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Highlights

The most important contributions from this research project to existing literature are:

• The development of a novel coupled multi-physics model using the lattice Boltzmann method,
specifically designed for resolving the neutron diffusion equation in combination with thermal-
hydraulics within aMolten Salt Fast Reactor, and its subsequent validation against well-established
numerical tools.

• A rationale for employing lower, yet sufficiently high Prandtl and Schmidt numbers in scenarios
where diffusion effects are negligible. This approach is substantiated with evidence, presenting
an effective strategy to reduce numerical complexity while maintaining adequate accuracy.

• The successful integration of the predictor corrector quasi-static method and lattice Boltzmann
method for perturbations in transient coupled multi-physics reactor simulations, a pioneering
achievement in the field of describing neutron behaviour with the lattice Boltzmann method.
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Abstract

In Molten Salt Fast Reactors (MSFRs) liquid salt acts as both coolant and fuel. This results in strong
coupling of temperature and flow fields to neutronics compared to solid fuel reactors. These temper-
ature feedback mechanisms improve the stability of the reactor, and result in safety mechanisms that
are inherent to the strong coupling between neutronics and thermal-hydraulics. However, this strong
coupling also makes describing the physics within the core complex. Trying to understand the inter-
actions between all these phenomena results in the necessity for computer tools that are efficient in
predicting the physics at hands.

This research proposes a multi-physics tool for MSFRs using the lattice Boltzmann method and
validates it against existing models. The primary objective is to integrate the neutronics and thermal-
hydraulics components in one numerical scheme.

In this research the Navier-Stokes equation, heat equation, neutron diffusion equation and neutron
precursor advection-diffusion equation are all solved using the lattice Boltzmann method (LBM). The
equations are solved in two-dimensional space using the LBM with the Bhatnagar-Gross-Krook opera-
tor. A multiple distribution function approach is implemented, assigning separate distribution functions
to different fields. Two types of vacuum boundary conditions are implemented in the LBM and com-
pared on their capabilities to correctly simulate the distribution of the neutron scalar flux. The coupled
steady-state eigenvalue problem is solved using the power method. The coupled transient simulation
is performed by integrating the steady-state LBM with the predictor corrector quasi-static method (PC-
QSM). The model is validated by comparison to a coupled numerical benchmark that was specifically
designed for assessing the capabilities of describing the multi-physics by numerical tools.

This research project reveals that for simulating vacuum boundaries, applying the equilibrium bound-
ary (EB) condition proves more effective than the non-equilibrium extrapolation scheme (NEES). This
is evidenced by the fact that the EB yields increasingly lower discrepancies from benchmark codes with
an increased number of lattice nodes, whereas the discrepancies from benchmark codes in the NEES
increases with a greater number of lattice nodes.

The steady-state coupled model developed in this research project using the LBM proves to be
efficient in modelling the complex physics in MSFRs, finding discrepancies from benchmark codes in
eigenvalues between 0.000019% and 0.000043% and discrepancies from benchmark codes of macro-
scopic fields between 0.32% and 5.9%.

The transient coupled model represents a pioneering and successful integration of the PCQSM
and LBM for perturbations in coupled reactor simulations, marking a notable first in this field of study.
However, numerical issues arise in the determination of the initial reactivity, resulting in a steep initial
peak in reactivity and thus in reactor power. Nevertheless, the developed tool delivers promising re-
sults, accurately capturing the trends in gain and phase shift across varying perturbation frequencies.
This achievement underscores its potential, although there remains scope for further refinement in its
numerical implementation to enhance its performance.

Additionally, in this research a rationale is proposed for employing lower, yet sufficiently high Prandtl
(Pr) and Schmidt (Sc) numbers in scenarios where diffusion effects are negligible. It is found that
discrepancies from simulations that implement higher Pr and Sc numbers are of importance in regions
where gradients in temperature and concentration are highest. This approach presents an effective
strategy to reduce numerical complexity while maintaining adequate accuracy.

The presented model in this research project integrates the neutronics and thermal-hydraulics com-
ponents in a single numerical scheme, the LBM. This results in all fields having a similar data structure
and it simplifies information exchange between fields. Further, in the LBM solutions for the particle dis-
tribution and particle collisions are local and the simulation method is highly parallelizable making the
coupled multi-physics tool in this research adequate for GPU simulations, increasing numerical speed.
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1
Introduction

In the energy transition a shift towards carbon-free electricity generation is of great importance. Nuclear
power is not only crucial for power sector decarbonisation but also plays a vital role in enhancing energy
security. It stabilises power grids and complements the intermittent nature of renewable energy sources
like wind and solar photo-voltaics, which have an inconsistent output. This is particularly important as
wind and solar require the support of dispatchable resources to ensure a continuous and reliable power
supply. Over the past 50 years nuclear energy has avoided about 70 Gt of CO2 emissions globally [28],
comparable to the total global emissions of energy combustion and industrial processes of about two
years. According to the International Energy Agency, nuclear power needs to expand further to stay
on track with ambitions for Net Zero Scenarios by 2050.

Nuclear power faces opposition in many countries. This is often due to safety concerns when people
think of the major accidents that have happened in the past, such as the nuclear disaster in Chernobyl in
1986. Further, people are concerned with the large half-lives of radioactive waste produced by nuclear
reactors.

Luckily, advancement in nuclear technologies have found ways to cope with these reasonable con-
cerns. Technologies in the nuclear sector aim to mitigate these issues, making nuclear energy a more
viable and appealing option for clean energy transitions. A promising technology is the Molten Salt
Reactor (MSR), that performs well on both these important concerns. MSRs incorporate advanced
passive safety mechanisms, automatically stabilizing the reactor in case of malfunctions, thereby en-
hancing safety significantly. These reactors notably produce radioactive waste with much shorter half-
lives, substantially reducing the duration for safe storage. MSRs can utilise and transform long-lived
radioactive waste from other reactors into shorter-lived isotopes, addressing a key challenge in nu-
clear waste management. This innovative approach positions MSRs as a promising technology in the
nuclear sector, aligning with global efforts towards cleaner and safer energy solutions.

1.1. The Molten Salt Fast Reactor
Various classes of molten salt reactors exist and they are often characterised by their neutron spectrum.
When one includes a moderator, thermal neutron spectra can be obtained, while when excluding a
moderator one obtains fast spectra [32]. In the latter case, one refers to the reactor as a Molten Salt
Fast Reactors (MSFR). These represent a class of nuclear reactors offering several advanced features
compared to traditional nuclear technologies. MSFRs use molten salt as both fuel and coolant. This
dual role of molten salt is central to the operation and safety profile of MSFRs. In MSFRs, the fuel,
typically a mixture of fissile uranium fluoride (UF4) and fertile thorium fluoride (ThF4), is dissolved in
the molten salt, typically lithium fluoride (LiF) [17]. Alternatively, not fluoride salts but chloride salts are
used, resulting in slightly different neutron spectra. In figure 1.1 a schematic overview of the design of
an MSFR is shown.

1
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Figure 1.1: Schematic overview of a Molten Salt Fast Reactor [32]

In the SAMOSAFER project, MSFRs have a thermal and electrical power output of 3 GWth and 1.3
GWe respectively[17]. The average fuel salt temperature is around 1000 K and salt melting point is
around 850 K. The core is cylindrical with a radius of around 1− 1.4 m and height of 1.6− 2.3 m.

The MSFR is a promising technology in the context of both nuclear safety and nuclear waste man-
agement [16]. It is unique in its capability of efficiently using thorium due to the fast spectrum of the
neutrons in the core. A great advantage of the capability of using thorium results in a substantial re-
duction in plutonium production, which is long-lived nuclear waste. Consequently, time-spans of waste
storage can be highly reduced to only a few centuries, compared to the much longer time-spans re-
quired for other types of reactor waste. Further, thorium is abundant in nature, making it an attractive
fuel element. These two advantages of using thorium position MSFRs as highly promising and sustain-
able compared to other reactor types.

Additionally, fuel salt composition can easily be adapted during operation. This results in that the
MSFR can operate as both a breeder reactor, when it produces more fissile material than it consumes,
and as a burner reactor, when it consumes existing fissile and fertile materials, including waste products
from other nuclear reactors such as long-lived plutonium.

Of course, safety is of paramount concern in nuclear reactor design, andMSFRs incorporate several
features to enhance safety [17]:

• Draining of the fuel salt (freeze plug):
One notable safety feature is the freeze plug. In normal operation, the plug is kept frozen by
active cooling. If the reactor overheats, the cooling system fails, causing the plug to melt. This
melting allows the molten salt, containing the nuclear fuel, to drain into passively cooled tanks
underneath the reactor core, shutting down the nuclear reaction.

• Cleaning of the salt (extract lanthanide and actinides):
In an MSFR fuel salt can be purified in two steps. Gaseous and insoluble fission products, are
extracted from the reactor core through a technique of gas bubbling. Uranium, actinides, and
certain fission products can be separated outside of the reactor core. This leads to a reduction in
decay heat as fission products are removed from the core before decay.

• Temperature feedback mechanisms (thermal expansion and Doppler feedback):
The liquid salt acts as both coolant and fuel. This results in strong coupling of temperature and
flow fields to neutronics compared to solid fuel reactors. Increase in temperature makes the
molten salt expand, which leads to a decrease in neutron density and a reduction in the nuclear
reaction rate, thereby cooling the reactor. Additionally, increase in temperature results in Doppler
effects, that decrease the probability for nuclear reactions to occur, again leading to a reduction in
the nuclear reaction rate, thereby cooling the reactor. These temperature feedback mechanisms
improve the stability of the reactor, and also eliminate the necessity of control rods in the core
[33].

These safety mechanisms are inherent to the strong coupling between neutronics and thermal-
hydraulics [35]. However, this strong coupling also makes describing the physics within the core com-
plex, as one should include phenomena such as fluid flow, thermal expansions, cross-section changes,
precursor movement, turbulence effects and phase changes. Trying to understand the interactions be-
tween all these phenomena results in the necessity for computer tools that are efficient in predicting the
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physics at hands. This research aims to develop and validate a model that couples thermal-hydraulics
and neutronics through fluid flow, thermal expansions, cross-section changes and precursor move-
ment.

1.2. Review of existing literature and models
Since this project is not only aimed at the development but also the validation of a coupled multi-physics
tool for describing the physics in a MSFR, reference results are of great importance. Experimental data
for molten salt reactors is available from the results of the Molten Salt Reactor Experiment but this is for
the older generation thermal reactor [13]. Limited experimental data is available for the fast spectrum
molten salt reactor and thus verification of multi-physics tools for MSFRs is difficult [35]. Results from
different tools are therefore validated against each other and their capabilities are compared in a bench-
mark study by Tiberga et al.: ”Results from a multi-physics numerical benchmark for codes dedicated
to molten salt fast reactors” [35]. This numerical benchmark study will be used throughout this research
project to validate the model’s performance, as it stands out in its step-by-step approach resulting in
easier error identification. The study gradually couples the developed models for the different fields. In
phase 0 fields are modeled separately, in phase 1 steady-state coupling is implemented and in phase
2 transient coupling is implemented. In this research project, these phase definitions are also used for
consistency. The study will be described in more depth in section 4.1. In the paper, different tools are
compared. Before the description of a newly created tool in this research, first the existing coupled
tools dedicated to molten-salt reactors are described in section 1.2.1. Afterwards, existing tools that
use the lattice Boltzmann method for simulating neutronics are discussed in section 1.2.2.

1.2.1. Existing multi-physics tools for Molten Salt Fast Reactors
Due to the strongly coupled physical fields in a molten salt reactor, conventional codes describing
solid fuel reactors are insufficient for describing behaviour in MSFRs. Several research projects have
been focused on the development of new, suitable tools that do couple the different phenomena. The
codes discussed in this chapter were developed during the SAMOFAR project and their capabilities are
compared in the previously described benchmark study by Tiberga et al. [35].

The CNRS code is developed at the LPSC/CNRS-Grenoble. It combines several codes for the dif-
ferent physical phenomena. For solving the neutron transport equations, both the C++ finite volume li-
braries of OpenFOAM and Monte Carlo Method (MCM) in Serpent are used. For the thermal-hydraulics
model, the Navier-Stokes equation is solved using OpenFOAM’s PIMPLE algorithm [35].

