Cν
, Cκ =

C2
L

Ct
, Cg =

CL

C2
t

, Ccp =
C2

L

C2
t CT

, Cλ =
CL

C3
t CT

, CLat =
C2

t

C2
L

(3.35)

Note that in a given system (i.e. all physical parameters are known), only two free lattice parameters of
choice are left: the grid size ∆x∗ and lattice viscosity ν∗. It is crucial to balance these simulation pa-
rameters in such a way that a suitable compromise of accuracy, stability and efficiency is achieved. Two
stability considerations, based on non-dimensional numbers, are handled in this research and explained
in the following two sections.

In the remainder of this thesis, the asteriks (*) notation will be dropped.

3.3.2 Mach number
The lattice velocity has to stay below certain limits within LBM. This originates from a point introduced
in section 2.3.2; the LBE does no exactly solve the NSE, but differs from it with an unphysical term of
order O(u3). This term remains small if the Mach number remains small, i.e. Ma ≡ v0/cs << 1. When
cs =

√
1/3, this leads to the lattice velocity to have the limit v0 < 0.1 [ls/lt].

When dealing with natural convection, the characteristic velocity v0 is equal to [34][55].:

v0 =
√
gα∆T (NX − 1), (ls/lt) (3.36)

When initialising a LB simulation, v0 can be altered to meet the Ma-criterium by choosing a larger N or
smaller lattice viscosity ν.

3.3.3 Courant and Péclet number
The Courant number is a common way to analyse stability in CFD aplications. It compares the speed
∆x/∆t at which the information propagates in the model with the physical speed u at which the fluid
field is advected:

Co =
u∆t

∆x
(3.37)

If Co > 1, the simulation cannot propagate the physical solution quickly enough, which tends to make
the simulation unstable [15]. By taking v0 < 0.1 into account, this mostly met for flow problems. However,
when dealing with thermal flow, an equivalent non-dimensional number can be used to control stability:
the Péclet number. It is defined as the ratio of the rate of advection of a physical quantity by the flow,
to the rate of the (thermal) diffusion of the same quantity driven by a gradient. The Péclet number is
defined as 1[15][56]:

Pe =
u∆x

κ
(3.38)

It indicates the speed u of the advected fluid field compared to the rate at which thermal diffusion κ/∆x
information propagates. Therefore if Pe is too large, the advection dominates and non-physical results
can occur.

1Note the similarities between the Courant and Péclet number: by substituting penetration theorem for heat ∆x =
√
πκ∆t into

3.37, it becomes clear that Péclet can be seen as a ’thermal Courant number’.
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Suga [56] performed a stability analysis for advection-diffusion problems for different Pe and Co, in
the BGK LBM. Very stable systems were found for Pe ≤ 10 and Co ≤ 0.4. When Pe was larger,
10 ≤ Pe ≤ 100, stability was recovered most of the times, if also Co ≤ 0.1. However in these cases
larger errors occurred and sometimes oscillating solutions were found. Although these results cannot
be directly applied to the current research because BGK-LB was used instead of FM-LB, during this
research it was made sure to keep Pe in the order of 101.

3.4 Numerical Application: The Algorithm
This section gives a step-by-step overview of FM-LBM wet-node algorithm, thereby combining the equa-
tions given in the previous sections of this chapter. Note that the total algorithm is given, for the most
complex case modelled in this thesis: the combination of convective melting in a fluid and conjugate
heat transfer in an adjacent solid. Throughout this research, also less complex cases were modelled.
The algorithm for these cases can simply be obtained by leaving out the non-relevant steps.

The algorithm presented here consist of initialization and the iterative scheme. The fluid domain will
be referred to as the PCM (phase change material) and to the solid domain as the wall. The relevant
distribution functions in the PCM are momentum distribution function fi & enthalpy distribution function
mi, for the wall this is temperature distribution function gi.

Initialization
• PCM: Choose initial macroscopic fluid properties (according to section 3.3) and use them to build
α−
k (equation 3.7), γ−

k (equation 3.17). f−
i , m−

i follow from equation 3.4, 3.15
• Wall: Choose initial macroscopic solid properties (according to section 3.3) and use them to build
β−
k (equation 3.11). g−i follows from equation 3.9

Iterative Scheme
1. Collision in PCM to calculate post-collision enthalpy function mi:

(a) Substract ml
i from mi to obtain ms

i (3.12, 3.13).
(b) Construct pre-collision solution vector γ−

k (3.16)
(c) Extract macroscopic sensible enthalpy hs from solution vector (hs = γ−

0 )
(d) Update solution vector γ−

k to γ+
k (3.17)

(e) Calculate post-collision enthalpy distribution function ms
i (3.15)

(f) Add ml
i to gsi to retrieve total enthalpy distribution function mi (3.12, 3.13).

2. Propagate mi on PCM domain

3. Boundary conditions on non-shared (i.e. non-conjugate) boundaries in PCM with wet-node-
solution-vector method, for Dirichlet and Neumann BCs (section 3.2.2)

4. Collision in wall to calculate post-collision temperature function gi:

(a) Construct pre-collision vectors β−
k (3.10)

(b) Extract macroscopic temperature T from solution vector (T = β−
0 )

(c) Update solution vector β−
k to β+

k (3.11)
(d) Calculate post-collision temperature distribution function gi (3.9)

5. Propagate gi on wall domain

6. Boundary conditions on non-shared (i.e. non-conjugate) boundaries in wall with wet-node-
solution-vector method, for Dirichlet and Neumann BCs (section 3.2.2)

7. Boundary conditions on shared (i.e. conjugate) boundary by PCM and wall domain (section
3.2.2)

8. Update macroscopic quantities H (2.31), fL (2.10), cp, λ (2.11) from mi.

9. Collision in PCM to calculate post-collision density distribution function fi:
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(a) Construct pre-collision vector α−
k (3.5)

(b) Update buoyancy force fy (2.13)
(c) (Option 1 phase front) Update momentum sink term Sx,y (3.28) to apply the enthalpy-porosity

method.
(d) Extract macrsoscopic density ρ and u from solution vector (ρ = α−

0 , ux,y with 3.30)
(e) Update solution vector α−

k to α+
k (3.7)

(f) Calculate post-collision density distribution function fi (3.4)
(g) (Option 2 phase front) Update B (3.32) and Ωs

i (3.33) and calculate the post-IBM density
distribution function (3.31)

10. Propagate fi on PCM domain

11. Boundary conditions on all boundaries with wet-node-solution-vector method for no-slip (Dirich-
let, section 3.2.2

12. Update quantities ρ (2.24), u (2.25) from fi.

13. Return to first step for new time iteration. Repeat until at desired time-step (transient case) or until
a quantity ϕ = Tu has met convergence criterion δϕ (steady-state):√∑

i(ϕ(xi, t)− ϕ(xi, t− 1000∆t))2∑
i(ϕ(xi, t− 1000∆t)2

< δϕ (3.39)

3.5 Numerical Verification Methods
This section moves away from the Lattice Boltzmann method, to the more general topic of numerical
verification methods. When computational simulations are employed to model a physical situation, it is
essential to build confidence in its correctness via verification and validation. Where validation deals with
physics and addresses the appropriateness of the model in reproducing experimental data, verification
deals with mathematics and addresses the correctness of the numerical solution to a given model [57].
Or stated in the words of Blottner [58]: validation is about ”solving the right equations” while verification
is about ”solving the equations right”.

Within verification, the presence of numerical errors will always arise in CFD models and they can
consist of three different types: (1) round-off errors, stemming from the finite precision of computers, (2)
the iterative error, due to the non-linearity of mathematical equation, (3) the discretization (or truncation)
error, a consequence of the approximations made to transform the partial differential equations into
a discrete form. Generally, the discretization error is the major error source in a Lattice Boltzmann
simulation [15]. Luckily, the relative importance of the discretization error decreases with grid refinement
[59].

Three different methods for verifying the codes in this thesis are used. Given by, in order of increasing
rigor [15][60]:

• Error quantification. The computational solution of a variable ϕ is compared to a known reference
solution ϕref , which can consist of an analytical solution or an other computational benchmark. In
this research, the so-called L2-error norm is used:

ϵϕ =

√∑
i(ϕi − ϕi,ref )2∑

i(ϕi,ref )2
(3.40)

• Grid convergence. As the lattice grid size is reduced, the discrete form of a numerical method
should be able to better approach the continuous PDEs. This can be assessed by computing the
obtained error for a series of different grid sizes. Upon decreasing the grid size, the outcome of
the numerical model should convergence towards an asymptotic value.

• Order of accuracy. The rate at which the discretization error tends to zero shows the related order
of accuracy. For example, a second-order-accurate model would show the error to scale with ∆x2.
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While the methods for assessing error quantification and convergence are quite straight-forward, the
order of accuracy sometimes needs a more delicate approach. The following section elaborates a bit
more on the order of accuracy.

3.5.1 Order of Accuracy
The order of accuracy is linked to the discretizaton error via an equation that finds its origin in Richardson
extrapolation. It is quantified by simply taking the difference between the numerical estimate ϕi (with i
referring to the grid refinement level) and a reference solution ϕ0 [61][62]:

ϵϕi
≈ ϕi − ϕ0 = K∆xp

i +O(∆xp+1
i ) (3.41)

in which ∆xi the typical cell size for the chosen refinement level,K a constant value, p the observed
order of accuracy and O(∆xp+1

i ) the higher-order error terms.

When ∆xi is sufficiently small, the higher order terms are negligible compared to the ∆xp-term and
the solutions are in the so-called asymptotic range of convergence [63]. Ignoring the O(∆xp+1

i )-term in
equation 3.41 and subsequently taking the logarithm of both sides, the following equation is obtained:

log(ϵϕi) = p · log(∆xi) + log(K) (3.42)

This formulation leads to a method to determine the observed order of accuracy p: by plotting a range
log(ϵϕi

) versus log (∆xi) a linear relation should be found and the corresponding slope represents p. It
should be noted that sensible results can only be obtained when a suitable choice for reference solution
ϕ0 is made. This research uses three different methods to choose ϕ0 and thereby obtain the order of
accuracy p:

• Exact solution. When a system is modelled of which the exact solution is known, the reference
solution can be simply taken equal to this value: ϕ0 = ϕexact. When employing a constant grid
refinement ratio r (r = ∆x2/∆x1 = ∆x3/∆x2 = .. etc), a minimum of two grid solutions ϕi is
needed to calculate p. Unfortunately, for many problems an exact solution is not available.