The PoliMi code, developed by Cervi et al. [5], also uses the finite volume libraries of OpenFOAM.
The model implements several methods [5, 6] and solves the neutron diffusion equation using the MCM
code in Serpent coupling it to the thermal-hydraulics described by a solver in OpenFOAM. [6].

The PSI code, developed at the Paul Scherrer Institute, couples four sub-solvers. The sub-solvers
are dedicated to solving equations for the displacement-based thermal-hydraulics and multi-group neu-
tron diffusion. The first three solvers are based on OpenFOAM. The latter is a MCM simulation in
Serpent that exports results to OpenFOAM to couple the physical processes [10].

The last code described in the benchmark by Tiberga et al. [35], developed at the TU Delft, couples
the thermal-hydraulics code DGFlows with a radiation transport code PHANTOM-SN [34].

All codes described above couple the physical phenomena of thermal-hydraulics and neutronics
within an MSFR.

1.2.2. Models for neutronics using the lattice Boltzmann method
Recently, steps have been made towards the integration of the multi-physics coupling within one pro-
grammingmethod, the lattice Boltzmannmethod (LBM). LBM is amethod widely used for computational
fluid dynamics due to its simplicity and parallelizability [46]. Several efforts were made to model the
Boltzmann transport equation (BTE) for neutron transport using LBM [3, 46, 42]. Also, frameworks
exist for the modelling of the neutron diffusion equation using LBM [44]. Based on previous efforts
to use the LBM for radiative transfer problems, Bindra and Patil [3] started their first attempts to use
the LBM for both radiative an neutron transport. Disadvantages of their work were the neglect of the
collision term and low angular resolution. Wang et al. [46] advance the previous work by regarding
the angular directions as the macroscopic velocities specific for the lattice structure. This results in the
opportunity to treat the transient BTE as a conservation law, resulting in more accuracy in solving the
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multidimensional BTE. Further, using the Chapman-Enskog expansion, the relaxation time of the LBM
can be considered a free parameter, that can be used to enhance the stability of the code. The model
by Wang et al. [46] is a lattice Boltzmann method for the transient BTE, but the steady-state solution
can be obtained when using LBM until convergence. No interactions with other physical phenomena is
implemented. The paper can be used as an accurate example of LBM modelling for neutron transport,
but the model needs an extension with thermal-hydraulic phenomena.

In LBM the streaming process is only related to adjacent nodes. Solutions for the particle distribution
and particle collisions are local and can for each node be computed in parallel [42]. This makes the LBM
highly adequate for GPU simulations. A next paper by Wang et al. [42] describes a method that uses
both the advantages of GPU and CPU. On CPU the initialisation of the computation is executed, after
which the individual computations at the lattice nodes are executed onGPU. TheGPUdata is stored and
CPU performs the judgement of convergence. The paper also describes a similar method for multiple-
GPU acceleration. Wang et al. [42] test the model against three benchmarks, all of which only include
neutron transport and exclude coupling of neutronics with thermal-hydraulic effects. Further, for the
transient simulation the paper uses the predictorcCorrector quasi-static method (PCQSM) that comes
with the advantage that neutron fluxes, that are solved with high computational costs, have to be solved
for larger time-scales (and thus less frequently) as they are considered quasi-static. Time-dependent,
zero-dimensional kinetics equations are solved at small time-scales but their computational cost is
much lower. The combination of these different time-scales results in the fact that the computational
costs can be highly reduced without losing accuracy. This method is performed for neutronics kinetics
in static fuel. PCQSM is an established transient calculation method for describing reactor dynamics.
Dulla et al. [9] describe the PCQSM and compare its accuracy to a different quasi-static method, and
Kooreman et al. [20] showed that the PCQSM can also be accurate when temperature feedback is
considered.

In two later papers by Wang et al. [40, 41] the development of a multi-physics code is described.
This recent effort to model the Boltzmann transport equations using LBM proves that both physical
phenomena playing a part within the reactor core of an MSFR, the thermal-hydraulic fluid dynamics
and the neutron transport, can be modelled using the same simulation method. This simplifies the
coupling between the phenomena within a reactor core as no switching between modelling methods is
required.

The first follow-up paper by Wang et al. [41] describes a method of using LBM to model the coupling
between neutronics and heat transfer, ignoring flow effects. A steady-state simulation is considered.
Wang et al. have developed a single Lattice Boltzmann Method framework that can accommodate
several neutron transport approximations (SN , SP3, and P1) accurately, coupling the neutronics to heat
transport, while neglecting flow effects. This latter approximation is often sufficient for solid fuel reactors,
while for MSFRs flow effects play an import role.

The second follow-up paper by Wang et al. [40] develops a method for the full coupling of thermal-
hydraulics and neutronics [40]. The method uses transient LBM schemes for the different physical
phenomena, but from assessment of the model it is concluded that it only partly validates steady-state
simulations. For the neutronics, a finite Boltzmann (FB) scheme is used. This is a special case of
LBM where the relaxation parameter is equal to 1 [37]. According to van der Sman et al. [37], the
performance of this scheme is not necessarily better than others, but the memory requirements are
lower as FB schemes have the advantage that only the conserved fields have to be stored in memory,
from which the equilibrium distribution is constructed straightforwardly.

For the neutronics, two groups of neutron particles and six families of delayed neutron precursors
are considered in the paper by Wang et al. [40]. The paper does not consider a transient model. The
paper documents on results for the fully coupled system in an MSR, using conditions similar to those
in the benchmark by Tiberga et al. [35], but simplified. These results are documented but not validated
against benchmark results. The deviations in the conditions from the benchmark by Tiberga et al. [35]
result in an incomplete validation of the model.

A disadvantage of this last model is that a transport model is used for the neutronics, which results
in high computational costs when combining the neutronics with thermal-hydraulics. The model takes
into account a separate distribution function for each neutron group with different angular direction α
and corresponding to a different energy group g. As an example of the computational expense of this
choice: six discrete angular directions and six energy groups already result in 36 separate distribution
functions for each lattice direction, not yet taking into account distribution functions for delayed neutron
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precursors and thermal-hydraulics. This disadvantage leads to the relevance of examining methods
to reduce the number of equations describing the neutronics. Also, the model can be extended to
transient situations.

An alternative to solving the neutron transport equation (NTE) is solving the neutron diffusion equa-
tion (NDE). A method for solving the NDE using lattice Boltzmann method is described in yet another
paper by Wang et al. [44]. Using the NDE has the advantage of lower computational cost compared to
solving the NTE since not all angular directions for the neutronics are solved separately [44]. Since the
core of an MSFR is homogeneous compared to solid-fueled reactors, diffusion models are expected
to provide sufficiently good results [33] as the inaccuracies in the diffusion approximation are most
important near interfaces.

In the paper a method for the programming of neutronics using LBM is described that uses a high-
order LBM for the multi-group neutron diffusion equation [44]. The model is thorough in giving a general
expression for a high-order LBM, and additionally describes both first- and second-order truncations
explicitly. Using high-order LBM can result in high accuracy in simulations, while using low-order LBM
simplifies the model. The method can be used as a computationally less costly description for the
neutronics model compared to the LBM for the NTE. The paper does not consider precursor groups,
nor does it consider coupling of neutronics with different fields.

1.3. Thesis goals
This research aims to develop a multi-physics tool for Molten Salt Fast Reactors (MSFRs) using the
Lattice Boltzmann Method (LBM) and validate it against existing models. The primary objective is to
integrate the neutronics and thermal-hydraulics components. The study utilises the neutronics diffusion
LBM from Wang et al. [44] to solve the steady-state NDE, extending it to include precursor sources.
Using the NDE facilitates the inclusion of an increased number of neutron energy groups compared to
other neutronics LB simulations in literature that use the NTE. The developed steady-state model will
simulate conditions detailed in the benchmark Tiberga et al. [35] . Comparative analysis of the out-
comes from this newly developed model against those documented in the benchmark study by Tiberga
et al. [35] will be conducted. This analysis will highlight deviations and identify potential enhancements
for the model.

After validation of the steady-state multi-physics LBM tool, the model will be extended to include
transient behaviour in the reactor core, following the approach outlined in Tiberga et al.’s study. This
phase includes the implementation of a transient perturbation in the temperature simulation to evaluate
the system’s transient behavior, facilitating an effective validation against the benchmark study. The
transient problem will be simplified by using the PCQSM, to reduce computational efforts.

Research questions
1. Model development: How can a novel multi-physics framework be developed by coupling the

newly formulated LBM for the multi-group neutron diffusion equation with the established LBM for
Navier-Stokes equation and advection-diffusion equations in laminar conditions, to simulate both
steady-state and transient scenarios in a two-dimensional Molten Salt Fast Reactor?

• What stability constraints exist for input parameters of the different physical fields?
• What boundary conditions for neutronics exist and how do their capabilities compare?

2. Steady-State Model: How does the newly developed LBM framework for neutronics and thermal-
hydraulics compare with established benchmarks in Tiberga et al.’s single-physics phase (Phase
0) and steady-state coupling phase (Phase 1) studies?

• How can an iterative scheme for solving the neutron eigenvalue problem be combined with
the LBM?

• What deviations exist between the developed model and the benchmark results?
• Which specific physical phenomena contribute to these deviations?
• How can the developed model be refined for improved accuracy in comparison to the bench-
marks?

3. Transient Model: How can the developed LBM framework be extended to include transient be-
havior?
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• How can the PCQSM be employed for integrating transient behavior with the LBM?
• How does the model align with established benchmark codes in Tiberga et al.’s transient
coupling phase (Phase 2)?

Thesis outline
Chapter 2 of this thesis will describe the theory and governing equations for the physics of neutronics,
thermal-hydraulics and their interactions. Methods to solve steady-state and transient neutronics prob-
lems are described as well. In Chapter 3 the lattice Boltzmann methods is described for numerically
solving the multi-physics in a liquid fuel reactor core. Additionally, the numerical implementation of
the PCQSM with the LBM is described. The tool is validated for its uncoupled components in Chapter
4 in steady-state situations. In Chapter 5 the components are gradually coupled and the results are
discussed in comparison to the results from the multi-physics codes the benchmark by Tiberga et al.
[35]. In Chapter 6 the capabilities of the fully coupled tool that integrates the PCQSM and the LBM is
discussed for transient situations. Chapter 7 will present the conclusions drawn in this research project
and recommend future research.



2
Theory

In the nuclear reactor core of a molten salt reactor, a molten salt is present that acts both as a coolant
and as a fuel. This leads to interesting phenomena happening within the salt that differ from the older
generation reactors such as heat generation within the coolant, thermal feedback by fuel expansion and
convective transport of delayed neutron precursors from flow of the salt. This means that the relevant
physical fields, the thermal-hydraulics and the neutronics, are coupled. In this chapter, in section 2.1
general theory on reactor physics is described, after which the governing equations for the separate
fields are discussed starting with neutronics in section 2.2 followed by thermal-hydraulics in section
2.3. Subsequently, the physical interaction between the fields is discussed in section 2.4. Finally, the
mesoscopic approach to assess the fields is described using kinetic theory in section 2.5, followed by
a derivation of the Boltzmann equation.

2.1. Nuclear reactor physics
Within a nuclear reactor core fission reactions occur [8]. These fission reaction occur when heavy nuclei
split into, most often, two nuclei releasing energy and several neutrons. This can happen spontaneously
but the rate of spontaneous fission is very slow. In a reactor core fission of heavy nuclei is induced
by incident neutrons, that make the nuclei unstably heavier, after which the heavy nucleus falls apart.
Fission is just one of the types of neutron-nuclear interactions that can occur in the core. Other neutron-
nuclear reaction types that are relevant are scattering, where neutrons change their angular direction
and/or energy, and absorption, where neutrons are absorbed by processes such as radiative capture.

The probability that neutron-nuclear interactions take place is characterised by the macroscopic
nuclear cross-section, Σx, that is the product of the microscopic cross-section σx, which is medium
and energy specific, and of the number density of the isotopes in the medium N . The subscript x
represents the reaction types, such as fission, absorption or scattering.

Fission is categorised as a type of absorption. In the absorption process a neutron is absorbed by
a nucleus, forming a compound nucleus that subsequently decays while emitting particles. Whether
a compound nucleus is formed highly depends on the energy of the incident neutrons. When the
incident neutron energy matches an energy level of the compound nucleus the probability of absorption
is significantly higher. Therefore, we observe so-called resonance peaks at the matching incident
neutron energies. Furthermore, compound nuclei are in thermal motion and the relative speed of the
compound nuclei gives rise to the so-called Doppler effect, where the resonance peaks broaden for
increasing temperature, while peak magnitudes decrease. In conclusion, the probability of nuclear
reactions to occur in the reactor core is affected by temperature through changes in the number density
of isotopes, changing Σx, and through Doppler effects.

In the nuclear core, neutrons created in a fission reaction induce new fission reactions, resulting in
a nuclear chain reaction. The number of neutrons in the core should remain stable for safe and efficient
operation, and the reactor core is designed such that one neutron emitted in a previous fission event
induces another fission event, and the other neutrons from the previous fission event are absorbed of
escape the core. This is where the multiplication factor k plays a role, which represent the number of
neutrons in one generation divided by the number of neutrons of a previous generation. Is k = 1, the
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reactor core is called critical as the number of neutrons in the core is constant and the chain reaction
is sustained. For k > 1 the number of neutrons grows and for k < 1 the number of neutrons decreases
and the core is called super- and sub-critical respectively. An important task in reactor design is thus
to find for which conditions the core is critical. Another measure related to the multiplication factor is
the reactivity ρ represented as

ρ =
k − 1

k
, (2.1)

which is a measure for the deviation of the core from criticality [8]. Changing core composition changes
the neutron population and thus k and ρ.

When a fission reaction takes place, neutrons are emitted with a distribution of energies, repre-
sented by the fission spectrum χ(E). The average number of neutrons emitted per fission reaction is
represented by ν. Most neutrons appear instantaneously, within 10−14 s after the fission event. Some
neutrons however, are products of radioactive decay of fission products. These radioactive fission
products that still emit neutrons at a delayed rate (ranging from milliseconds to minutes) are referred
to as delayed neutron precursors and neutrons emitted are referred to as delayed neutrons. The de-
layed precursors are often grouped in families that are characterised by their half-lives. The fraction of
neutrons per fission event that appear in precursor family d is represented by βd and total fraction of
neutrons that are delayed per fission event is represented by βtot =

∑
d βd.

In steady-state situations in molten salt reactors, delayed precursors can affect the distribution of
neutrons throughout the core, as precursors can be transported through the salt and emit their neutrons
at different locations than they were originally created. When one assesses reactor time behaviour
delayed neutrons play an important role since they elongate the reactor period making reactor control
possible at larger and more practical time-scales.

2.2. Neutron transport and neutron diffusion
To describe the behaviour of neutrons one usually investigates neutron transport, based on balancing
the mechanisms playing a role in the creation and removal of neutrons with a certain energy E′, trav-
elling in a certain direction Ω̂′, located within an infinitesimal volume element at location r at time t [8].
The neutron transport equation (NTE) is given as

1

v

∂φ

∂t
+ Ω̂ · ∇φ+Σt(r, E)φ(r, E, Ω̂, t) =

∫
4π

dΩ̂
′
∫ ∞

0

dE′Σs(E
′ → E, Ω̂

′
→ Ω̂)φ(r, E′, Ω̂

′
, t)

+ Sf (r, E
′, Ω̂, t) .

(2.2)

φ is the angular neutron flux, a measure for the number of neutrons crossing unit area of the medium in
unit time. In this equation we recognise the terms from left to right as the time rate of change of number
of neutrons, the leakage into or out of the volume element, the total removal of neutrons (by absorption
or collision), the addition of neutrons of different E or Ω̂ scattering towards the E or Ω̂ of interest and
finally the addition of fission neutrons described as

Sf (r, E, Ω̂, t) =
χ(E)

4π

∫
4π

dΩ̂
′
∫ ∞

0

dE′ν(E′)Σf (E
′)φ(r, E′, Ω̂

′
, t) . (2.3)

The integral represents the total number of neutrons that is emitted when neutrons with energy E′

travelling in angular direction Ω′ undergo fission, and the prefactor takes only the fraction of neutrons
that ends up with energy E travelling in direction Ω̂.

The NTE written in equation 2.2 must be solved for neutrons with all possible energies E travel-
ling in all possible directions Ω̂. This way of describing the neutron transport results in a very large
number of equations since each possible E and Ω̂ have their own equation. To simplify the neutronics
equations, the neutron energies are discretised into energy bands. Neutrons are classified into groups
corresponding to these bands, each group being characterised by a group-energy, denoted as Eg.
Within an energy group, the neutrons share the same neutronic parameters, such as cross-sections
and diffusion constants.

To further simplify the neutronics equations, the angular directions of the neutrons can also be dis-
cretised. This is called a discrete ordinate treatment of angle and gives rise to the SN equations, where
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N represents the number of discretised angular directions. Alternatively, one can use functional ex-
pansion to discretise the angular variables, resulting in the PN equations [8]. A useful expansion of the
angular flux is found in the P1 approximation, where the angular flux is expanded in Legendre polyno-
mials in cosθ and omitting high order terms to obtain the P1 equations. Details on this P1 approximation
and the derivation can be found in literature such as [8].

Combining the P1 approximation with the assumption that neutron sources in a reactor are isotropic
and the assumption that neutron current changes slowly over time compared to collision of neutrons with
surroundingmedium, one can rewrite the neutron transport equation and introduce the neutron diffusion
coefficient Dg. This neutron diffusion coefficient is a function if the total cross-section, the scattering
cross-section and the average scattering cosine µ0. Applying these simplifications, it can be found that
the NTE can be simplified by the diffusion approximation. In that case, one can use the scalar neutron
flux ϕ(E, r, t), independent of angular direction. Themotion of neutrons is treated as a diffusion process
and the neutron diffusion equation (NDE) is used. This reduces the number of equations significantly,
and this approximation is often adequate for reactor applications, more specifically in homogeneous
cores. The diffusion approximation follows from four different approximations: neutrons are grouped
by their energies, the angular flux is linearly isotropic, sources are isotropic and neutron current density
changes slowly compared to the collision time.

Considering discretised energy groups, this leads to the multi-group NDE [8], for each energy group
g written as

1

vg

∂ϕg

∂t
−∇ · (Dg∇ϕg) = −Σt,gϕg + χg

∑
g′

(νΣf )g′ϕg′ +
∑
g′

Σs,g′−gϕg′ . (2.4)

Here, a neutron diffusion coefficient Dg is used. This constant is proportional to the mean free path of
transport of a neutron group. One can recognise on the right-hand side simplified versions of the terms
written in equation 2.2, namely from left to right a total removal term, by absorption and scattering, a
fission term and a scattering term. Equation 2.4 is the transient NDE.

In neutron transport theory a vacuum boundary condition is interpreted as that no neutrons can enter
the domain of interest at the specific boundary. It should be noted that in the diffusion approximation
the scalar neutron flux is used, for which terms as ”incoming” or ”outgoing” have no meaning since it
is a scalar quantity. Therefore, the vacuum boundary condition for the scalar neutron flux is expressed
as that if we would extrapolate the scalar flux beyond the vacuum boundary the scalar flux would go
to zero at a point slightly further away. The location in space where the scalar neutron flux vanishes
should be extrapolated to a location x̃boundary proportional to the diffusion constant [8]

x̃boundary,g = xboundary + 2.1312Dg . (2.5)

See the graph below for a representation of this extrapolation. Note that for each energy group the
diffusion coefficient might be different and the extrapolated boundary is then thus at a different point in
space.
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Figure 2.1: Difference in behaviour of the exact scalar neutron flux and the scalar neutron flux in the diffusion approximation at
a vacuum boundary [8].

For a vacuum boundary, ϕ(x̃boundary) = 0. It is important to emphasise the fact that that does not
necessarily mean that the neutron current density J , the net flow rate of neutrons through a given
surface, is zero at the extrapolated boundary as well. In diffusion theory the neutron current density is
approximated as

J(r, t) = −D∇ϕ(r, t) . (2.6)
For a vacuum condition, while the scalar flux is zero at the extrapolated boundary, there can still be a
non-zero gradient of the flux, leading to a non-zero neutron current.

The system of equations above, considers the case where neutrons are only emitted promptly. But
as described previously, neutrons are often emitted by precursors after a time-delay. The advection-
diffusion equation for the concentration of precursor family d in a non-static fuel field is given by [40]

∂Cd

∂t
= −∇ · (uCd) +∇ · (Dp∇Cd)− λdCd +

βd

keff

∑
g

(νΣfϕ)g . (2.7)

Here the term on the left-hand side is a convective term, the first term on the right represents diffusion
of the precursors, the second term on the right the decay of the precursors and the last term on the
right is the creation of precursors by fission reactions. The decay of precursors results in additional
neutrons in the core and the NDE in equation 2.4 is adjusted to obtain

1

vg

∂ϕg

∂t
−∇ · (Dg∇ϕg) = −Σt,gϕg +

χp
g(1− βtot)

keff

∑
g′

(νΣf )g′ϕg′ + χd
g

∑
d

λdCd +
∑
g′

Σs,g′−gϕg′ . (2.8)

2.2.1. Steady-state neutronics: reactor criticality calculation
As stated previously, a reactor core should be designed for criticality. Criticality of the core implies that
the behaviour of neutrons does not change over time, and thus the scalar neutron flux is only a function
of space. This means that equation 2.8 reduces to

−∇ · (Dg∇ϕg) = −Σt,gϕg + χp
g(1− βtot)

∑
g′

(νΣf )g′ϕg′ + χd
g

∑
d

λdCd +
∑
g′

Σs,g′−gϕg′ , (2.9)

and equation 2.7 reduces to

∇ · (uCd) = ∇ · (Dp∇Cd)− λdCd + βd

∑
g

(νΣfϕ)g . (2.10)
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This system of equations, together with provided relevant boundary conditions, has a solution when the
composition of the core represents a critical system. However, often the problem at hand is to assess
what composition results in criticality. For this reason, equation 2.9 is studied as an eigenvalue problem

−∇ · (Dg∇ϕg) = −Σt,gϕg +
χp
g(1− βtot)

keff

∑
g′

(νΣf )g′ϕg′ + χd
g

∑
d

λdCd +
∑
g′

Σs,g′−gϕg′ . (2.11)

∇ · (uCd) = ∇ · (Dp∇Cd)− λdCd +
βd

keff

∑
g

(νΣfϕ)g . (2.12)

where the eigenvalue keff represents the previously described multiplication factor. The found fluxes
ϕg and concentrations Cd are the eigenvectors of the system of equations.

2.2.2. Power method for k-eigenvalue problem
Together, equations 2.11 and 2.12 form a linear system of equations, that can be solved for eigenvalue
keff and eigenvectors Cd and ϕg. It is convenient to write this system of equations in matrix form

Mγ =
1

keff
Fγ , (2.13)

with, for the example of 2 precursor families and 2 neutron energy groups, for matrix M

M =


∇ · u−∇ · (Dp∇) + λ1 0 0 0

0 ∇ · u−∇ · (Dp∇) + λ2 0 0
−∇ ·D1∇+Σt,1 − Σs,1→1 0 χd

1λ1 χd
2λ2

Σs,1→2 −∇ ·D2∇+Σt,2 − Σs,2→2 χd
1λ1 χd

2λ2

 , (2.14)

γ =


C1

C2

ϕ1

ϕ2

 , (2.15)

F =


β1ν1Σf,1 β1ν2Σf,2 0 0
β2ν1Σf,1 β2ν2Σf,2 0 0

χp
1(1− βtot)ν1Σf,1 χp

2(1− βtot)ν2Σf,2 0 0
χp
1(1− βtot)ν1Σf,1 χp

2(1− βtot)ν2Σf,2 0 0

 . (2.16)

These matrices can be rewritten more generally in the form of block matrices in the following way[
ACC(u) 0
Aϕϕ AϕC

] [
ϕ
C

]
=

1

keff

[
AF

ϕϕ 0

AF
Cϕ 0

] [
ϕ
C

]
(2.17)

with ACC an operator contributing and acting only on the precursor concentrations, Aϕϕ an operator
contributing and acting only on neutron fluxes and AϕC an operator contributing to neutron fluxes but
acting on precursor concentrations. Analogously, AF

ϕϕ is a fission operator contributing and acting only
on neutron fluxes and AF

ϕC a term contributing to precursor concentration but acting on neutron fluxes.
It can now be seen that the matrix on the left-hand side, originally matrix M , is lower block triangular.
We can use the power method to solve this matrix problem. It can be shown that one can find as
a solution to this problem a maximum real and positive eigenvalue with a corresponding unique and
non-negative eigenvector at every location r. Performing the power method will result in convergence
to this maximum eigenvalue and corresponding eigenvectors [8].