• Finest-grid solution. Another commonly used method is to approximate the exact solution with a
finest-grid solution: ϕ0 = ϕfine. Note that caution should be taken when choosing a suitable finest-
grid-solution, as the grid refinement ratio r = ∆fine−1/∆fine should not be too small. In other
words, the finest-grid ifine should not be too close to the second-finest value. However, employing
a high r may come at an impractically high computational cost.

• Eça-Hoekstra Method (EHM). Sometimes, an analytical solution is unavailable and a finest-grid
solution lies beyond a practical application. Eça & Hoekstra [59] proposed a linear-least-squares
method to work around this limitation. The idea is to define a function S that determines the error
norm of the observed value ϕ and its predicted value ϕ0, following the definition in 3.41. S is given
by:

S(K, ϕ0, p) =

√√√√ n∑
i=1

(
ϕi − (ϕ0 +K∆xp

i )
)2
, (3.43)

By minimizing the function of S via ∂S
∂K = ∂S

∂ϕ0
= ∂S

∂p = 0, the following system of non-linear
equations is found:

K =

∑n
i=1 ϕi∆xp

i −
(∑n

i=1 ϕi

)(∑n
i=1 ∆xp

i

)
∑n

i=1 ϕi∆x2p
i −

(∑n
i=1 ∆xp

i

)(∑n
i=1 ∆xp

i

)
ϕ0 =

∑n
i=1 ϕi −K

∑n
i=1 ∆xp

i∑n
i=1 ϕi∆xp

i log(∆xi)− ϕ0

∑n
i=1 ∆xp

i log(∆xi)−K
∑n

i=1 h
2p
i log(∆xi) = 0

(3.44)

When these equations are solved with an iterative scheme, estimations for ϕ0,K, p can be found,
with the minimum amount of inputs being n = 4.



Chapter 4

Benchmark Results

The goal of this research is to correctly apply the Filter-Matrix lattice Boltzmann method with wet-node
boundary conditions in simulating the combination between three phenomena in the freeze-plug: con-
jugate heat transfer, phase change and natural convection. This goal is subdivided into three parts.
The first part aims to justify the implementation of the three phenomena separately. In the second part,
these three phenomena are combined into one model simulating the melting freeze-plug. The third part
focuses specifically on the wet-node-solution-vector boundary condition method, and its performance in
terms of order of accuracy, time convergence and energy conservation.

This chapter focuses on the first part of the results: the three phenomena are justified by comparing
their results to a number of literature benchmark studies. In section 4.1 a natural convection flow is
benchmarked by a standard case of a side-heated cavity. The addition of conjugate heat transfer is
simulated and benchmarked in section 4.2 by adding a conducting wall to the cavity. Lastly, section 4.3
shows the results of the combination of phase change (melting) and natural convection, by modelling a
side-heated cavity filled with a phase-change material.

4.1 Natural Convection
By using the FM-LBM for the simulation of a natural convection flow, the implementation of the coupling
between the velocity- and temperature field is checked, as well as the ability of the wet-node-solution-
vector BC to simulate Dirichlet and Neumann boundary conditions. The modelling of natural convection
in a square cavity is a common benchmarking case within the field of computational fluid dynamics and
two different numerical studies are used in this work for benchmarking: (1) de Vahl Davis [64] who used
a traditional finite difference method, and Zhuo & Zhong [33] who employed a FM-LBM.

4.1.1 Geometry and Input Parameters
The modelled geometry is shown in figure 4.1. It consist of a two-dimensional square cavity of size H
x H filled with air and at initial temperature T0. At t > 0, the temperature vertical walls is set to a cold
temperature TC < T0 on the left side and a hot temperature TH > T0 on the right side. The top and
bottom walls are adiabatic and a no-slip boundary condition for velocity is implied on all four boundaries.
The simulation is initiated by a zero velocity and T0 in the fluid domain. Driven by the buoyancy force,
the velocity- and temperature profile will transition to a steady-state.

The physical and numerical (lattice) parameters used in the model are given in table 4.1. The behaviour
of a natural convection flow is uniquely characterized by the non-dimensional numbers Pr and Ra, as
mentioned before in section 2.2.1. Pr is chosen at its characteristic value for air. Three different values
for Ra were simulated to test the model’s sensitivity to different velocities. The latter is done in the laminar
regime, i.e. Ra ≤ 106 [65]. Ra is implied through varying the temperature difference ∆T between the
hot and cold wall via the definition of Ra (equation 2.14). The lattice viscosity ν is chosen for each of the
three Rayleigh numbers, such that characteristic velocity of the flow (equation 3.36) ensures the model
to run in the incompressible regime. All other input variables can be chosen based on the definitions
of Ra and Pr and the conversion factors as formulated in equations 3.34, 3.35. All thermophysical

30
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properties are assumed to be independent of temperature.

The wet-node-solution-vector boundary condition (section 3.2.2) was used for all boundary conditions,
with the use of first order extrapolation schemes (equation 3.19b, 3.22a). Lastly, whether the problem
has reached the steady-state situation is checked by the residual value of the temperature and velocity
as defined in equation 3.39, with δT,u = 10−6 [33].

Figure 4.1: The geometry of the H x H cavity natural convection case, with isothermal vertical walls, adiabatic horizontal walls
and no-slip on all boundaries.

Description Variable Physical value Unit Lattice value Unit
Height & width cavity H xH 0.001 x 0.001 [m] (N − 1) x (N − 1) [ls]
Prandtl number Pr 0.7 - 0.7 -
Rayleigh number Ra 104, 105, 106 - 104, 105, 106 -
Kinematic viscosity ν 8.56 · 10−7 [m2/s] 1

100 ,
1

100 ,
1

150 [ls2/lt]
Initial temperature T0 1 [K] 1 [K]
Wall temperature TH,C T0 ±∆T/2 [K] T0 ±∆T/2 [K]
Density ρ 1.293 [kg/m3] 1.0 [ls−3]
Gravitational acceleration g 9.81 [m/s2] 9.81/Cg [ls/lt2]
Thermal expansion coefficient α 2.07 · 10−4 [K−1] 2.07 · 10−4 [K−1]
Thermal diffusivity κ 1.23 · 10−6 [m2/s] 1.23 · 10−6/Cκ [ls2/lt]

Table 4.1: Definition of physical- and lattice parameters for simulation of natural convection of air. Three different lattice viscosities
correspond to the respective three Rayleigh numbers. Note that the problem is uniquely characterised by the parameters above

the dashed line, the ones below are provided for completeness. All conversion parameters C are specified in 3.34, 3.35.

4.1.2 Heat Transfer and Velocity Results
The modelled temperature- and velocity fields in the square cavity for Ra = 104, 105, 106 are shown in
figure 4.3. The results are physically sensible: the fluid close to the right wall is heated, flows upward,
and travels along the adiabatic top wall to the cold wall, where it is cooled and thereby streams back
downwards. As Ra increases, the temperature gradients near the vertical walls become larger, while in
the middle of the domain the flow is quasi-motionless. Overall, this result serves as a qualitative bench-
mark of the applied method for natural convection. Ofcourse, the next step is to perform a quantitative
benchmark

Grid Dependence
Before comparing the modelled results to the two benchmark studies, a grid dependence study is per-
formed: the grid is refined (i.e. the amount of lattice points N x N increases) until the results stay
approximately the same upon further refinement. The numerical output value that is used, is the aver-
age Nusselt Nu0 along the cool wall (i.e. at x = 0), serving as a characterisation of the heat transfer.
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Following [32][33], Nu0 is given by1:

Nu0 = − 1

∆T

∫ H

0

(
∂T

∂x

)
x=0

dy (4.1)

The integral in this equation is computed numerically using Simpson’s rule. Furthermore, the gradient
∂T/∂x can be directly calculated from the local value of the solution vector β1(x = 0, y) via its formulation
3.11. This approach is preferred over calculating the gradient with a finite-difference method, as the latter
could introduce a new discretization error into the result.

The results from the grid dependence study for Nu0 for the three different Rayleigh numbers are shown
in figure 4.2. For all three Rayleigh numbers, the figures show converging behaviour towards an asymp-
totic value for Nu0 as the amount of grid points N x N increases. The threshold to indicate grid conver-
gence was set at (Nu(N + 20) − Nu(N))/Nu(N) < 0.1%. For Ra = 104, 105, 106 this was achieved at
respectively N = 181, 181, 221. It should be noted that it is somewhat surprising that grid convergence
for Ra = 104, 105 is achieved at the same grid size, as it is expected that a larger Ra needs a larger
amount of grid points because of increased (small-scale) complexities in the temperature- and velocity
field. Overall, the grid convergence is a first indication of the correct implementation of the numeri-
cal model, but this will be further substantiated by comparing the results of the finest-grid solution to
numerical benchmark studies.
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Figure 4.2: Grid dependence study for three different Rayleigh numbers Ra: the output average Nusselt number Nu0 for
increasing amount of grid points (i.e. decreasing grid size 1/∆x = H/(N − 1)

Error Quantification
In addition to the characteristic Nu0, four other numerical values were used to benchmark the results:
the velocity component along the vertical central line (ux)max and its location ymax & the maximum
vertical velocity component along the horizontal central line (uy)max and its location xmax. Following
[33][64], the velocity components and locations are scaled in the following way, enabling a generalised
comparison with the benchmark values:

ū =
u(N − 1)

κ
, x̄ =

x

H
(4.2)

The results on the finest grid for the five characteristic numerical values Nu, (ux)max, ymax, (uy)max,
ymax and their errors to the benchmark results from Zhuo & Zhong [33] and by De Vahl Davis [64] are
given in table 4.2, for three values of Ra. It can be observed that all characteristic values show a small
error under 0.9% with the benchmarks, except for ymax, which shows an error > 1.0%. The latter is
explained by the discrete nature of the coordinate: it has an error margin of ±1/(N − 1) ≈ ±0.005. This
equals an ±2.8% error to the benchmark value, which is in the range of the observed errors. Another
observation is that for larger Ra, the overall the errors increase somewhat (max 0.5%pt). However this
is still within an acceptable margin, and the errors are expected to decline even further for an even
finer grid. To conclude, the grid convergence and small errors to the two benchmarks indicates that the
developed FM-LBM with WNSV BCs performs well in modelling coupled velocity- and thermal flows with
Dirichlet- and Neumann boundary conditions, in the laminar regime.