The power method starts with initiating the right-hand side of equation 2.17 at iteration number l = 0
by setting the multiplication factor k0eff and the fission source vector S0 at a randomly chosen value
and solve the in-homogeneous matrix equation

Mγ(l+1) =
1

k
(l)
eff

S(l) (2.18)

for γ(l+1). This found value for γ(l+1) is used to determine a new fission source vector S(l+1) using
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S(l+1) = Fγ(l+1) (2.19)

and a new eigenvalue k
(l+1)
eff using

k
(l+1)
eff =

∫
dV S(l+1)

1

k
(l)
eff

∫
dV S(l)

(2.20)

This scheme is repeated l iteration steps, until convergence, e.g. when the difference of k(l)eff and
k
(l+1)
eff gets smaller than an imposed criterion. This power method converges to the eigenvalue of
largest magnitude. It is sometimes referred to as ”fission source iteration” or ”outer iteration”, because
often an additional iteration scheme is used to determine γ(l+1), referred to as ”flux iteration” or ”inner
iteration” [38]. Thus, the outer iteration is performed using the power method, while as we will later see
the inner iteration will be performed using the lattice Boltzmann method.

2.2.3. Transient behaviour in a nuclear reactor core: the quasi-static method
In time-dependent situations one has to solve the system of equations 2.7 and 2.8. It is common to
factorise the neutron flux and precursor concentrations in slowly changing shape functions, ϕ̃g(r, t),
and fast changing amplitude function, n(t), [43],

ϕg(r, t) = ϕ̃g(r, t)n(t) , (2.21)

Both ϕ̃g and n are functions of time, and this factorisation itself is not an approximation [20]. This
factorisation results in the fact that one can solve for the time-dependent amplitude functions separately
on short time-scales, and solve for the slowly changing time- and space-dependent shape functions on
relatively large time-scales. This is called a quasi-static method, as one assumes the shape function
to vary slowly and remains unchanged within the small time-scales. For simplicity the operators that
act on the neutron fluxes are shortened as [29, 31]

Mgϕg = −∇ ·Dg∇ϕg +Σt,gϕg −
∑
g′

Σs,g′−gϕg′ (2.22)

FP
g ϕg = χp

g(1− βtot)
∑
g′

(νΣf )g′ϕg′ (2.23)

SD
g = χd

g

∑
d

λdCd (2.24)

FD
g ϕg =

∑
d

FD
d,gϕg (2.25)

FD
d,gϕg = χd

gβd

∑
g

(νΣfϕ)g (2.26)

Fgϕg = (FP
g + FD

g )ϕg (2.27)

Substituting these operators and the factorised expressions from equation 2.21 for the flux into equation
2.8 and multiplying with a weighting function Φ∗

g, that will be specified later, results in

Φ∗
g

1

vg
ϕ̃g

∂n

∂t
+Φ∗

g

1

vg
n
∂ϕ̃g

∂t
= Φ∗

g(F
P
g −Mg)ϕ̃gn+Φ∗

gS
D
g . (2.28)

Integrating over the entire volume results in the expression below, where notation ⟨x, y⟩ is used for the
inner product of x and y and integration of this inner product over the entire domain,

⟨Φ∗
g,

1

vg
ϕ̃g⟩

∂n

∂t
+ ⟨Φ∗

g,
1

vg

∂ϕ̃g

∂t
⟩n = ⟨Φ∗

g, (F
D
g −Mg)ϕ̃g⟩n+ ⟨Φ∗

g, S
D
g ⟩ . (2.29)

Performing similar steps for equation 2.7, assuming no convection and diffusion terms [26], results in

∂⟨Φ∗
g, χ

d
gCd⟩

∂t
= ⟨Φ∗

g, F
D
g ϕ̃g⟩n− λd⟨Φ∗

g, χ
d
gCd⟩ . (2.30)
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This static fuel assumption is justified by the fact that convection and diffusion time-scales for the pre-
cursors are generally much longer than the change of precursor concentrations [22]. Defining md as

md =

∑
g⟨Φ∗

g, χ
d
gCd⟩∑

g⟨Φ∗
g,

1
vg
ϕ̃g⟩

, (2.31)

and subsequently dividing both equation 2.29 and 2.30 by ⟨Φ∗
g,

1
vg
ϕ̃g⟩ and summing over all neutron

groups results in

∂n

∂t
=

∑
g⟨Φ∗

g, (F
P
g −Mg)ϕ̃g⟩∑

g⟨Φ∗
g,

1
vg
ϕ̃g⟩

n+
∑
d

λdmd & ∂md

∂t
=

∑
g⟨Φ∗

g, F
D
d,gϕ̃g⟩∑

g⟨Φ∗
g,

1
vg
ϕ̃g⟩

n− λdmd (2.32)

with the assumption that the change of the flux shape functions with time is negligible compared to
the change in amplitude function, eliminating the second term in equation 2.29 using ∂ϕ̃g

∂t = 0. Here a
form of the point kinetics equations (PK equations) is found, where the point kinetics parameters are
expressed as functions of the slowly changing shape functions. The equations are rewritten as [43]

dn(t)

dt
=

ρ(t)− β(t)

Λ(t)
n(t) +

∑
d

λdmd(t) & dmd(t)

dt
=

βd(t)

Λ(t)
n(t) + λdmd(t) , (2.33)

and expressions for the point kinetics parameters (PK parameters) ρ(t), β(t), βd(t) and Λ(t) are defined
as [31]

ρ(t) =

∑
g⟨Φ∗

g, (Fg −Mg)ϕ̃g⟩∑
g⟨Φ∗

g,
1
vg
ϕ̃g⟩

, (2.34)

βd(t) =

∑
g⟨Φ∗

g, F
D
d,gϕ̃g⟩∑

g⟨Φ∗
g,

1
vg
ϕ̃g⟩

, (2.35)

β(t) =
∑
d

βd(t) , (2.36)

Λ(t) =

∑
g⟨Φ∗

g,
1
vg
ϕ̃g⟩∑

g⟨Φ∗
g, Fgϕ̃g⟩

. (2.37)

The weighting function Φ∗
0(r) that one repeatedly finds in the equations above is the conjugate

neutron flux, defined as the solution to the steady-state neutron diffusion equation at the initial time [9,
20]

−∇ · (Dg∇Φ∗
g) = −Σt,gΦ

∗
g +

χp
g(1− βtot)

keff

∑
g′

(νΣf )g′Φ∗
g + χd

g

∑
d

λdCd +
∑
g′

Σs,g′−gΦ
∗
g . (2.38)

The conjugate neutron flux is used as a weighting function and this ensures the uniqueness of the
factorisation in equation 2.21 [9]. The choice for using the initial steady-state neutron flux is made as
to reduce the error that comes from solving the shape function at larger time-intervals. The conjugate
neutron flux is normalised using the condition∑

g

⟨Φ∗
g,

1

vg
ϕ̃g⟩ = 1 . (2.39)

The time-dependent reactivity is often considered the most important PK parameter as its change in
time is generally responsible for the change in reactor power [31]. It not only contains terms for pro-
duction of neutrons, but also the leakage of neutrons. Often the change in leakage of neutrons can
be controlled and thus this term can be tweaked in real-life cases to ensure safe operating conditions,
for instance by increasing absorption of neutrons when multiplication rises. Further, the expression
in equation 2.34 contains all neutronics parameters that are affected by thermal-hydraulic changes in
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the reactor, and these changes are imposed on the neutronics by this key parameter, among other
contributing mechanisms that affect the shape-function.

Not surprisingly, for a critical system the transient behaviour is not very interesting as the fluxes
are unchanging. However, it becomes interesting when one perturbs the system and assesses the
behaviour of the reactor core in response. When assessing this response, several time-scales are
important. Prompt neutrons respond almost instantaneously to changes in the core, while precursors
with the longest half-lives can respond sometimes only after about 80 seconds. The system is often
changed by inserting reactivity, for instance when reducing the absorption of the reactor.

When the reactivity insertion is small, ρ < β, the so-called prompt term ρ−β
Λ n(t) is negative. The pos-

itive delayed term
∑

d λdmd generally balances this reactivity insertion out and the amplitudes change.
For small reactivity insertions the response of a reactor core is determined by both prompt and de-
layed neutrons. When reactivity insertions are large, ρ ≥ β, the prompt term ρ−β

Λ n(t) is positive and
the prompt neutrons are more important than the delayed neutrons. This is called prompt critical, as
the reactor is critical already on prompt neutrons alone, without even considering the delayed neutron
addition in the core. For very large reactivity insertion ρ ≫ β the reactor response is almost entirely de-
termined by the behavior of the prompt neutrons. In reactor design prompt criticality should be avoided
at all times since in that case reactor periods are way too small for practical safety control.

2.3. The thermal-hydraulics in a nuclear reactor core
The heat generation from fission affects the temperature in a reactor core. Further, in a molten salt
reactor fuel is liquid and might thus flow throughout the core. Therefore the thermal-hydraulics in the
molten salt reactor should be studied as it can affect the reactor behaviour significantly.

2.3.1. Fluid dynamics
One can describe the behaviour of a fluid through its conservation of mass and momentum while treat-
ing the fluid as a continuum. Within this continuum assumption, macroscopic characteristics like den-
sity, velocity, and temperature are well-defined within infinitesimal volume elements. In the continuity
assumption, this volume is small compared to the size of the entire system, but large compared to the
size of the molecules of the system [24].

Let us consider the change of macroscopic properties of such an infinitesimal volume element as
described above and assess what phenomena can be responsible for this change. Any change of
mass can only be a result of mass flowing into or out of the volume element, as we know mass is a
conserved quantity. The continuity equation in fluid dynamics follows from this conservation law and
reads

∂ρ

∂t
+∇ · (ρu) = 0 (2.40)

which in the case of an incompressible fluid reduces to

∇ · u = 0 . (2.41)

Any change of net momentum must come from either in- or outflow of momentum, pressure differences
or body forces acting on the volume element. Considering each of these contributions to momentum
change one obtains the Euler equation for an ideal fluid, i.e. without viscosity and compressibility
effects, that reads

∂(ρu)

∂t
+∇ · (ρu⊗ u) = −∇P + F . (2.42)

In a more general form, i.e. for non-ideal fluid, this equation above is written as the Cauchy momentum
equation and reads

∂(ρu)

∂t
+∇ · (ρu⊗ u) = −∇ · σ + F , (2.43)

with σ being a total stress tensor, containing pressure and viscosity contributions [21]. Considering
incompressible flow and constant viscosity, this can be simplified to the incompressible Navier-Stokes
equation (NSE)

ρ

(
∂u

∂t
+ (u · ∇)u

)
= −∇P + ρν∇ · (∇u) + Fbody . (2.44)
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2.3.2. Temperature field
In addition to the conservation of mass and momentum, energy is also conserved. The overall energy
can be divided into internal and mechanical components. Alterations in internal energy occur through
the in- or outflow of energy or through the release or removal of internal energy, for instance by phase
change or reactions of particles. The total energy conservation in a fluid element then leads to the heat
equation [21] given as

∂T

∂t
= u · ∇T +∇ · (α∇T ) +

q

ρCp
. (2.45)

This equation holds for situations in which the following assumptions are made: first, we treat the
fluid as incompressible, avoiding the need to consider density changes. Second, we do not take into
account viscous dissipation, which while important in certain flow conditions, is not relevant for our
current analysis of laminar flows. Third, we assume no presence of shock waves and thus free from
rapid, discontinuous changes in pressure and density. Lastly, we apply Fourier’s Law for modeling heat
diffusion, linking the temperature gradient to the heat flow, which simplifies the understanding of heat
transfer in the fluid. In the equation the first term on the right-hand-side describes heat convection, the
second term describes heat diffusion and the last term is a heat source.

2.4. Interaction between fields
The neutronics and thermal-hydraulics fields impact each other. Fluid dynamics affect the temperature
field and the precursor field by convection, which is seen through the presence of vector u in equation
2.45 and in equation 2.12 . The temperature field affects fluid dynamics through a buoyancy force when
temperature differences are present in the fluid. Buoyancy can be modelled using the Boussinesq
approximation written as [21]

Fbuoyancy = −βthermalρ0(T − Tref )g . (2.46)

In this approximation the change of density ∆ρ = −βthermalρ0(T − Tref ) is linearised. The Navier-
Stokes equation then becomes

ρ0

(
∂u

∂t
+ (u · ∇)u

)
= −∇P + ρ0ν∇ · (∇u) + Fbuoyancy , (2.47)

with ρ0 the reference density of the fluid without thermal expansion effects [36].
The temperature field affects the neutronics by salt-expansion feedback, scaling the neutronic pa-

rameters diffusion constant D and cross-sections Σ according to [35]

Σ(T ) = Σ(Tref )
ρ(T )

ρ(Tref )
, (2.48)

and
D(T ) = D(Tref )

ρ(Tref )

ρ(T )
. (2.49)

If the Doppler effect is to be taken into account as well, cross-sections are often numerically corrected
by [2, 33, 39]

Σ(T ) =

[
Σ(Tref ) + αrln

(
T

Tref

)]
ρ(T )

ρ(Tref )
. (2.50)

Lastly, the neutronics impact the temperature field by the release of fission heat in fission reactions
with as heat source q in equation 2.45

q = Efission

∑
g

Σf,gϕg . (2.51)

2.5. From macroscopic equations to the Boltzmann equation: ki-
netic theory

In kinetic theory particles are considered on a mesoscopic scale analysing particle distributions, in
contrast to a microscopic scale analysing individual particles. The equations in kinetic theory describe
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dilute gases and were first proposed by Ludwig Boltzmann [8]. To fully describe a system of particles as
time t passes one takes into account the particle’s rest massm, its path in space r and its velocity ξ [4].
In kinetic theory we use for this purpose the distribution function f(r, ξ, t) which represents the density
of particles at location r, with particle velocity ξ at time t. The distribution function f is connected to the
macroscopic variables through moments, which are integrals over velocity space involving f weighted
over functions of the particle velocities ξ [21].

Without any interaction with the outside of the particle system after some time the particle systemwill
reach an equilibrium state and the distribution function converges to an equilibrium distribution function
feq.

The distribution function’s evolvement over time can be described by

df

dt
=

(
∂f

∂t

)
dt

dt
+

(
∂f

∂xα

)
dxα

dt
+

(
∂f

∂ξα

)
dξα
dt

, (2.52)

where one recognises dt
dt = 1, dxα

dt = ξα and dξα
dt = Fα/ρ to obtain the Boltzmann equation (BE)

df

dt
=

∂f

∂t
+ ξα

∂f

∂xα
+

Fα

ρ

∂f

∂ξα
. (2.53)

The left-hand side is often considered a source term that represents the effect of collisions on the
redistribution of f , and therefore is called the collision-operator, df

dt = Ω(f). Due to the fact that collisions
also conserve certain quantities, such as mass and momentum, there are some constraints on the
collision operator. Boltzmann first considered in this collision operator all outcomes of two-particle
collisions, resulting in a highly complex term in velocity space [21]. Themathematically simpler operator
used is the BGK collision operator,

Ω(f) = −1

τ
(f − feq) (2.54)

named after Bhatnagar, Gross and Krook, describing the relaxation towards the equilibrium distribu-
tion, with τ the speed of this equilibration called the relaxation time. Together, equation 2.53 and
equation 2.54 result in the Boltzmann equation (BE) in the form

Ω(f) =
∂f

∂t
+ ξα

∂f

∂xα
+

Fα

ρ

∂f

∂ξα
. (2.55)

From the BE in equation 2.55, one can derive the macroscopic conservation equations directly, by
taking the moments of the equation [24]. By integrating equation 2.55 directly over velocity space,
one obtains the continuity equation 2.40. By multiplying equation 2.55 with the particle velocity before
integrating over velocity space, one obtains the Cauchy momentum equation, equation 2.43. Finally,
by assuming f ≃ feq, one can obtain the Euler momentum equation 2.42. The Navier-Stokes equation
seen in equation 2.44 can be derived by the Chapman-Enskog expansion, as described in [24].

The Chapman-Enskog expansion can also be used to show how the heat equation 2.45 can be
retrieved from the later discussed lattice Boltzmann equation (LBE) for heat flow (seen in equation
3.10) and the precursor advection-diffusion equation 2.12 from the later discussed LBE for precursor
transport (seen in equation 3.22).

Further, the Boltzmann equation can be used when assessing the behaviour of neutrons when one
describes the behaviour of a ”neutron gas” to obtain the neutron transport equation 2.2 [8]. Wang et al.
[44] have shown how to retrieve the NDE from the LBE for neutronics through the Chapman-Enskog
expansion.



3
Numerical Method

To solve the macroscopic equations in chapter 2 numerically the lattice Boltzmann method (LBM) is
used in this research project. The aim is to integrate the previously described fields in a single model,
using equivalent methods for efficient coupling. The lattice Boltzmann method has proven efficient in
the modelling of thermal-hydraulics, and recently has proven to be an appropriate method for modelling
other fields, such as radiation transport, neutron transport or diffusion as well [44, 46]. The lattice Boltz-
mann method is first described in section 3.1, after which the implementation of boundary conditions
is discussed in section 3.2. Lattice conversion in the LBM is explained in section 3.3 together with the
important stability criteria for proper simulations in section 3.4. Finally, the schemes for solving the
coupled fields are described, followed by the description of the PCQSM in section 3.6 which is used to
accelerate transient simulations.

3.1. Lattice Boltzmann Method
LBM makes use of the discretisation of velocity, space and time and the basic quantity in LBM is
the discrete velocity distribution function fi(r, t) [21]. Discretising the Boltzmann equation for these
quantities (and integrating along certain characteristic) leads to the lattice Boltzmann equation (LBE)

fi(r + ei∆t, t+∆t) = fi(r, t) + Ωi(r, t) , (3.1)

which describes that particles travelling in lattice direction i, moving with lattice speed ei arrives at
the next position r + ei∆t at time t +∆t, while being affected by a collision operator Ωi representing
particle collisions and re-distributions [21]. This collision operator can be modelled in several ways.
Three common operators are the Bhatnagar-Gross-Krook (BGK) operator, the multiple-relaxation-time
operator and the filter-matrix lattice Boltzmann method. In this research project, the BGK operator is
used.

The discretised velocities form a discrete set {ci} with weighting coefficients wi. The velocity sets
are commonly denoted by DdQq, with d the number of dimensions in space, and q the number of
discretised velocities. The number of dimensions is often prescribed by the physical problem at hand
and in this research project two-dimensional simulations are performed and d is always 2. The number
of discretised velocities can be chosen depending on the purpose of the simulation [21]. Common
choices for two-dimensional lattices are D2Q9, D2Q5 and D2Q4. The first is appropriate in situations
where convection is important, while the second is appropriate when the diffusion effect is larger than
convection [25]. The last is most appropriate when no convection takes place at all [44]. The D2Q4
and D2Q9 lattices are seen in figure 3.1.
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Figure 3.1: Two lattice velocity sets implemented in the LBM, D2Q4 in black and D2Q9 in black and grey [21].

The LBM is a common tool in fluid dynamic problems, but this research project aims to extend it to
all fields. The LBM is also commonly used to solve advection-diffusion equations such as equation 2.7
and 2.45 [21] and will be used for the temperature and precursor concentration fields. The temperature
and each precursor family will have its own distribution function. Further, Wang et al. [44] developed
a LB scheme that solves the multi-group neutron diffusion equation, in which each neutron energy
group has its own distribution function. This method is used and extended to include delayed neutron
sources.

For simplicity, the LBM together with the used BGK operator will be first described using its initial
application, namely for solving the Boltzmann equation for the Navier-Stokes equation. Afterwards, the
LBM for modelling the other relevant fields will be described.

3.1.1. LBM for the Navier-Stokes equation
The collision operator used in this research project is the BGK operator described above, which discre-
tised has the form

Ωi(f) = − 1

τf
(fi − feq

i ) , (3.2)

and represents the relaxation towards an equilibrium distribution of particles. The equilibrium distribu-
tion function for the momentum field is designed to mimic the Maxwell-Boltzmann equilibrium distribu-
tion and is given by

feq
i (r, t) = wiρ

(
1 +

u · ci
c2s

+
(u · ci)2

2c4s
− u · u

2c2s

)
. (3.3)

As stated in the previous chapter, the NSE can be retrieved from the BE, which can be retrieved from
the LBE. To retrieve the NSE, one performs the Chapman-Enskog expansion. The description of the
Chapman-Enskog expansion can be found in literature [21]. Through the Chapman-Enskog expansion,
the relation between the kinetic viscosity and the dimensionless relaxation time is found to be [21]

ν =

(
τf − 1

2

)
∆tc2s . (3.4)

In the presence of momentum sources, the discretised Lattice Boltzmann Equation (LBE) receives an
additional source term, and the equation becomes

fi(r + ei∆t, t+∆t) = fi(r, t)−
1

τf
[fi(r, t)− feq

i (r, t)] + ∆tqi , (3.5)

where qi depends on the force term acting on the fluid. The distribution functions can be related to
macroscopic variables by taking moments [21]. The macroscopic mass density and macroscopic mo-
mentum density can be obtained from the first and second moments,

ρ(r, t) =
∑
i

fi(r, t) (3.6)
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and
ρu(r, t) =

∑
i

cifi(r, t) , (3.7)

respectively. When modelling the momentum field, convection is of importance and the D2Q9 lattice is
used.

Time step in LBM
One time step in LBM can be decomposed in two steps that are successively executed:

1. Collision:
f⋆
i (r, t) = fi(r, t)−

1

τf
(fi(r, t)− feq

i (r, t)) , (3.8)

where f⋆
i represents the intermediate distribution function during a time step, after collision.

2. Streaming:
fi(r + ei∆t, t+∆t) = f⋆

i (r, t) , (3.9)

where the distribution obtained in the collision step is streamed towards neighbouring nodes along
the discretised lattice directions. A graphical representation of this process is found in figure 3.2

Figure 3.2: Schematic overview of the collision and streaming step for distribution function fi.

In the LBM algorithm these time-steps can be executed until a maximum number of time steps has
passed, or until the fields have converged. This LBM algorithm can be extended to the other fields.

3.1.2. LBM for the heat equation
Heat transfer is described by an advection-diffusion equation, as was shown in the previous chapter,
thus the Lattice Boltzmann method for advection-diffusion can be used [15]. This results again in a
similar form of equation 3.1 with a BGK operator, but now for the heat distribution function hi and with
a source term Qi

hi(rei∆t, t+∆t) = hi(r, t)−
1

τh
[hi(r, t)− heq

i (r, t)] + ∆tQi(r, t) . (3.10)

The equilibrium distribution function

heq
i (r, t) = wiT

(
1 +

u · ci
c2s

+
(u · ci)2

2c4s
− u · u

2c2s

)
, (3.11)

is analogous to that of the particle distribution function. To retrieve the heat equation from equation 3.10,
the Chapman-Enskog expansion can be applied and the relation between the dimensionless relaxation
time and the thermal diffusivity is obtained as

α =

(
τh − 1

2

)
c2s∆t . (3.12)
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The source term is also obtained from the Chapman-Enskog expansion [21] for first order accuracy as

Qi =
wi

ρCp

[
γ(Text − T ) + Ef

∑
g

Σg
fϕg

]
. (3.13)

The macroscopic temperature T can again be found by the summation of the distribution functions over
the discrete directions

T (r, t) =
∑
i

hi(r, t) . (3.14)

When modelling the temperature field in this research convection is of importance and theD2Q9 lattice
is used.

3.1.3. LBM for the neutron diffusion equation
In the same way as for fluid particles, we can discretise the continuous neutron velocities into finite
particle speeds and obtain local neutron distribution functions for neutrons in phase space [44]. The
lattice Boltzmann equation for neutronics using the BGK operator is then given by

ni,g(r + ei∆t, t+∆t) = ni,g(r, t)−
1

τn,g
[ni,g(r, t)− neq

i,g(r, t)] +Ri,g(r, t) (3.15)

where τn,g is the relaxation time for neutronics (subscript n) for neutron energy group g, neq
i (r, t) is

the equilibrium distribution function, and Ri,g(r, t) is the neutron source [14, 44]. Summation of the
distribution function over the lattice directions results in the scalar neutron flux

ϕg(r, t) =
∑
i

ni,g(r, t). (3.16)

Since the total neutron distribution does not change in the relaxation process of LBM, the summation
of the equilibrium distribution and the local distribution should obtain the same result, i.e.