1See appendix A for nondimensionalisation
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Study Nu0 ūx,max ȳmax ūy,max x̄max

Ra = 104 [64] 2.238 16.178 0.177 19.617 0.881
[33] 2.245 16.183 0.178 19.627 0.882
Current 2.232 16.189 0.175 19.631 0.880
Error [%] 0.27 - 0.58 0.07 - 0.04 1.13 - 1.17 0.07 - 0.02 0.01 - 0.02

Ra = 105 [64] 4.509 34.73 0.145 68.59 0.934
[33] 4.521 34.74 0.144 68.62 0.935
Current 4.543 34.74 0.147 68.55 0.933
Error [%] 0.75- 0.49 0.00 - 0.03 1.38 - 2.08 0.06 - 0.10 0.11 - 0.21

Ra = 106 [64] 8.817 64.63 0.150 219.36 0.962
[33] 8.819 64.91 0.148 220.20 0.960
Current 8.890 65.05 0.150 220.54 0.963
Error [%] 0.83 - 0.80 0.65 - 0.22 0.00 - 1.33 0.54 - 0.15 0.10 - 0.31

Table 4.2: Results of current study for numerical characteristic values of natural convection flow, for three different input Rayleigh
numbers, compared with benchmark values from De Vahl Davis [64] and Zhuo & Zhong [33]. Note that the two benchmark

studies used a geometry that is mirrored in the y-axis with respect to the current geometry; i.e. the hot & cold wall are reversed.
Therefore their values for x̄max were mirrored (1− x̄max) for comparison. Also note that [33] used two different methods in their

study; when the results differed, the average was taken.

(a) (b)

(c) (d)
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(e) (f)

Figure 4.3: Results for natural convection in side-heated cavity, for Ra = 104, 105, 106. Left figures show temperature isotherms,
right figures velocity streamlines.

4.2 Conjugate Heat Transfer
The second benchmarking case has the goal to correctly use the proposed FM-LBM with WNSV BCs
to model conjugate thermal boundary conditions. To this end, the geometry of the previous benchmark
in section 4.1 is extended by adding a solid, conducting wall. In the context of the freeze-plug, the
conducting wall imitates the pipe wall structure in which the freeze-plug is positioned. Two numerical
studies are used to benchmark the results: (1) a finite-difference model by Kaminksky & Prakash [66]
and (2) a finite-element model by Misra & Sarkar [67].

4.2.1 Geometry and Input Parameters
The modelled geometry is shown in figure 4.4: it is an extension of the previous geometry (figure 4.1),
but now one of the vertical walls of the square cavity is of non-zero thickness d and consists of a solid,
conducting material. The right edge of the solid wall is kept at hot temperature TH , the left wall of the
cavity is at cold temperature TC , and all other outer boundaries are adiabatic. Every boundary of the
fluid domain has a no-slip condition for velocity. The algorithm treats the fluid- and solid domains as
two different numerical domains, interacting with each other at the shared boundary via the conjugate
thermal boundary conditions (equations 2.17, 2.18). All boundary conditions are implied with the WNSV
BC with first order extrapolation schemes (equations 3.19b, 3.22a, 3.23a). The solid wall has an higher
thermal diffusivity than the fluid, i.e. ratio kλ ≡ λs/λf > 1. The thermal diffusivity ratio is assumed
to have the same ratio kλ = kκ ≡ κs/κf , which is equivalent to stating that the heat capacitance cpρ
is identical in both domains, as the thermal diffusivity is defined by κ = λ/(ρcp). This assumption is
sensible since the problem is steady-state, for which only the thermal conductivity plays a role in the
temperature distribution, and the heat capacitance of the fluid & solid is not relevant.

Most input parameters were taken identical to the previous case (table 4.1), additional parameters are
given in table table 4.3. Three different Rayleigh numbers are tested and ν is again set accordingly
to ensure an incompressible regime. Ra is implied through setting tge temperature difference ∆T via
the definition of Ra (equation 2.14). Next to the Rayleigh- and Prandtl number, the problem is uniquely
defined by thermal conductivity ratio kλ and wall thickness ratio d/H. For the latter two, a value was
chosen that is in the order of magnitude of the freeze-plug set-up and that was available in the two
used benchmarks [66] & [67]. All corresponding lattice values can be calculated via the usual conver-
sion parameters in equation 3.34 and 3.35. Again, all thermo-physical quantities were assumed to be
independent of temperature and the time-convergence criteria 3.39 with δu,T = 10−6 were employed.
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Figure 4.4: Geometry conjugate heat transfer: cavity filled with fluid and adjacent solid wall.

Description Variable Physical Value Unit Lattice Value Unit
Wall thickness ratio d/H 0.2 - 0.2 -
Rayleigh number Ra 104, 7 · 104, 7 · 105 - 104, 7 · 104, 7 · 105 -
Kinematic viscosity ν 1/100, 1/100, 1/150 [ls2/lt]
Ratio solid/liquid λ, κ λs/λf = κs/κf 5 - 5 -

Table 4.3: Definition of parameters and non-dimensional numbers used in the simulation of conjugate heat transfer and natural
convection of air, additional to used values given in table 4.1. Three different lattice viscosity’s correspond to the respective three

Rayleigh numbers.

4.2.2 Heat Transfer and Velocity results
The modelled temperature- and velocity results for Ra = 104, 7 · 105, 7 · 106 are shown in figure 4.6 and
show a similar counter-clockwise flow pattern as the previous case with the thin-walled cavity (figure 4.3).
It can be observed that for a lower Rayleigh number the isotherms in the fluid near the wall are more
parallel to each other, which is due to the conduction-dominated thermal flow. As the Rayleigh number
increases, convection plays a larger role, the flow field becomes more asymmetric and a non-uniform
heat flux in the y-direction along the solid-fluid interface is observed. All in all, the results indicate good
physical behaviour, but must ofcourse be further validated with the benchmark studies.

Grid Dependence
A grid dependence study is carried out: the characteristic Nusselt number NuH along the hot wall is
calculated for different amount of used gridpoints N . NuH is calculated via 4.1, but replacing x = H.
The results for the three different Rayleigh numbers are shown in figure 4.5. All three cases show
converging behaviour towards a characteristic Nusselt number as the grid is refined.

Figure 4.5: Grid convergence for Nusselt number Nu while grid size N increases, for three different Rayleigh numbers.
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Error Quantification
The results are benchmarked by the output Nusselt number NuH , given in table 4.4. The obtained
Nusselt numbers all show an acceptable error of < 1.0% with respect to the benchmark studies by
Kaminsky & Prakash [66] and Misra et al. [67]. Another interesting point is that the two benchmarks
both model the solid- and liquid domains as one computational domain, assigning a very high viscosity
in the solid region, thereby solving the thermal flow in the fluid cavity and conduction wall simultaneously,
and automatically satisfying the conjugate boundary conditions. Whereas the current model treats the
fluid and wall on separate domains and links them through the WNSV BC, as also previously introduced
in the algorithm lay-out (section 3.4). Finding the same results for these different numerical treatments
actually strengthens the verification.

Unfortunately, characteristic values on the velocity field (umax and xmax) were not provided in the two
benchmark studies, hence they were not used in the comparison. Nevertheless, this does not undermine
the verfication of the code, as compared to the previous benchmark (section 4.1) the only addition
is complexity in heat transfer. The Nusselt number captures this complexity. All characteristics and
boundary conditions of the velocity field have remained the same.

In conclusion, the WNSV BC successfully modelled conjugate heat transfer, in combination with natural
convection. Different numerical aspects of the WNSV BC for this case will be studied in more detail in
chapter 6.

NuH

[66] [67] Current Error
Ra = 104 - 2.0213 2.025 0.18 %
Ra = 0.7 · 105 3.42 3.436 3.423 0.09 - 0.38 %
Ra = 0.7 · 106 5.89 5.910 5.857 0.56 - 0.90 %

Table 4.4: Results of current study for average Nusselt number along the right, hot cavity wall (NuH ), for three different input
Rayleigh numbers, compared with benchmark values from Kaminsky & Prakash [66] and Misra et. al [67].
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(c) Ra = 0.7 · 105

0.0 0.2 0.4 0.6 0.8 1.0
x/H [-]

0.0

0.2

0.4

0.6

0.8

1.0

y/
H

[-]

(d) Ra = 0.7 · 105

0.0 0.2 0.4 0.6 0.8 1.0 1.2
x/H [-]

0.0

0.2

0.4

0.6

0.8

1.0

y/
H

 [-
]

Isotherms for structure, Gr = 106, NX = 181, NT = 1000000, T/L = 0.2, Factor = 25

-0.5

-0.3

-0.1

0.0

0.2

0.3

0.5

(T
T 0

)/ 
T

(e) Ra = 0.7 · 106
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Figure 4.6: Results for natural convection in side-heated square cavity with conjugate heat transfer for 3 Rayleigh numbers. Left
figures show temperature field with isotherms, black vertical line is the liquid-solid interface. Right figures show velocity field with

streamlines in the liquid domain.
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4.3 Convective Melting
This section describes the third benchmark case: the combination of phase change (melting) and natural
convection. The results are compared with numerical benchmark studies by Huber [16] and Jourabian
[68]. These two studies also used an LBM, but with slightly different numerical implementations than
in the current model. Namely, they solved collision with the BGK-scheme, treated phase change as
a source term in the thermal LB equation (i.e. the source-based enthalpy method) and imposed the
no-slip condition on the phase-front was with a bounce-back on the solid nodes. In theory, a different
numerical model should ofcourse lead to the same physical results.