ϕg(r, t) =
∑
i

ni,g(r, t) =
∑
i

neq
i,g(r, t). (3.17)

Since the neutron diffusion approximation does not entail any convection, the equilibrium distribution is
uniform in all directions and the relation of the scalar neutron flux and the neutron equilibrium distribution
is given by

neq
i,g(r, t) = wiϕg(r, t). (3.18)

To ensure that the original multi-group NDE can be retrieved, the Chapman-Enskog expansion must be
applied, and when doing so one finds the expressions for the neutron relaxation time τn,g and neutron
source function Ri,g(r, t) 3.15. Starting from the LBM model for the neutronics described in equation
3.15, one can derive the NDE and find relations [44]

Dgvg = (τn,g −
1

2
)c2s∆t, (3.19)

and
Ri,g = ∆tR

(1)
i,g +∆t2R

(2)
i,g +∆t3R

(3)
i,g + ... , (3.20)

with, using only the first order truncation [44],

Ri,g ≃ ∆tR
(1)
i,g = ∆twivg

−Σt,gϕg +
χp
g(1− βtot)

keff

∑
g′

(νΣf )g′ϕg′ + χd
g

∑
d

λdCd +
∑
g′

Σs,g′−gϕg′

 .

(3.21)
This full description of the Chapman-Enskog expansion applied on the LBE for neutronics, equation
3.15, is elaborated in [44]. When using the lattice Boltzmann method for the inner iteration in the power
method to solve the eigenvalue equation, the solving scheme is an iterative process. That means that
transient terms have no meaning. Therefore, the neutron velocity can be eliminated from equations
3.19 and 3.21. This was also seen in the forms of the steady-state NDE in equations 2.9 and 2.11, where
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the neutron velocities vg were eliminated. This is convenient in simulations, since neutron velocities
are generally high, which leads to difficulties when trying to achieve stable simulation conditions, as
will be explained in section 3.4.2.

As seen in absence of a convection term in the NDE, when modelling neutron transport convection
does not play a role and the D2Q4 lattice is used.

3.1.4. LBM for neutron precursor advection-diffusion equation
Since the precursor behaviour is prescribed macroscopically by an advection-diffusion equation, anal-
ogous to heat transfer, the form of the LBM in equation 3.10 is used and altered for the precursor
distribution functions as

cd,i(r + ei∆t, t+∆t) = cd,i(r, t)−
1

τc
[ci,d(r, t)− ceqi,d(r, t)] + ∆tQd,i(r, t) . (3.22)

The equilibrium distribution function is found as

ceqd,i(r, t) = wiCd

(
1 +

u · ci
c2s

+
(u · ci)2

2c4s
− u · u

2c2s

)
. (3.23)

By again performing the Chapman-Enskog expansion to retrieve the original governing equation,
the relaxation time is found to be related to the diffusion constant through

Dp =

(
τc −

1

2

)
c2s∆t . (3.24)

The source term is also obtained from the Chapman-Enskog expansion and is given, for first order
accuracy, as

Qd,i = wi

[
βd

keff

∑
g

(νΣfϕ)g − λdCd

]
. (3.25)

The macroscopic precursor concentration Cd can be found by the summation of the distribution function
over the discrete directions

Cd(r, t) =
∑
i

ci(r, t) (3.26)

When modelling the precursor concentration field, convection is of importance and the D2Q9 lattice is
used.

3.2. Boundary conditions
In this thesis, walls are modeled using both wet-node boundary schemes and link-wise boundary
schemes. The difference is that for wet-node boundary schemes boundary nodes are on the physical
boundary, while for link-wise boundary schemes the physical boundary is located half-way between
solid and boundary lattice nodes. Solid nodes xs are nodes located outside of the domain, boundary
nodes are located (partly) inside the domain. This is graphically displayed in figure 3.3.

Figure 3.3: Schematic overview of link-wise and wet node boundary schemes.

For simplicity all boundary conditions are expressed using the momentum distribution functions,
unless specified otherwise.



3.2. Boundary conditions 22

3.2.1. Dirichlet boundary conditions
For the momentum distribution function the Dirichlet boundary condition with a prescribed wall velocity
is given as [21]

fj(xb, t+∆t) = f∗
i (xb, t)− 2wiρw

ci · uw

c2s
= f∗

i (xb, t) + 2wjρw
cj · uw

c2s
, (3.27)

where cj = −ci, which is interpreted as that both the tangential and the normal velocity vectors are
inverted at the walls. Note that the starred notation, just as in section 3.1 refers to the intermediate
distribution function (after collision, but before streaming). In the D2Q9 scheme this is a reflection of
180 degrees. For a resting wall, using uw = 0, this reduces to

fj(xb, t+∆t) = f∗
i (xb, t) . (3.28)

From a macroscopic point of view these equations lead to no-slip conditions for a wall located midway
on lattice links. Equation 3.27 considers a boundary that recovers a velocity condition, which is useful
when determining the momentum distribution function. For the advection-diffusion equations Dirichlet
boundary conditions can bemodeled using an anti-bounce-back condition with zero-velocity at the walls
as

fj(xb, t+∆t) = −f∗
i (xb, t) + 2wiQw , (3.29)

with Qw the macroscopic quantity imposed at the wall.

3.2.2. Von Neumann boundary conditions
The von Neumann boundary condition can be implemented as a symmetry boundary condition, ex-
pressed as

fj(xb + cj,t∆t, t+∆t) = f∗
i (xb, t) , (3.30)

where cj,t = ci,t and cj,n = −ci,n, which is interpreted as that the tangential velocities remain constant
across streaming, but the normal velocities are reversed. This is called specular reflection. The scheme
results from a macroscopic point of view in zero normal velocity for the momentum equation, or zero
normal flux for the advection-diffusion equations, but imposes no condition for tangential velocity or
flux for the momentum and advection-diffusion equations respectively [21]. This is also referred to as
free-slip.

3.2.3. Boundary condition for neutronics
For the neutronics a wet-node approach is used. In effect the simulation domains for the neutron field
and the thermal-hydraulics fields are not right on top of each other anymore, as can be seen in the
figure 3.4.
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Figure 3.4: Schematic overview of the simulation domains for the neutron fields and thermal-hydraulics fields.

This is justified by the fact that in chapter 2.2 it was described that in diffusion theory the domain
where the scalar neutron flux is assessed should be extended by taking extrapolated boundaries as
in equation 2.5. This boundary extrapolation would be a complex task as the extrapolated boundary
is a function of the diffusion constant, which is different for each energy group. That implies that for
each neutron energy group a different lattice grid would have to be implemented with boundaries at
different points in space. For simplicity, the extrapolation is therefore limited to the solid nodes in the
thermal-hydraulics simulations for all groups represented as xb in figure 3.5. In the figure, the actual
extrapolation that is prescribed in the diffusion approximation as in equation 2.5 is displayed for 2
neutron energy groups, with diffusion constants for which D2 > D1 holds.

Figure 3.5: Schematic overview of the extrapolated boundary coordinates , x̃boundary,1 and x̃boundary,2 as prescribed in the
diffusion approximation, and the actually implemented extrapolation in the numerical model, xb.

Two boundary conditions are used in literature. Both these boundary conditions will be modelled
an assessed on their performance. The first is the non-equilibrium extrapolation scheme (NEES) is
implemented[44, 45, 46]. The NEES is expressed as

ni,g(xb, t) = neq
i,g(xb, t) +

[
ni,g(xadj , t)− neq

i,g(xadj , t)
]

. (3.31)

The other boundary condition used is the equilibrium boundary condition [27]. This is one of the
more simple boundary conditions found in the theory of LBM. The EB condition is represented as

ni,g(xb, t) = neq
i,g(xb, t) . (3.32)

If the equilibrium distribution function at the walls is zero (such as for vacuum boundary conditions,
ϕeq(xb, t) = 0), this boundary condition leads to a zero neutron current density J at the boundary node.
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At the boundary, while the scalar flux is zero, there can still be a non-zero gradient of the flux, leading
to a non-zero neutron current. This is thus an approximation, since apart from assuming zero scalar
neutron flux at the boundary also zero current density at the boundary is assumed.

3.3. Lattice conversion
Lattice Boltzmann simulations are generally performed in dimensionless numbers, called lattice units.
This means that parameters need to be scaled from physical units to lattice units and after the simulation
back to lattice units. This is done using a conversion factor [21], which is the ratio between physical
units and lattice units of a quantity Q as

CQ =
QP

Q∗ . (3.33)

The lattice quantities are represented with a star superscript, whereas physical quantities obtain sub-
script P . Conversion factors of quantities can be combined to obtain conversion factors of other quan-
tities. For instance, when scaling velocity (units m/s) one can use the conversion factors for distance
and time and write

Cu =
Cx

Ct
. (3.34)

Because the physical units for ν, α, Dp and vgDg are equal, they share the same conversion factor

Cν = Cα = CDp = CvgDg . (3.35)

The most important quantities to scale are mass, distance, time and temperature, since from these one
can scale all other, in this research project, relevant quantities.

3.4. Stability and accuracy constraints
The lattice Boltzmann method works properly for most cases. However, there are some stability con-
straints for the lattice units. Firstly, flow must be incompressible. Compressibility of a flow can be
quantified using the dimensionless Mach number Ma, which must be smaller than 0.1 in the incom-
pressibility limit and is defined as the ratio of velocity of particles in a medium u and the speed of sound
in the medium cs [21] following

Ma =
u∗

cs
< 0.1 . (3.36)

There are situations where achieving this small Ma leads to high computational costs, from the neces-
sity of increasing the number of grid-points or time-steps. It can then be tested whether higher Ma
is already accurate, since the relation between the simulation error and Ma is not straightforward. It
should be noted thatMa higher than 0.7 should always be avoided according to literature [21]. Next, for
a stable simulation when using the BGK operator non-negativity of the equilibrium distribution functions
need to be ensured. This generally holds for τ > 0.5. Values near 0.5 might already result in instability,
thus we restrict ourselves to the following condition

τ∗ > 0.505 . (3.37)

The constraints mentioned above result in restrictions when choosing lattice parameters.
Any physical situation prescribes certain dimensionless parameters, that are consistent throughout

unit conversions to obtain accurate simulations. Other than the previously described Mach numbers,
in this research project the relevant dimensionless parameters are the Reynolds number Re, Schmidt
number Sc and the Prandtl number Pr. The Reynolds number describes the type of flow considered,
e.g. laminar or turbulent flow, defined as

Re =
u∗
max · x∗

ν∗
. (3.38)

The Schmidt number is a scale for convectional and diffusional concentration transport, defined as

Sc =
ν∗

D∗
p

. (3.39)
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The Prandtl number is a scale for convectional and diffusional heat transport, defined as

Pr =
ν∗

α∗ . (3.40)

Combining accuracy and stability constraints results in criteria that must hold in all simulations. Using
the first constraint in equation 3.36 and the physically prescribed relation for the type of flow in equation
3.38 results in incompressibility criterion

Re · ν∗

x∗ ≤ Ma · cs , (3.41)

where ν∗ and x∗ can be chose freely. The combination of these two must be chosen such that the
incompressibility criterion holds.

For the second constraint in equation 3.37, the relaxation times of the different fields, equation 3.4,
3.12, 3.19, 3.24, are assessed. As seen in equation 3.35 conversion parameters are shared amongst
parameters determining relaxation times, and the choice of one influences all. Combining this with
the prescribed dimensionless numbers from equation 3.39 and 3.40 we obtain for the non-negativity
constraint

ν∗ ≥ 0.005∆tc2s , (3.42)
ν∗

Pr
≥ 0.005∆tc2s , (3.43)

vgDg · ν∗

ν
≥ 0.005∆tc2s , (3.44)

ν∗

Sc
≥ 0.005∆tc2s . (3.45)

Note that parameters Pr, Sc, vgDG and ν are prescribed by the physical problem and only the choice
of ν∗ is free. In summary, choice of lattice parameters ν∗ and x∗ should be chosen carefully for stable
simulations.

3.4.1. Dealing with high Prandtl and Schmidt numbers
Typically the Pr number for molten salts is between 1 and 35, depending on temperature and salt
composition [47]. These orders of magnitude for Pr and Sc are easily handled by LBM, as they can
be implemented easily within stability criteria in equations 3.43 and 3.45. However, high Pr and Sc
numbers lead to the necessity to choose a high ν∗ to ensure that the left-hand sides remain bigger or
equal than the right-hand sides. Difficulty occurs when combining this with 3.41, as increasing ν∗ leads
to the necessity of increasing x∗. This essentially means increasing the grid refinement, leading to high
computational costs.

A way to avoid this issue is to think about what the high Pr and Sc numbers physically mean. A
high Prandtl number means that thermal diffusivity has a much lower effect than momentum diffusivity
and convection has bigger effect on the heat distribution than conduction. Similarly, a high Schmidt
number means that mass diffusivity has a much lower effect than momentum diffusivity and convection
has bigger effect on the mass distribution than diffusion. To understand what high Pr and Sc numbers
mean for the model, dimensionless analysis is performed on the relevant macroscopic equations. The
non-dimensional form of the steady-state heat equation is found in the form

PrRe[ũ · ∇̃T̃ ] = −∇̃2T̃ +K(GrPr)1/4(1− T̃ ) , (3.46)

with K a constant that relates to the Nusselt number, a measure for the ratio between convective and
conductive heat transfer. The derivation can be found in appendix C.1. The effect of a high Pr number
can be seen from this equation. When the divergence and Laplacian of T̃ are low, increasing the
Pr number results in dominance of the convection term (left-hand side) and heat sink term (first of
the right-hand side), while the diffusion term (second term of the right-hand side) becomes relatively
insignificant. At some high Pr number, diffusion becomes so insignificant that increasing the Pr number
has little effect on the temperature distribution. Thus, in the simulation, it can be tested whether the
implementation of a lower Pr, that suffices to the criterion in equation 3.43 more easily (that is, without
too refined grid), already leads to accurate results. This reasoning breaks down if the divergence and
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Laplacian of T̃ are high and the terms containing the Pr number do not necessarily dominate. A similar
line of reasoning can be followed for the Sc number, where the non-dimensional form of the steady-state
mass concentration equation is found in the form

ScRe[ũ · ∇̃C̃] = ∇̃2C̃ −DaC̃ , (3.47)

with Da the Damköhler number, that relates to the decay rate of the precursors. The derivation can be
found in appendix C.2. Again, the diffusion term becomes less and less significant for high Sc numbers,
when the divergence and Laplacian of C̃ are low. It should be tested whether the implementation of
a lower Sc, that suffices to the criterion in equation 3.45 more easily (that is, without too refined grid),
already leads to accurate results.

3.4.2. Dealing with high neutron velocities
In neutronics simulations utilizing the Lattice Boltzmann Method (LBM), a notable challenge arises from
the fact that high neutron velocities result in high relaxation times, as seen in equation 3.19. Neutron
velocities in MSFRs are typically within the interval 105m/s − 107m/s. High relaxation times are un-
desirable, as the relaxation time directly scales with the simulation error [21]. While this issue can
be mitigated in steady-state scenarios by omitting neutron velocities from the relaxation time equation
3.19, as mentioned in section 3.1.3, this strategy is not applicable in transient situations. Therefore, in
transient situations of using the LBM for neutronics simulations, one has to scale down the velocity in
lattice units using a very high number of time-steps, which leads to increased numerical costs. A way
to avoid this is by remembering from section 2.2.3 that one can split the neutron fluxes in the slowly
changing shape function and fast changing amplitude function. The shape function can be solved us-
ing the steady-state LBM until convergence, where once again the neutron velocities can be omitted.
When one subsequently solves for the fast changing amplitude equation, one can obtain the neutron
scalar group fluxes, without enormously increasing numerical times. This is a quasi-static method, as
one assumes the shape function to be static at the small time-scales of the amplitude function. The
combination of the LBM with the quasi-static method will be explained further in section 3.6.

3.4.3. Ensuring stability while choosing lattice units
For the mass and temperature conversion factors Cm and CT , one is free to choose what suits best
for the simulation or is easy to handle, since these quantities do not have to comply with criteria for
stability. For the distance and time conversion factors, Cx and Ct, on the other hand, one has to be
more careful since quantities related to these, such as ν∗, α∗, D∗, v∗gD∗

g and u∗
max, must comply with

stability criteria. A way to ensure stability is choosing units as follows:

1. Choose ν∗ such that equations 3.42, 3.43, 3.44 and 3.45 hold.
2. Using ν∗ from step 1 choose the number of lattice nodes, x∗, in a physical length scale, x, such

that equation 3.41 holds. Now one can find the maximum lattice velocity u∗
max using equation

3.38 and using the maximum physical velocity umax can determine Cu using equation 3.33.
3. Determine Cx, using equation 3.33, inserting the physical length scale x and the number of lattice

nodes in that physical length scale x∗. Use equation 3.34 to determine the conversion factor for
time, Ct, by

Ct =
Cx

Cu
or Ct =

C2
x

Cν
, (3.48)

ensuring that these two expressions for Ct are consistent.
4. Choose Cm and CT adequate for simulation, without restrictions.
5. Scale other quantities using conversion factors for mass, distance, time and temperature using

variations of equation equation 3.34 based on the physical units of the to be scaled quantity.

3.5. Scheme for solving coupled eigenvalue problem
For the coupled system, the thermal-hydraulics and neutronics fields are solved simultaneously and
the system of lattice Boltzmann equations becomes

F ∗(l)
i = F

(l)
i +Ω

(l)
i +Q

(l)
i +

1

k
(l−1)
eff

Q
(l−1)
f,i , (3.49)
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in which the vectors are given as

F ∗
i =


fi(r + ei∆t, t+∆t)
hi(r + ei∆t, t+∆t)
ng,i(r + ei∆t, t+∆t)
cd,i(r + ei∆t, t+∆t)

 , (3.50)

F i =


fi(r, t)
hi(r, t)
ng,i(r, t)
cd,i(r, t)

 , (3.51)

Ωi =


−∆t

τf
(fi − feq

i )

−∆t
τh

(hi − heq
i )

− ∆t
τn,g

(ni,g − neq
i,g)

−∆t
τc
(cd,i − ceqd,i)

 , (3.52)

Qi = ∆twi


−βthρ0(T − Tref )(g · ci)

1
ρCp

[
γ(Text − T ) + Ef

∑
g Σf,gϕg

]
vg

[
−Σt,gϕg + χd

g

∑D
d=1 λdCd +

∑G
g′ Σs,g′→gϕg′

]
−λdCd

 (3.53)

Qf,i = ∆twi


0
0

vg
[
χp
g(1− βtot)

]
βd

 · Sf , (3.54)

and

Sf =

6∑
g=1

(νΣfϕ)g . (3.55)

The superscript (l) represents the outer iteration number, as described in 2.2.2. The inner iteration
entails the subsequent execution of the collision and streaming steps in the lattice Boltzmann method
for all the different fields simultaneously, until all distribution functions and thus macroscopic properties
converge. Distribution functions and macroscopic quantities are updated throughout the inner itera-
tions, except for the fission terms. In the inner iterations, the fission source term Qf,i and effective
multiplication factor keff , are not altered. As will become relevant later, for different coupling situations,
different fields have to be solved actively. When a field is not solved, the entire row in equation 3.49
for that field can be omitted in the inner iteration.

In the inner iterations the lattice Boltzmann method is used repeatedly to determine the distribution
functions of the several fields, until convergence. Once the distribution functions of all fields converge,
the neutron fluxes and precursor concentrations are determined and used to update the fission source
termQf,i and effective multiplication factor keff using equations 2.19 and 2.20. For each different stage
of the steady-state coupled simulations (referred to as phase 1) the iteration schemes are displayed in
the corresponding sections in chapter 5.

3.6. Predictor Corrector Quasi-Static Method
The transient behaviour is assessed with the initial system being critical. That means that the critical
system must first be determined before continuing to the transient system. This is done by applying the
LBM until convergence using the power method, determining the steady-state eigenvectors and eigen-
value keff . The determined eigenvalue for the steady-state system is used in the transient calculation
such that the fission cross-sections are scaled for criticality if no perturbation is applied.

As described in section 2.2.3, two types of functions are to be solved: shape functions and amplitude
functions. The amplitude functions are solved using the Euler method, described later. The shape
functions are solved using the LBM. Since the LBM does not solve for the neutron fluxes and precursor
concentrations directly but solves for distribution functions, some adjustments are made to the regular
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PCQSM scheme. From the factorisation in equation 2.21 a similar factorisation for the amplitude follows
as

ni,g(r, t) = ñi,g(r, t)n(t) , (3.56)

where ñi,g(r, t) is the neutron distribution shape function.
The amplitude function is solved on the shortest time scale∆tS , and the shape function on a longer

time scale ∆tB . The PK parameters ρ, Λ and β are determined on an intermediate time-scale ∆tM .
Within the intermediate time scale, the PK parameters are considered constant. This is represented in
figure 3.6.

Figure 3.6: Schematic overview of the different time-scales used in the PCQSM.

The steady-state lattice Boltzmann method is used to determine predicted distribution functions
np
i,g(r, t+∆tB) and cpi,d(r, t+∆tB) first, and later sums over these distribution functions to obtain the

predicted neutron flux ϕp(r, t+∆tB) and predicted precursor concentration Cp
d (r, t+∆tB).

From the predicted neutron distribution functions np
i,g(r, t + ∆tB) the neutron distribution shape

functions ñi,g(r, t+∆tB) are determined using

ñi,g(r, t) =
np
i,g(r, t)∑G

g=1

∫
V

1
vg
Φ∗

g(r)ϕ
p
g(r, t)dV

. (3.57)

From the predicted neutron fluxes the neutron flux phase functions ϕ̃g(r, t+∆tB) can be determined,
using

ϕ̃g(r, t) =
ϕp
g(r, t)∑G

g=1

∫
V

1
vg
Φ∗

g(r)ϕ
p
g(r, t)dV

. (3.58)

The flux phase function is linearly interpolated in interval [t, t+∆tB ] in time-steps of ∆tM , such that at
each intermediate time step ∆tM a phase function is known.

At each medium time step the PK parameters are determined, using the interpolated flux phase
function and equations 2.35, 2.36 and 2.37.

Within the medium time interval [t, t + ∆tM ] the PK parameters are considered constant, and the
point kinetics equations 2.33 reduce to ordinary differential equations (ODEs) as

dn(t)

dt
=

ρ− β

Λ
n(t) +

∑
d

λdmd(t) ≡ N(n(t),md(t)) , (3.59)

dmd(t)

dt
=

βd

Λ
n(t) + λdmd(t) ≡ Md(n(t),md(t)) . (3.60)

where N(n(t),md(t)) and Md(n(t),md(t)) are functions that are used in solving the equations.
In the model these ODEs are numerically solved using the Euler method [18]. This method allows

one to determine an approximation of n(t + ∆tS) and md(t + ∆tS), provided that n(t) and md(t) are
known, as

n(t+∆tS) = n(t) + ∆tS ·N(n(t),md(t)) (3.61)
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md(t+∆tS) = md(t) + ∆tS ·Md(n(t),md(t)) (3.62)

At t = 0, the amplitude functions are given as [9]

n(0) = 1 & md(0) =
βd

Λλd
. (3.63)

When the big time-step is reached, the predicted neutron fluxes ϕp(r, t+∆tB) are corrected by using
the amplitude function, n(t+∆tB), and the phase functions, ϕ̃g(r, t+∆tB) as formulated in equation
2.21. This is repeated until the total time span of the simulation is reached. The scheme is represented
in figures 3.7 and 3.8.