4.3.1 Geometry and Input Parameters
The geometry consist of a 2D square cavity filled with an initially frozen fluid (T = T0 = Tm). At t > 0
the left boundary is set at a hot temperature TH > T0 and the other three boundaries are adiabatic
in their normal directions. All boundaries are no-slip for velocity. The WNSV BC is used to imply all
outer boundary conditions, with first order extrapolation schemes (equations 3.19b, 3.22a). The phase
front no-slip BC was handled with the immersed boundary method. The used input parameters are
given in table 4.5. Two different Rayleigh numbers are tested, and the lattice viscosity ν will be modified
accordingly to ensure to be operating in the in compressible regime (equation 3.36). Ra is implied
through setting tge temperature difference ∆T via the definition of Ra (equation 2.14). It is assumed
that the properties of the solid and liquid phases are constant for temperature, i.e. κs = κl, λs = λl,
cp,s = cp,l.

Figure 4.7: Geometry of square cavity filled with phase change material, initially solid.

Description Variable Physical value Unit Lattice Value Unit
Height x Width cavity H xH 0.6 x 0.6 [m] (N − 1) x (N − 1) [ls]
Prandtl number Pr 1.0 - 1.0 -
Stefan number Ste 10 - 10 -
Rayleigh number Ra 5 · 104, 1.7 · 105 - 5 · 104, 1.7 · 105 -
Kinematic viscosity ν 0.0075 [m2/s] 1/45, 1/80 [ls2/lt]
Wall temperature TH T0 +∆T [K] T0 +∆T [K]
Initial temperature T0 301.14 [K] 301.14 [K]
Solidifying temperature Ts 301.14 [K] 301.14 [K]
Melting temperature Tl Ts + 0.002 [K] Ts + 0.002 [K]
Thermal expansion coeff. α 2.5 · 10−4 [K−1] 2.5 · 10−4 [K−1]
Thermal conductivity λ 1.5 [W/m/K] 1.5 / Cλ [ls/lt3/K]
Thermal diffusivity κ 7.5 · 10−3 [m2/s] 7.5 · 10−3/Cκ [ls2/lt]
Specific heat cp 0.0456 [Ws/kg/K] 0.0456/Ccp [ls2/lt2/K]
Latent heat L 159 · 103 [Ws/kg] 159 · 103/CLat [ls2/lt2]
Gravitational acceleration g 9.81 [m/s2] 9.81/Cg [ls/lt2]

Table 4.5: Input parameters for convective melting case. Two different lattice viscosities ν correspond to two different Rayleigh
numbers. Note that the problem is uniquely characterised by the parameters above the dashed line, the ones below are provided

for completeness. All conversion parameters C are specified in 3.34, 3.35.
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The problem is now transient instead of steady-state. Generalised comparison in time with the bench-
mark studies therefore requires the introduction of non-dimensional time θ, which is a product of the
Stefan (equation 2.16) and Fourier number:

θ = Fo · Ste, Fo =
κt

(N − 1)2
(4.3)

4.3.2 Heat Transfer and Phase Front Results
The results for convective melting are visualised in the Appendix for Ra = 5 · 104 (figure B.1) and
Ra = 1.7 ·105 (figure B.2): the left figures show the isotherms for the temperature distribution, the middle
figures the liquid fraction (fL = 0 for solid and fL = 1 for liquid) and the right figures the streamlines of
the velocity field. Three different non-dimensional time instances θ are displayed, showing the different
melting regimes. Like introduced in section 2.2.2, the problem starts with a conduction regime in which
the melting front is almost parallel to the wall, then transitions into a mixed regime of both conduction &
convection, and lastly into a convection dominated regime. Also, comparison between the results for the
two Rayleigh numbers shows the expected result: natural convection and thus melting is enhanced as
the Rayleigh number is increased.

A quantitative benchmark is performed by looking at the time evolution of two characteristic values: the
average phase front position sav(θ) and Nusselt number and Nu0(θ). The first is defined by equation
4.4, the latter by the usual definition given in equation 4.1.

sav(θ) =
1

H

∫ H

0

xfront(y, θ) dy (4.4)

Average Phase Front
The results for the evolution of the average phase front position sav(θ) are given in figure 4.8a for Ra =
5 · 104 and figure 4.8b for Ra = 1.7 · 105. Both Rayleigh numbers were compared with the results from
Huber [16], but Jourabian [68] only provided results for Ra = 1.7 · 105. Four different grid refinements
(N x N ) were employed until the results showed to be approximately constant. This was the case at
N = 201for Ra = 5 · 104 , and at N = 301 for Ra = 1.7 · 105. The simulations for both Rayleigh
numbers show a good correspondance to the benchmark case(s). The maximum local error with the
benchmark cases is 0.3% (w.r.t Huber) for Ra = 5·104 and 1.7%−4.0% (w.r.t Huber, Jourabian resp.). The
latter is acceptable, because the two benchmark studies show an reciprocal 6.1% difference between
themselves. The small error is a first indication of the good performance of the current model. However,
it should be noted that sav is not a definite benchmark parameter, as the average can balance out effects
on the top and bottom of the phasefront. The exact position of the phase front (i.e. s(x, θ)) was not given
by Jourabian and Huber. Therefore, the Nusselt number is also important.

Nusselt Number
The results for the Nusselt number are given in figure 4.9a for Ra = 5·104 and in figure 4.9b for Ra = 1.7·
105. The results were obtained from the same grid refinements (N x N ) as for the melting front, and also
showed grid convergence at the same amount of grid points. Qualitatively, the Nusselt number shows
similar behaviour over time as the benchmark studies: an approximately linear decrease in Nusselt
number is observed for shorter times (conduction melting), followed by a plateau value (convection
regime). In the first regime (for small θ < 0.1), the Nusselt number shows good quantitative agreement
with the benchmark(s), as ϵ < 0.1%.

However, as θ increases and the effect of convection starts showing, the modelled Nusselt number
begins to deviate from the benchmark results. The deviation is larger for Ra = 1.7 · 105 (ϵ ≈ 8− 11.8%)
than for Ra = 5 · 104 (ϵ ≈ 5%). Three different test were performed to see if they would influence the
result: (1) decreasing the lattice viscosity ν (and thereby the timestep), (2) setting the weighting factor
Bf (x, y) in the immersed boundary condition (see section 3.2.3) to 1.0 in the mushy and solid zone, i.e.
imposing a zero velocity, (3) using the enthalpy porosity method for the treatment of the no-slip at the
boundary condition instead of the immersed-boundary method. The results did not improve for the first
two points and the third point showed unphysical results.
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(a) (b)

Figure 4.8: Results for phase front sav evolution over time θ, for different grid sizes N x N . Compared with results by Huber et al.
[16] and Jourabian [68].

(a) (b)

Figure 4.9: Results for Nusselt number Nu over time θ, for different grid sizes N x N . Compared to results by Huber et al [16]
and Jourabian [68].

Two possible explanations for the deviation with the benchmarks are identified:

• Unphysical numerical diffusion across the phase front. It is found that the current model shows a
slightly lower temperature in the solid phase than the initial T0 = Tm, in contradiction with theoret-
ical pure substance melting. This is illustrated in figure 4.10, which plots the temperature profile
for Ra = 1.7 · 105, at time θ = 0.2 and at position-probe y = 0.5H. It showcases a ’temperature
dip’ to values beneath initial T0 around x = 0.35H, the position of the phase front (see figure B.2),
and these lower temperatures diffuse into the solid as well. Thereby the temperature difference
is enlarged, increasing the flow, heat transfer and Nusselt number. Huber & Jourabian also com-
mented on this local temperature decrease, and avoided its result by modifying the collision step to
ensure no heat transfer in parts of the domain where the enthlapy has remained equal to the initial
enthalpy. In other words, they made sure the sink term at the phase front was not spread to the
rest of the solid, thereby not enlarging the temperature difference. The effect of numerical diffusion
for this geometry with LBM is also known in other literature, for example by Huang & Wu [19].
They introduced a ”magic parameter” to keep this effect under control. However, this approach
was not possible to implement in the current model, as it was specifically for the LB MRT-collision
scheme. It is recommended for future research to implement grid refinement near the phase front
to overcome the diffusion, motivated by the smaller temperature dip for finer grids in figure 4.10.
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• Difference in phase change treatment. While the current model uses an enthalpy-based method
to solve for phase change, Huber & Jourabian both use an source-based method. The latter treats
latent heat as a source term in the thermal LB equation, requiring an extra iteration for solving the
problem and making the method implicit. This slightly underestimates the rate of heat transfer and
thereby Nu0 with respect to the total-enthalpy-based method that was used in this study.

It can be concluded that the proposed method shows good behaviour for modelling conduction melting.
However, for convective melting it is not precluded if the deviation with the benchmark stems from a
fundamental difference in methodology or from numerical errors. Convective melting will be further
investigated in the next chapter.
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Figure 4.10: Illustration of nonphysical numerical diffusion: temperature profile at position y = 0.5H and time θ = 0.2. For
Ra = 1.7 · 105 and three different grid sizes N x N .



Chapter 5

Freeze-Plug Modelling Results

In this chapter the three individually modelled components from the previous chapter are combined
into one model: simulating the melting MSFR freeze-plug. The results of the modelled freeze-plug are
compared to a numerical study by Pater & Kaaks [11]. Their study was recently performed as a part
of the SAMOSAFER [3] collaboration, and used three different codes to model the freeze-plug: Star-
CCM+, OpenFoam and DGFlows. First, the description of the freeze-plug geometry is introduced in
section 5.1. The simulation results are presented and compared to the benchmark study in two stages:
without natural convection in section 5.2 and with natural convection in section 5.3.

5.1 Problem Description
The modelled set-up shown in figure 5.1, based on the MSFR freeze valve design described by Giraud
et al. [10] and used in the numerical benchmark by Pater & Kaaks [11]. It consists of a rectangular cavity
filled with a frozen fuel salt, with initially the top 10 % molten. Adjacent to the cavity is a vertical metal wall,
which models the surrounding pipe structures of the freeze-plug. To save computational resources, the
total geometry is modelled in 2D and cut in half at the vertical symmetry axis. The boundary conditions
on the outer vertical edges, the total bottom boundary and the wall top boundary are adiabatic in their
normal directions. A no-slip velocity boundary condition is applied on the metal-salt interface, the top
boundary and at the melting front.

The melting of of the freeze-plug is driven by two heat sources: (1) decay heat from the reactor and
(2) neutronic & photonic heat deposition. The decay heat is modelled by a time-dependent boundary
condition at the top horizontal boundary of the cavity. Its definition was derived by Tiberga et al. [9],
based on the average temperature in the reactor after shut-down, due to decay heat:

TBC(t) = −0.001t2 + 0.5244t+ 923 [K] (5.1)

The heat deposition stems from energetic neutrons and photons travelling from the reactor vessel and
heating up the salt in the freeze-plug. This effect is mimicked by adding a time-dependent, volumetric
heat source to the entire (i.e. both molten- and frozen) salt volume. It is approximated to being 1% of
the decay heat of the reactor, characterized by [69]:

Qsource(t) = 6.45908 · 104 − 6.92 · 103 · ln(t) [Wm−3] (5.2)

Two physical phenomena further enhance the melting: conjugate heat transfer and natural convection.
The first stems from the metal wall adjacent to the salt: as the metal is assumed to have a higher thermal
conductivity than the salt, it acts as heat storage. This also gives rise to the second phenomenon: natural
convection occurs as the salt closest to the wall will have lower density.

It should be noted that several phenomena that could be expected in the real-life freeze-plug are not
taken into account in the simulation. These limitations include temperature-dependency of density and
thermal conductivity (and accompanying volume changes), isothermal phase change, cracking phe-
nomena in the solid due to strong temperature gradients at the interface, and forced convection due to
re-circulation in the reactor [11].
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Figure 5.1: Freeze-plug set-up. Note Qsource is present in both frozen- and liquid salt.

The physical input parameters for the salt and the Hastelloy-N metal wall are given in table 5.1. The
model assumes to deal a with the salt as a pure material. However, in terms of computational input
parameters, a small difference of δT = 0.002 is taken between the solidification- and melting tempera-
ture: Tl = Ts + δT . The conversion to lattice values can be performed with a chosen lattice value ν and
Nx x Ny per equations 3.34, 3.35. Their values were chosen differently for the two stages, and will be
specified in their following, respective sections.

Property Physical value Unit Lattice Value Unit
Salt ρs = ρf 4390 kg/m3 1.0 ls−3

λs = λf 1.5 W/m/K 1.5/Cλ ls/lt3/K
cp,s 815 J/kg/K 815/Ccp ls2/lt2/K
cp,l 1000 J/kg/K 1000/Ccp ls2/lt2/K
Tm 841 K 841 K
L 159 · 103 J/kg 159 · 103/CLat ls2/lt2

α 2.5 · 10−4 K−1 2.5 · 10−4 K−1

ν 7.5 · 10−4/ρ m2/s specified in 5.2, 4.3 ls2/lt
Pr 5 - 5 -
Ste 0.063 - 0.063 -

Hastelloy-N ρ 8860 kg/m3 8860/Cρ ls−3

λ 23.6 W/m/K 23.6/Cλ ls/lt2/K
cp 578 J/kg/K 578/Ccp ls2/lt2/K

Table 5.1: Used thermophysical properties for fuel salt and Hastelloy N [9].

Lastly, it should be noted that previous models in chapter 4 have not dealt with the presence of a
volumetric heat source Qsource(t) yet. This requires a slight alteration in the first term of the enthalpy
solution vector γk (equation 3.16), given by:

γ±
0 (x, t) = h± ∆t

2

Q(t)

ρ
(5.3)

in which Q(t) is the heat source in lattice units.The term ∆t
2 originates from staggered time-stepping in

the FM-LBM, note the analogy with this Q-source term for enthalpy and the f -source term for momentum
in solution vector αk (equation 3.5).
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5.2 Results Freeze-Plug: Conductive Conjugate Melting
In this section the first stage of the freeze-plug modelling is described. The effect of natural convection
is excluded by setting the gravitational acceleration g to zero, thereby isolating the coupling between
transient, conductive phase change & conjugate heat transfer. In addition to the parameters from table
5.1, the lattice parameter ν = 1/40 [ls2/lt] is used. Visualisations of the temperature isotherms and
liquid fraction after t = 2500 are given in figure 5.2. As expected, the time-dependent temperature
equation on top has lowered the melting front and the presence of the solid wall made the ice close to
the wall melt the fastest.
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Figure 5.2: Results of modelling the freeze-plug at t = 2500 [s] and with fine grid size Nx x Ny = 201 x 401. (a) Temperature
isotherms in the salt & wall. (b) Liquid fraction fL in the salt: fluid at fL = 1, frozen at fL = 0

The results are benchmarked quantitatively with the Pater & Kaaks study. The phase front (x, y)-position
and three different temperature probes T (x = 0, y), T (x = 0.075, y), T (x = 0.09, y) were compared at
time t = 2500 [s]. A grid study for different sizes Nx x Ny was performed and showed clear convergence.
All phasefront- and temperature results of the grid convergence study (Nx x Ny = [31x61, 51x101,101x201,
151x301, 201x401]) are included in Appendix C. The results for the finest grid (Nx x Ny= 201 x 401) are
plotted in figures 5.3 and 5.4. The corresponding L2-errors with respect to the three models in Pater &
Kaaks benchmark are given in table 5.2. Note that the StarCCM+ & OpenFoam models taken together
as they overlapped almost perfectly.

The total L2 errors indicate very good (ϵ < 1%) correspondence to the StarCCM+ and OpenFoam results
by Bouke & Kaaks, whereas there is a larger (ϵ < 3.5%) error with the DGFlows model. The latter could
possibly be explained by the model’s method of treating the fluid- and wall domain. Namely: while the
current LBM, StarCCM+ and OpenFoam all solve on two separate domains, DGFlows solves the heat
equation for the full domain in one time. Bouke & Kaaks hypothesized that the separate treatment could
cause the solution to lag behind in time and therefore shows a slower melting rate. However, this effect
would be expected to become smaller for smaller time steps, which does not seem to be the case in
both the current study and also was not in Bouke & Kaaks. As the current LBM model retrieves the
results of 2/3 benchmark studies with an < 1% error, it can be concluded that it shows good results for
the coupling between conjugate heat transfer and conductive melting.
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L2-error with current model
Benchmark Model [11] T (x = 0, y) T (x = 0.075, y) T (x = 0.09, y) front(x, y)
StarCCM+ & OpenFoam 0.05 % 0.12 % 0.30 % 0.90 %
DGFlows 0.12 % 1.06 % 2.31 % 3.33 %

Table 5.2: L2-errors for obtained results, with respect to three benchmark models from [11]. StarCCM+ & OpenFoam showed
nearly identical results.
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Figure 5.3: Results obtained for phase front position with used grid size 201 x 401. Compared with StarCCM+ & DGFlows
benchmark models from [11]
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Figure 5.4: Results obtained for temperature vs y position at three different x-probes, with used grid size 201 x 401. Compared
with StarCCM+ & DGFlows benchmark models from [11].

5.2.1 Wall Thickness
Several parameters are of interest for the ultimate design of the freeze-plug, one of which is the wall
thickness of the surrounding pipe structure. This subsection looks at the influence of the wall-thickness
d on the melting time tmelt of the freeze-plug. Note that tmelt can be defined as the time at which the
uttermost lower-right corner of the freeze-plug is liquid (fL(0.1, 0) = 1.0): at that point the freeze-plug
loses contact with the wall and is able to fall down, opening the drainage pipe. Simulations are run
for different values of d, and with the same parameters as defined in table 5.1. The results for tmelt at
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different d/W are plotted in figure 5.5.

It can be observed for d < 0.3W that the melting time decreases with increasing wall thickness: more
metal material can store more decay heat, thereby increasing the melting rate of the salt adjacent to the
wall. However, after d > 0.3W the melting time increases again: the larger material now takes longer
to heat all the way through. It is interesting to see that an optimal value of the wall thickness exists, at
which tmelt is at its minimum. For this case it thus lies around d = 0.3W .

Of course this is a very preliminary study on the wall thickness: other choices for example fluid & wall
properties, initial conditions and boundary conditions would influence the melting times. However, the
result does stress the importance of the careful choice of wall thickness in the freeze-plug design.
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Figure 5.5: Freeze-plug melting time tmelt for different wall thickness ratios d/W .

5.3 Results Freeze-Plug: Convective Conjugate Melting
In this section, the second stage of the freeze-plug modelling is described: now the effect of natural
convection is taken into account. The presence fluid velocities now restricts the stability requirements
(see section 3.3), and therefore the lattice values Nx x Ny = 251 x 501 and ν = 1/150 [ls2/lt] are taken.
This results in a big increase of computational resources opposed to the previous stage without natural
convection.

Due to memory- and time constraints, it was not possible to model the resulting temperature and phase
front profiles at large time t = 2500. Therefore, the solutions could not be benchmarked with the study by
Pater & Kaaks. Instead, this section comments on the qualitative performance of simulations, at earlier t.
It was found that different simulation results were obtained for different phase front boundary conditions:
the immersed- and enthalpy-porosity boundary method (see section 3.2.3). Therefore, the results are
discussed seperately.

5.3.1 Immersed-boundary method
The results at t = 24s with the immersed-boundary method are shown in figure 5.6. Next to the tem-
perature isotherms and the liquid fraction, now also the velocity streamlines are shown. It should be
noted that velocities below umax/100 were cut off to zero for visualisation. Several observations from
the plot do not seem physical. All three plots show instabilities near the phase front: the temperature
fluctuates in both x- and y- direction and the no-slip boundary condition is not achieved. Furthermore,
temperatures below the initial solid temperature T0 = 831 K are found, likely due to unphysical numeri-
cal diffusion of latent heat at the melting front. The fluid salt near the wall is also colder than in the bulk.
This effect is most pronounced at the point where the phase front touches the metal wall where the salt
is re-freezing instead of melting.

All in all, it can be concluded that the model with immersed-boundary scheme shows severe instabilities.
In future research, the effect of grid refinement near the phase front should be examined. Furthermore,
the combination of the WNSV conjugate BC and immersed-boundary BC should be further looked into.
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Figure 5.6: Simulation results with immersed-boundary method. For temperature isotherms (left), liquid fraction (middle) and
velocity profile (right) in freeze-plug, after t = 24s

5.3.2 Enthalpy-porosity method
The simulation results at t = 41s with the enthalpy-porosity-method are shown in figure 5.7. Again,
velocities below umax/100 were cut off to zero for visualisation. The results are somewhat better than for
the immersed-boundary method: so stability issues arise for temperature at the phase front. Also, the
point of contact of the phase front and the metal wall is resolved better: the starts starts to melt in the
vicinity of the wall. However, an unphysical heat sink near the phase front is still present and no perfect
no-slip is achieved. Also, the temperature of the liquid salt near the metal wall is again colder than in the
bulk, which can also be observed from the local downward streaming velocity lines.

All in all, it is hypothesized that the enthalpy-porosity method is more compatible with the conjugate
WNSV BC than the immersed-boundary method. This effect can be due to the fact that the immersed-
boundary-method bounces back distribution functions at the phase front, thereby complicating the inter-
action with WNSV BCs at the metal wall. In that sense, the enthalpy-porosity-method is more simple;
it merely attributes a local momentum sink Sx,y to the momentum equation. For the enthalpy-porosity
method it is recommended to implement grid refinement and GPU simulation to study if physical solu-
tions can be obtained.

Figure 5.7: Simulation results with enthalpy-porosity method. For temperature isotherms (left), liquid fraction (middle) and
velocity profile (right) in freeze-plug, after t = 41s



Chapter 6

Wet-Node Boundary Conditions
Results

In the previous two chapters, the wet-node-solution-vector boundary condition (WNSV BC) has shown
to be successful in modelling conjugate heat transfer in combination with either convective thermal flows
or with conductive phase change. The current chapter focuses on the WNSV BC itself, by studying its
performance in terms of order of accuracy, energy conservation and required time-iterations. A number
of different variations within the WNSV BC are applied and compared. This is done for three different
types of boundary conditions: Dirichlet, Neumann and conjugate,

First, the Dirichlet boundary condition is studied by modelling a simple Poiseuille flow in section 6.1.
Thereafter, section 6.2 models the combination of Dirichlet, Neumann and conjugate boundary condi-
tions in the more complex conjugate heat transfer case.

6.1 Dirichlet: Poiseuille Case
In this section five different variations of the WNSV BC are tested for a Dirichlet boundary condition. A
variation is defined by its used extrapolation scheme in the WNSV BC to predict the boundary solution
vector from known solution vectors in the domain. This methodology was described in detail in section
3.2.2. In this case, the momentum solution vector αk is of interest. For clarity, the five wet-node variations
are noted and labelled in table 6.1 with a reference to their corresponding extrapolation scheme.

The different variations are applied by modelling a Poiseuille flow. This is a suitable starting point be-
cause (1) only a no-slip (i.e. Dirichlet) boundary condition has to be handled and (2) the analytical
solution for a Poiseuille flow is known.

Description Abbreviation Extrapolation method αk Group
0th order spatial BC0 3.19a A1st order spatial & temporal BC1t 3.19c

B1st order spatial BC1 3.19b
2nd order spatial BC2 3.19d
2nd order spatial & 1st order temporal BC2t 3.19e

Table 6.1: Different variations of wet-node-solution-vector boundary condition. The division in group A & B will be explained in
section 3.5.1

6.1.1 Geometry & Parameters
The set-up for a Poiseuille flow is shown in figure 6.1, and consist of a two-dimensional parallel plate
geometry, with place distance H. No-slip boundary conditions are imposed on the horizontal walls
and periodic boundary conditions on the vertical walls. The body force fx = ρgx drives the laminar
flow. Its effect is captured in the macroscopic momentum equation 2.3 and in the numerical method via
momentum solution vector α±

k (3.7). It is assumed that the viscosity is uniform throughout the domain

48



6.1 Dirichlet: Poiseuille Case 49

and that no pressure gradient is present. This makes that the analytical solution for the velocity profile
is given by [40]:

ux,analytical(y) =
gxy

2ν
(H − y) (6.1)

The used input parameters are given in table 6.2. Based on the maximum flow velocity in lattice units
(umax) an appropriate input body force gx is calculated to achieve stable results: gx = 8umaxν/H

2 1.

Figure 6.1: Poiseuille flow with wet-node lattice

Description Variable Physical value Unit Lattice Value Unit
Height & length geometry H xW 0.005 x 0.0025 [m] (N − 1) x 1

2 (N − 1) [ls]
Density ρ 1000 [kg/m3] 1.0 [ls−3]
Kinematic viscosity ν 1.4 · 10−6 [m2/s] 1/3 [ls2/lt]
Maximum velocity ux,max − − 0.09 [ls/lt]

Table 6.2: Parameter definition of Poiseuille flow case. Physical parameters from water.

6.1.2 Time Convergence
All simulations were run until time-convergence was reached, ensuring the flow profile to be fully devel-
oped (i.e. steady-state is reached). This was handled by looking at the residual value of the velocity
profile, for the following convergence criterium [70]:√∑

i

(
ux(yi, t)− ux(yi, t− 100∆t)

)2∑
i u

2
x(yi, t− 100∆t)

< 10−6 (6.2)

The Poiseuille flow was modelled for different amounts of lattice points N = [5, 9, 21, 41, 81, 161]. The
amount of time iterations Nt required to reach convergence at a lattice size N was noted for the five
different WNSV BC variations (BC0, BC1, BC1t, BC2, BC2t). Also, simulations were run with the link-
wise HBB method for comparison. No difference in Nt was found within the order of 100∆t, hence
mutual results for the required Nt are shown in figure 6.2.

The obtained velocity profile ux(y) for Poiseuille flow modelled by the five different variations, for a very
fine grid (N = 161) is shown in figure 6.3, together with the analytical solution. It is clear that all variations
reproduce the analytical solution up to a very small error.

6.1.3 Order of Accuracy
This section has the goal to determine if all WNSV BC variations show grid convergence, and with which
order of accuracy. The error in the velocity profile was calculated with respect to the analytical solution
via the L2-error norm (equation 3.40), for different grid sizes N . To avoid overseeing potential local
differences, the local error at the top of the velocity profile (y = 1

2 ) was also studied next to the global
error, but no notable results were found. The grid dependence results for the L2-error for the five wet-
node BCs are shown in figure 6.4, together with the results for the link-wise HBB BC for comparison.
Note that some of the y-axes differ in scale per sub-figure. Figure 6.5 shows the same data, but now
plotted on double-logarithmic axes. As explained in section 3.5.1, order of accuracy p can be determined
from this double-logarithmic plot from its slope. A quick observation of both figure 6.4 and 6.5 shows
that the BC variations can be classified into two groups, based on the general shapes of the figures: (A)
HBB, BC0, BC1t and (B) BC1, BC2, BC2t. Therefore the groups’ results are interpreted separately in
the following two sections.

1This comes from ux having its maximum value at y = H/2
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Figure 6.2: Required time iterations Nt to reach convergence
citerium 6.2 for amount of grid points N in Poiseuille flow model.
All five wet-node- and the link-wise HBB boundary method show

the same results.

Figure 6.3: Velocity profile, non-dimensionalised via
ux(y)/ux,max, for different variations in the WNSV BCs.

Ny = 161

Results group (A): HBB, BC0, BC1t
The grid convergence results of HBB, BC0 and BC1t are plotted in figure 6.4a, 6.4b, 6.4c respectively.
With increasing amount of grid points N , all three show a clear convergence towards approximately
zero error. It should be noted that the absolute error in HBB is smaller than for BC0 and BC1t: while
HBB already shows ϵ < 0.1% for N = 11, the two wet-node BCs achieve ϵ < 0.1% only at N =
21. This could be attributed to the fact that bounce-back boundary schemes (like HBB) are inherently
mass conservative, while extrapolation schemes (like the WNSV) are not [15]. Therefore, the error in
recovering the analytical solution for WNSV can be higher than for HBB.

The double-logarithmic plots of the error ϵu with respect to 1/N for HBB, BC0 and BC1t are shown in
subfigures 6.5a, 6.5b, 6.5c. The dotted line is a reference for slope p = 2.0. As expected [15], HBB
shows second-order accuracy for the Poiseuille flow. Also BC0 and BC1t show a near-perfect second
order accuracy, i.e. their lower-order extrapolation schemes have not degraded the inherent second-
order accuracy of the Lattice Boltzmann method.

Results group (B): BC1, BC2, BC2t
The grid convergence results for BC1, BC2 and BC2t are plotted in subfigures 6.4d, 6.4e, 6.4f. Note that
the y-axis (error) is an order of magnitude ∼ 103 smaller than in group (A). At a coarse grid N = 9, group
(B) already shows a minimal error of ϵ ≈ 10−12%, which is in the order of machine precision. As the grid
is refined the error grows, but is still very small, e.g. ϵ ≈ 0.05% at N = 160. Hence, it can be concluded
that the extrapolation schemes of group (B) show close to no truncation error for the Poiseuille flow. This
absence reveals other, smaller error sources: the round-off error and mass-conservation error. As the
grid refines, the amount of iterations increases and the effect of the round-off error and mass leakage
become more pronounced [70][71], explaining the upward trend of the error in the figures.

The logarithmic subfigures 6.5d, 6.5e and 6.5f for BC1, BC2 and BC2t are not really informative for the
determination of the order of accuracy, because of the absent trunctation error. However, it can be seen
that the slopes tend towards p = −2. This is in line with the second order scaling of the required amount
of timesteps to the grid size (N ∝ N2

t ) and thereby increasing (p < 0) the round-off & mass conservation
error with the second power as the grid is refined.

In conclusion, boundary schemes BC1, BC2, BC2t show a promising, very low truncation error in mod-
elling the Poiseuille flow. Therefore, no conclusion about their order of grid convergence can be drawn
at this point.
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(a) Link-wise HBB (b) Wet-node BC0

(c) Wet-node BC1t (d) Wet-node BC1

(e) Wet-node BC2 (f) Wet-node BC2t

Figure 6.4: Grid convergence results: velocity error ϵu w.r.t the analytical solution for a Poiseuille flow, plotted against grid size N .
Sub-figures for link-wise HBB and five different wet-node BC variations. Note that the y-axes of sub-figures (a)(b)(c) are a factor

102 − 103 bigger than those of (d)(e)(f).
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(a) Link-wise HBB (b) Wet-node BC0

(c) Wet-node BC1t (d) Wet-node BC1

(e) Wetnode BC2 (f) Wetnode BC2t

Figure 6.5: Order of accuracy results: velocity ϵu w.r.t. analytical solution for Poiseuille profile, against 1/N , on double logarithmic
axes. For link-wise HBB BC and five wet-node BCs. Dotted line shows a reference slope p = ±2.

6.1.4 Validation Eça-Hoekstra-method
The Eça-Hoekstra method (EHM) was introduced in section 3.5.1 for determining the order of accuracy
when an analytical solution is not available ánd a fine grid solution is computationally hard to obtain.
Despite the fact that neither is the case in the Poiseuille flow, it does provide a good opportunity to test
the implementation and results of the EHM.

A situation in which the analytical- and finest grid solution were not available was mimicked by excluding
the modelled velocity solutions for the most fine grids. In other words, the EHM study was carried out
with the velocity solutions on only the four most coarse grids (N = 5, 9, 11, 21). This was only done for
group (A), as the other group did not show grid convergence. By using the EHM minimization equation
3.44, predictions of the order of accuracy p and velocity reference value ϕ0 = ux(ytop) were found. The
results are given in table 6.3. The found reference value is presented as a scaled value to the analytical
value ux,analytical(ytop). It can be seen that the EHM predicts both the expected order of accuracy p
(≈ 2.0) and the expected reference solution (up til 0.3% with the analytical value) for the Poiseuille flow.
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Boundary condition Order of accuracy p Reference solution ϕ0/ϕanalytical

Expected 2.0 1.0
HBB 2.005961 0.99998301
BC0 1.999527 0.99998475
BC1t 1.999511 0.99998472

Table 6.3: Results for p and ϕ0 of Eça-Hoekstra minimization method applied at Poiseuille velocity results, with inputs at
N = 5, 9, 11, 21, for three different BC methods.

6.2 Neumann: Conjugate Heat Transfer Case
In this section the different wet-node boundary variations are tested for a more complex case, that
involves both Dirichlet- snd (conjugate) Neumann boundary conditions: the conjugate heat transfer case.
The geometry and used input parameters are identical to the used benchmark case for conjugate heat
transfer in section 4.2: a side-heated cavity with adjacent solid wall. The simulations are carried out for
one Rayleigh value: Ra = 0.7 · 104 and with time convergence criterion 3.39.

Recall from section 3.2.2 that while a Dirichlet boundary condition only required an extrapolation in the
solution vector (equation 3.19), (conjugate) Neumann BCs require additional extrapolation schemes:
given in equations 3.22 and 3.23. For clarity, table 6.4 shows the abbreviations of the used WNSV BC
variations and their corresponding combination of used extrapolation schemes. A new, sixth boundary
scheme ’BCmix’ is introduced, which combines a first order extrapolation of the solution vector with a
second order extrapolation for the Neumann and conjugate BCs.

Extrapolation method αk, βk Adiabatic / Neumann Conjugate Group
BC0 3.19a 3.22a 3.23a ABC1t 3.19c 3.22a 3.23a
BC1 3.19b 3.22a 3.23a

BBCmix 3.19c 3.22b 3.23b
BC2 3.19d 3.22b 3.23b
BC2t 3.19e 3.22b 3.23b

Table 6.4: Overview of different wet-node-solution-vector boundary condition variations.

This section employs a similar approach as for the Poiseuille case: studying time convergence and
order of accuracy for the six different wet-node boundary schemes. Additionally, energy conservation is
studied as a third numerical performance indicator.

6.2.1 Order of Accuracy
The grid convergence results for the modelled Nusselt number NuH at the hot wall of the cavity are
presented in figure 4.5. Every simulation was performed with ν = 1/100 [ls2/lt] (see table 4.3), except
for BC2 & BC2t, as instabilities arose. BC2 & BC2t therefore used ν = 1/50.

The results for group (B) in figure 6.6b all show convergence approximately towards the expected value
(Nu = 3.42 − 3.436 [66][67]). Note that while earlier for the Poiseuille flow, group B did not show a
truncation error, now for the more complex case of conjugate thermal flows, it does. On the other hand,
group (A) in figure 6.6a shows converging behaviour up til N = 150, but not for higher grid refinement.
However, do note that the relative divergence is small ∼ 3·10−2%. It could be the case that after N = 150
the round-off & mass leakage error become in the same order of magnitude of the truncation error for
group (A).

The order of accuracy is calculated for the schemes that show grid convergence: BC1, BCmix, BC2,
BC2t (group B). Note that because no analytical solution for Nu is present, the error ϵNu [%] is calculated
with respect to the finest-grid solution. The latter was taken at Nfine = 201. The resulting errors at
different grid spacings are plotted on double-logarithmic axes in figure 6.7. Note that the grid gets finer
from right to left on the x-axis. The dotted line has slope p = 2 and is drawn for reference. It can be
observed from the figure that for all four BCs in group B, the more coarse grids (up to N = 121) are
on a straight line with approximately p = 2. However, the last points (N = 151, 181) show a rapidly
increasing slope. This effect is probably attributed to the grid refinement ratios on these points being
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(a) Group (A) (b) Group (B)

Figure 6.6: Grid convergence results for different boundary variations, conjugated heat transfer.

too high: r151 = 201/151 = 1.3, r181 = 201/181 = 1.1. In other words, Nfine = 201 is not ”fine enough”
to be compared to these points. A formal derivation of what is ”fine enough” is lacking in literature.
Freitas [72] suggests a minimum of r = 1.3, Roache [61] r = 1.5 , while Ober et al. [73] point out that
inaccuracies associated with the choice of a too-coarse-fine-grid solution can still occur when r = 2. As
it was computationally challenging to achieve ”fine-enough” reference solutions, also the Eça-Hoekstra
method was employed to find the order of accuracy.

By performing the EHM for group (B), with Nusselt values for N = 61, 81, 101, 121, 151, 181, 201 as input
values, the order of accuracy p and reference value ϕ0 = Nu as given in table 6.5 were found. It can
be sen that the EHM-found Nusselt numbers correspond to the trend in figure 6.6b and to the expected
benchmark value (∼ 0.6 % error). The found orders of accuracy are between p = 1.6 − 1.74. It is
important to note that the outcome for p was influenced by the amount of used grid points, within a
range of p± 0.2.

Combining the insides on the order of accuracy from both the finest-grid method and the Eça-Hoekstra
Method, there is reason to believe that wet-node variations BC1, BCmix, BC2 and BC2t show an order
of accuracy between 1.6 − 2.0. It would be helpful to fully confirm this statement by studying the grid
convergence for a conjugate heat transfer problem that has an analytical solution available.

Wet-node BC p ϕ0 = NuH

BC1 1.60 3.396
BCmix 1.66 3.392
BC2 1.71 3.396
BC2t 1.74 3.396

Table 6.5: Results order of accuracy p and reference solution ϕ0 from Eça-Hoekstra method (EHM).

6.2.2 Time Convergence
The amount of iterations Nt needed at certain number of grids points N is plotted in figure 6.8, for all
diferrent wet-node BCs. Note that BC2 & BC2t require ∼ 2 times less time iterations, as ν = 1/50 [ls2/lt]
was used instead of ν = 1/100 [lss/lt] for the other four BCS. Therefore, the BCs showed no notable
time convergence differences amongst eachother.
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(a) (b)

(c) (d)

Figure 6.7: Conjugate: order of accuracy for different wetnode BCs

Figure 6.8: Time iterations Nt needed for grid size N to reach steady-state

6.2.3 Energy Conservation
Another important aspect of a numerical model and its boundary conditions, is that it should conserve
energy. This can be checked by evaluating the thermal (transient) energy balance over the total geome-
try. The change in volumetric total energy (∂E/∂t) should be equal to the sum of in and outgoing surface
fluxes ϕin,out, given by [40]:
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(6.3)

in which subscripts l, s denote the properties on the respective liquid and solid domain.

The results are plotted in figure 6.9, for all different WNSV BC varations. The left sub-figures plot ∂E
∂t and

(ϕin − ϕout) of equation 6.3 together over the lattice time t. A fine lattice size N = 181 was taken for all
plots. The x-axis is plotted logarithmically for better visibility. The right sub-figures show the difference
∆E between the left- and right-hand-side of equation 6.3 in terms of a fraction of the total volumetric
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energy, calculated by:

∆E(ti)[%] =

∣∣(ϕin − ϕout)i − ∂E
∂t i

∣∣∑i
0

∂E
∂t

(6.4)

From the figures it can be observed that the ∂E
∂t and (ϕin−ϕout show the same trend, but do not overlap

for small t. In other words, energy is only conserved for larger t and not for small t. The error is bigger for
lower-order- than for higher-order extrapolation schemes, as expected. The deviation at smaller t can be
explained by the effect of penetration depth/time: the characteristic depth/time at which the temperature
in the material as noticeably changed at a certain time/depth. The penetration time tpen at point x is
typically of scale tpen,x = x2/(πκ) [40]. The figures show that the error ∆E reaches ∼ 0% at t = 20− 30
[lt], which is in line with the order of magnitude for the penetration depth at the first point in the domain
(x = ∆x = 1 [ls]).
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(a) BC0

(b) BC1

(c) BC1t
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(d) BCmix

(e) BC2

(f) BC2t

Figure 6.9: Energy conservation for six different wet-node boundary conditions. Left: LHS and RHS of equation 6.3
[lW = ls2/lt3] over time [lt]. Right: energy difference ∆E [%] over time [lt]. x-axes are logarithmic. Lattice size N = 181



Chapter 7

Conclusions and Recommendations

Nuclear reactors can offer a stable and reliant source of renewable energy, which is highly important to fill
the gaps left by intermittent renewable energy sources like solar and wind. The Molten Salt Fast Reactor
is one of the reactors proposed by Generation IV and shows to be promising because of its reduced
issues with waste management and high safety standards. The freeze-plug safety system is an integral
part of the MSFR, melting in the case of an emergency and thereby allowing drainage of the reactor
core. It is therefore crucial to study the freeze-plug’s melting behaviour. It is known that both conjugate
heat transfer with adjacent structures and natural convection in the liquid salt play an important role in
the melting process. To this end, this thesis aimed develop a numerical model to simulate convective
phase change and conjugate heat transfer. This was done with the Lattice Boltzmann Method with a
Filter-Matrix collision scheme. In addition, it was aimed to contribute to the current state of knowledge on
the FM-LBM by introducing a new wet-node boundary condition. This chapter discusses the conclusions
of this work and some recommendations for further research.

7.1 Conclusion
The Filter Matrix Lattice Boltzmann Method (FM-LBM) with double-distribution functions (DFF) was im-
plemented to simulate natural convection, conjugate heat transfer and phase change. The inherent
advantages of the FM-LBM and wet-node boundary scheme were combined to develop a wet-node-
solution-vector boundary condition (WNSV BC).

Benchmarks
The model was benchmarked with three different problems. First, it was applied to the well-defined
square cavity natural convection problem, for three different Rayleigh numbers. By comparing the char-
acteristic velocities and Nusselt number to benchmark studies by De Vahl Davis [64] and Zhuo & Zhong
[33], an < 0.9% error was found, and the model was verified for convective thermal flows. Second,
modelling of conjugate heat transfer was tested for a square cavity with one conducting wall and steady-
state natural convection. The results for the Nusselt number showed an acceptable error of < 1.0%
with respect to numerical benchmark cases by Kaminksy & Prakash [66] and Misra et al. [67], for three
different Rayleigh numbers. Third, phase change was included by using a total-enthalpy scheme and
an immersed-boundary scheme was handled to set the no-slip condition on the phase front. The results
for the development of the phase front and of the Nusselt number were compared with two benchmark
studies by Huber[16] an Jourabian [68], for two Rayleigh numbers. It was found that the results showed
good correspondence for conduction melting, but a large error (∼ 12%) in the Nusselt number was found
as convection increased. This could probably be attributed to a fundamental difference in phase treat-
ment between the current- and benchmark studies, or to unphysical numerical diffusion on the phase
front in the current model.

The individual model components were aimed to be combined in modelling a freeze-plug geometry. This
was done in two stages. First, the combination of conductive melting and conjugate heat transfer was
modelled for the freeze-plug geometry, by discarding the effect of natural ocnvection. Comparison with
three-fold results by Kaaks & Pater [11] showed good correspondenc. Especially with respect to the two

59



7.2 Recommendations 60

models that also used two separate computational domains for the solid and fluid, for which ϵ < 1.0% was
found. Second, the final freeze-plug case with the addition of natural convection was attempted to be
modelled, but the results showed severe instabilities. Most likely, the numerical diffusion as seen in the
previous convective phase change case was enlarged as the Rayleigh number in the freeze-plug case
was high. Also, the combination of the no-slip boundary condition at the phase front and the conjugated
boundary condition proved difficult to implement.

All in all, the wet-node-solution-vector boundary condition, with a first order extrapolation scheme,
showed good performance of modelling Dirichlet and (conjugate) Neumann boundary conditions, for
conjugate heat transfer combined with either convective heat transfer or conductive melting. The appli-
cation to convective melting was not verified.

Wet-node Boundary Conditions
The wet-node-solution-vector boundary condition itself was examined in more detail. Different extrapo-
lation schemes for the WNSV BC were adopted to test which one performed best. Two test cases were
modelled, a Poiseuille flow and a conjugate heat transfer case.

The Poiseuille case tested a Dirichlet, no-slip boundary condition. The 0th order spatial (BC0) and first
order spatial & temporal (BC1t) schemes showed convergence to an < 1% error with the analytical
solution. Second-order-accuracy was obtained. However, the overall error was somewhat larger than
for the link-wise HBB BC. The extrapolation schemes first order spatial (BC1), second order spatial
(BC2) and second order & first order temporal (BC2t) showed machine precision and no discretization
error. However, this revealed smaller-scale round-off and mass-conservation errors, which grew upon
grid refinement.

The conjugate heat transfer case tested both Dirichlet and (conjugate) Neumann boundary conditions.
The WNSV BC extrapolation schemes BC0 and BC1t did not show fully converging results for the Nusselt
number, but BC1, BCmix, BC2 and BC2t did. The order of accuracy for the latter four BCs was studied
and showed approximate second-order-accuracy. However, this was not conclusive, to the unavailability
of an analytical- and finest-grid solution. Another approach called the Eça-Hoekstra Method (EHM)
found an ∼ 1.7 order of accuracy for BC1, BCmix, BC2 and BC2t. In addition, energy conservation
over time was examined for all WNSV extrapolation schemes. Better energy conservation was found
for higher order spatial schemes, as expected. However, none of the schemes was perfectly energy
conservative.

Combining the results from the Poiseuille and conjugated case, the four boundary schemes BC1, BCmix,
BC2 and BC2t showed to perform the best. Definite conclusion on their second-order accuracy needs
further research.

7.2 Recommendations
Recommendations for further research can be subdivided into three categories: improvements on the
wet-node-solution-vector boundary condition, improvement of the conjugate convective melting model
and study on the freeze-plug.

7.2.1 Improve Wet-Node-Solution-Vector Boundary Condition
• Confirmation second-order-accuracy The determination of order of accuracy for proposed WNSV

BC relied partly on comparison with a non-analytical solution and proved to be difficult. The
second-order accuracy in thermal (conjugate) flows could be further confirmed by modelling a
problem with an available analytical solution. For example a Poiseuille flow in a channel with con-
ducing upper and lower walls, for which the analytical solution can be found in [74]. Some other
examples for more complex, 2D conjugate problems are given in [75].

• Mass conservative extrapolation While bounce-back schemes are inherently mass conservative,
extrapolation schemes are not. Further research could look into adjustments on the extrapolation
schemes to ensure mass conservation. For reference, future researches can employ the mass
conservative method suggested by Bao et al. [76] or the overview of LBM boundary conditions by
Jananshaloo [77], for example.
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• Complex boundary geometries Currently, the wet-node-solution-vector boundary condition is
only employed for straight boundaries. Effectiveness for curved boundaries and 3D cases should
be examined to generalise its applicability.

7.2.2 Improve Conjugate Convective Melting
• Grid refinement It is expected that grid refinement can (partly) overcome the errors and instabili-

ties found in the two convective melting cases in this study. Especially near the phase front, where
grid refinement could overcome unphysical numerical diffusion of the latent heat. Additionally, grid
refinement reduces memory requirements.

• Conjugate & phase front BCs The combination of conjugate boundary conditions and no-slip
velocity conditions a phase front showed to be difficult. Future study should assess how to combine
them properly.

7.2.3 Study Freeze-Plug
• Melting complexities The molten salt and freeze-plug system in reality has many complexities

that were not attempted to capture in this study, but nevertheless are important for assessing
the MSFR safety. For example the effect of eutectic melting, time-dependent salt properties and
radiative heat transfer on the melting behaviour should be examined.

• Design parameters The greater goal is to make suitable choices in the design of the freeze-plug
system to ensure effective melting in case of emergencies. Two design choices that are not studied
yet in detail are the optimal wall thickness of adjacent structures and the effect of the inclination
angle. It is recommended to study this in the future.
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Appendix A

Nondimensional Nusselt number

Nusselt is defined as [40]

Nu =
hH

λ
(A.1)

with h the convective heat transfer coefficient, H the characteristic length, λ the thermal conductivity.
This can be rewritten by using two different describtions of the heat rate. The first being given by
Newton’s law of cooling:

qNewton = hH(Ts − T∞) = hH∆T (A.2)

The second given by the conductive heat transfer:

qconductive = −λH
∂T

∂x
(A.3)

The two heat transfer rates qnewton and qconductive must be equal, which leads to:

h

λ
=

∂T
∂y

∆T
(A.4)

Filling this into equation A.1, gives for the local Nusselt number:

Nu =
H

∆T

∂T

∂x
(A.5)

By integrating over y and dividing by its characteristic length H, the nondimensional, average Nusselt
number as given and used in equation 4.1 is found.
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Appendix B

Figures of convective melting model

𝑳𝒊𝒒𝒖𝒊𝒅 𝒇𝒓𝒂𝒄𝒕𝒊𝒐𝒏 𝒇𝑳 𝑽𝒆𝒍𝒐𝒄𝒊𝒕𝒚 𝑻𝒆𝒎𝒑𝒆𝒓𝒂𝒕𝒖𝒓𝒆

𝜽 = 𝟎. 𝟏

𝜽 = 𝟎. 𝟐

𝜽 = 𝟎.4

Figure B.1: Ra = 5.0 · 104. At three different nondimensional times θ
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𝜃 = 0.1

𝑳𝒊𝒒𝒖𝒊𝒅 𝒇𝒓𝒂𝒄𝒕𝒊𝒐𝒏 𝒇𝑳 𝑽𝒆𝒍𝒐𝒄𝒊𝒕𝒚 𝑻𝒆𝒎𝒑𝒆𝒓𝒂𝒕𝒖𝒓𝒆

𝜽 = 𝟎. 𝟏

𝜽 = 𝟎. 𝟐

𝜽 = 𝟎.4

Figure B.2: Results for Ra = 1.7e5. At three different nondimensional times θ



Appendix C

Figures freeze-plug modelling without
natural convection
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Figure C.1: Modelled phase front position for five different grid sizes Nx x Ny . Compared with benchmark study by Pater &
Kaaks [11] for two used models
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Figure C.2: Modelled temperature profile at probe x = 0.0m for five different grid sizes Nx x Ny . Compared with benchmark
study by Pater & Kaaks [11] for two used models
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Figure C.3: Modelled temperature profile at probe x = 0.075m for five different grid sizes Nx x Ny . Compared with benchmark
study by Pater & Kaaks [11] for two used models
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Figure C.4: Modelled temperature profile at probe x = 0.090m for five different grid sizes Nx x Ny . Compared with benchmark
study by Pater & Kaaks [11] for two used models