The PK parameters are solved using equations 2.34, 2.35, 2.36 and 2.37 where volume integrals
are numerically implemented as summing over all lattice nodes. In equation 2.34 taking the gradient
and divergence is numerically implemented using the central difference method. The central difference
method estimates the gradient and divergence by looking at values of the function at points on either
side of the point of interest. Numerically the gradient is implemented as

∇f(x, y) =

[
f(x+∆x,y)−f(x−∆x,y)

2∆x
f(x,y+∆y)−f(x,y−∆y)

2∆y

]
, (3.64)

where ∆x and ∆y are the spacings between lattice nodes and f is the function of interest, for instance
ϕ. The divergence is implemented as

∇ · F (x, y) =
∂u

∂x
+

∂v

∂y
=

u(x+∆x, y)− u(x−∆x, y)

2∆x
+

v(x, y +∆y)− v(x, y −∆y)

2∆y
, (3.65)

where ∆x and ∆y are again the spacings between lattice nodes and F is the vector field of interest,
for instance ∇ϕ. It should be noted that in this research the gradient and divergence near walls led to
numerical errors and these are set to zero. In further research it is suggested to improve the gradient
and divergence calculation near walls.
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Figure 3.7: Solving scheme for transient simulation using PCQSM and LBM. Part (1/2) Scheme continues on the next page.
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Figure 3.8: Solving scheme for transient simulation using PCQSM and LBM. Part (2/2) Continuing from previous page.



4
Validation of single-physics models

The aim of this research is to build a coupled multi-physics tool for several physical fields. To ensure
that sources of errors in the tool are effectively traced, the coupling between the different physical
fields is gradually increased. The benchmark study by M. Tiberga et al.[35] is used for the validation
of the model. The neutronics model is assessed against additional, simpler benchmark studies and
analytical solutions before extending the model to the complexity of the benchmark by M. Tiberga et
al. [35]. In section 4.1 the physical conditions of Tiberga benchmark[35] is described. The validation
of the uncoupled LBM for the velocity field is described in section 4.2 by comparison to the Tiberga
benchmark. Subsequently the validation of the uncoupled LBM for the neutronics field in static fuel
is described in section 4.3 in which one analytical and two numerical benchmark studies are used
for comparison, including the Tiberga benchmark. In section 4.4 the validation of the uncoupled LBM
for the temperature field is described and in section 4.5 the validation of the uncoupled LBM for the
neutronics field in non-static fuel is described, both in comparison with the Tiberga benchmark. Finally,
some intermediate conclusions are drawn in section 4.6 that are used in the simulations for the coupled
fields in the next chapter.

To compare the obtained results against an analytical solution, the accuracy is represented by the
Relative Root Means Squared Error (RRMSE) as

RRMSE =

√√√√ 1

Np

Np∑
i=1

(
Q(ri)−Qanalytic(ri)

Qanalytic(ri)

)2

, (4.1)

where Q(ri) is the found value following from the simulation using LBM at sampling point ri and
Qanalytic(ri) is the analytical solution at that sampling point. Np represents the number of sampling
points. When no analytical solutions can be used, the accuracy the results is assessed by computing
the discrepancy from other codes as

ϵc =

√√√√∑Np

i=1(Qc(ri)−Qavg(ri))2∑Np

i=1 Q
2
avg(ri)

, (4.2)

where the subscript c is for the assessed code,Qc(ri) is the value of the computed quantity at sampling
point ri andQavg is the average value of that quantity computed in the different codes. Np is the number
of sampling points [35]. An interpretation of the obtained physical fields and the effects of coupling is
described in section 5.4 and is not included in this chapter.

4.1. Description of the Tiberga benchmark
The Tiberga benchmark is developed as a ”coupled numerical benchmark specifically designed to as-
sess the physics-coupling capabilities” of numerical tools for simulating the fields in a Molten Salt Fast
Reactor [35]. The benchmark study compares codes developed during the SAMOFAR project at four
different institutions: Delft University of Technology, Paul Scherrer Institute, Politecnico di Milano and

32



4.1. Description of the Tiberga benchmark 33

LPSC/CNRS-Grenoble. The interesting feature of the Tiberga benchmark is that it considers a step-by-
step approach in the sense that coupling between fields is gradually increased. Initially, the neutronics,
momentum and temperature fields are modelled separately, and with each phase in the Tiberga bench-
mark more fields are coupled. This is predominantly useful to identify mistakes and assess the capabili-
ties of handling the coupling of the different fields. The gradual coupling is expressed by subdividing the
simulations into phases. Phase 0 entails simulations of the uncoupled fields, with phases 0.1, 0.2 and
0.3 simulations for the velocity, neutronics and temperature fields respectively. Any inter-field influence
is passively implemented, i.e. in phase 0.3 a fixed velocity and heat source influence the temperature
field. Phase 1 entails simulations of gradually coupled fields. In phase 1.1 the velocity and precursor
concentration fields are coupled, but still passively. For this reason, phase 1.1 in this research project
is considered uncoupled. In phases 1.2, 1.3 and 1.4 active coupling is increased gradually, meaning
that the fields are not fixed but impact each other throughout simulations. The Tiberga benchmarks
provides results of codes developed by the four aforementioned institutions against which the results
can be assessed.

4.1.1. The molten salt system
The multi-physics benchmark describes a system using LiF − BeF2 − UF4 as a fuel salt, with fluid
properties constant with temperature and uniform in space. Fuel salt composition is found in table 4.1.
The flow is considered incompressible and laminar, buoyancy forces aremodelled using the Boussinesq
approximation and the reactor is considered homogeneous. The reactor core is a two-dimensional lid-
driven cavity, with sides of 2 meters. The boundaries of the core are bare, meaning zero neutron flux,
adiabatic, meaning zero normal heat flux, and no-slip, with zero velocity everywhere except at the top
lid. For the precursors, von Neumann boundary conditions are implemented, resulting in a zero normal
precursor flux at the boundaries. Salt cooling in the core is simulated as a volumetric heat sink, as

q(r) = γ(Text − T (r)) . (4.3)

The neutrons are grouped into six energy groups, and the precursors are grouped into eight families.
No upscattering is assumed, meaning that neutrons can only scatter from higher energy groups to
lower energy groups. Cross sections and neutron diffusion coefficients for diffusion codes are affected
only by the salt expansion feedback and scale with temperature. Excluded are turbulence, decay heat
and Doppler effects on microscopic cross sections. To still include a temperature dependency of the
cross-sections and diffusion coefficients they are scaled with fuel density as described in equations
2.48 and 2.49. A graphical representation of the reactor core is found in figure 4.1. Quantities are
observed along the displayed center-lines AA′ and BB′.
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Figure 4.1: Schematic overview of the simulation domain, with observation center-lines AA′ and BB′ [35]

Isotope Li-6 Li-7 Be-9 F-19 U-235
Atomic fraction [%] 2.11488 26.0836 14.0992 56.3969 1.30545

Table 4.1: Fuel salt composition of salt in reactor core [35]

The Tiberga benchmark prescribes nuclear data-sets, retrieved from the JEFF-3.1 library [19] at
T = 900K generated with Serpent [23] and then grouped into six energy groups that were already
tested in previous works to resemble the real spectrum of an MSFR. The definition of the energy groups
is found in table 4.2.

Group number, g Upper energy bound [MeV ]
1 2.000 · 101
2 2.231 · 100
3 4.979 · 10−1

4 4.479 · 10−2

5 5.531 · 10−3

6 7.485 · 10−4

Table 4.2: Definition of the energy groups [35].

The delayed precursor families are grouped by their decay constants. The definition of the families
is found in table 4.3
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Family number, d Decay constant [s−1]
1 1.24667 · 10−2

2 2.82917 · 10−2

3 4.25244 · 10−2

4 1.33042 · 10−1

5 2.92467 · 10−1

6 6.66488 · 10−1

7 1.63478 · 100
7 3.55460 · 100

Table 4.3: Definition of precursor families [35].

All other nuclear data for the six energy groups and 8 families can be found in appendix B.

4.2. Phase 0.1, Velocity field in lid driven cavity
To assess the capability of describing the velocity field of the code a steady-state simulation is performed
that only models the velocity field. The momentum source is a moving lid, that drags the fluid at the
top. The relevant physical parameters are found in table 4.4.

Property Units Value
ρ kg m−2 2.0 · 103
ν m2 s−1 2.5 · 10−2

Ulid m s−1 0.5
Re − 40

Table 4.4: Physical parameters used in the velocity simulations [35].

The velocity field is modelled using the LB equations as described in section 3.1.1. The simulation is
performed until convergence of the velocity and density fields. The only momentum source, the moving
lid, is numerically implemented at the top boundary as described in section 3.2.1. The horizontal and
vertical components of the velocity field along center-lines AA′ and BB′, as shown in figure 4.1, are
the observables for the performance of the code, in line with the benchmark by M. Tiberga et al. [35],
and displayed in figure 4.2 and 4.3 respectively.

Figure 4.2: Horizontal velocity field along center-lines AA′ (left) and BB′ (right) for the various benchmark codes and the LBM
simulation in phase 0.1.



4.3. Neutronics field modelled using several benchmarks 36

Figure 4.3: Vertical velocity field along center-lines AA′ (left) and BB′ (right) for the various benchmark codes and the LBM
simulation in phase 0.1.

To assess the results on grid convergence, the grid is refined and the discrepancy from the bench-
mark results is determined using equation 4.2. The results for this convergence study is found in figure
4.4. The discrepancies converge to approximately constant values, and grid convergence is assumed
to be achieved at 200 grid-points. At that grid refinement found discrepancies are for the vertical and
horizontal velocity along center-line BB′ are 5.6% and 1.6% respectively and for the the vertical and
horizontal velocity along center-line AA′ are 1.1% and 0.40% respectively.

Figure 4.4: Discrepancy from benchmark codes of the horizontal (Ux) and vertical (Uy) velocity fields along center-lines for
different numbers of grid-point per dimension in pase 0.1.

4.3. Neutronics field modelled using several benchmarks
To assess the capability of modelling the neutronics field, the neutronics is also modelled separately.
In the benchmark by M. Tiberga et al. [35] six groups and eight precursor families are prescribed. To
ensure accuracy, first two simpler situations are simulated. The most simple case is a model of two
neutron groups, neglecting precursors. Subsequently, a case is assessed with two neutron groups
and one precursor family. Finally, the benchmark situation, with six energy groups and eight families
is simulated and assessed. For this latter simulation the difference in accuracy of the results between
the NEES and EB conditions are discussed.

4.3.1. Neutronics field in a homogeneous solid fuel reactor core
In the relatively simple two-dimensional case where the neutrons can be grouped in one fast and one
thermal group, neglecting upscattering and considering zero flux at the boundaries, the eigenvalue
problem can be solved analytically. For the fast and thermal groups respectively, one finds the following
equations
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−D1∇2ϕ1(x, y) + Σa1ϕ1(x, y) =
1

keff
νΣfϕ1(x, y) , (4.4)

−D2∇2ϕ2(x, y) + Σa2ϕ2(x, y) = Σs,1−→2ϕ1(x, y) . (4.5)

Considering the fundamental modes and implementing that the scalar neutron fluxes are zero at the
boundaries, one finds the general solutions

ϕ1(x, y) = Φ1cos(
πx

L
)cos(

πy

L
) (4.6)

ϕ2(x, y) = Φ2cos(
πx

L
)cos(

πy

L
) (4.7)

with Φ1 and Φ2 constants for the magnitude of the fluxes. Substituting these into the equations above,
expressions for the flux magnitudes can be found as

(2D1(
π

L
)2 +Σa1 −

1

keff
νΣf )Φ1 = 0 (4.8)

(2D2(
π

L
)2 +Σa2)Φ2 = Σs,1−→2Φ1 (4.9)

and considering only non-trivial solutions, solving for keff results in

keff =
νΣf

2D1(
π
L )

2 +Σa1
, (4.10)

and for the relation between Φ1 and Φ2

Φ1 =
2D2(

π
L )

2 +Σa2

Σs,1−→2
Φ2 . (4.11)

The developed code for the steady-state neutronics k-eigenvalue is first tested against a simple 2-
group benchmark study [7], that uses the analytical solutions described above as a reference. The
study considers a square bare reactor core of 140cm sides, as can be seen in 4.5.

Figure 4.5: Square two-dimensional homogeneous multiplying cavity with two neutron energy groups.
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The k-eigenvalue problem is solved using the LB equations as described in section 3.1.3 and the
power method as in 3.5 for a reactor core using four different two-energy group nuclear data-sets. The
EB condition was used for modelling the vacuum boundaries. The nuclear parameters are displayed
in table 4.5.

Material zone Σr,1 Σr,2 Σs,1−2 νΣf,1 νΣf,2 D1 D2

1 0.02935 0.2029 0.01563 0.0181 0.2117 1.438 0.2976
2 0.03562 0.24321 0.0205 0.0138 0.2243 1.124 0.2456
3 0.03620 0.1210 0.0241 0.0085 0.1851 1.267 0.3540
4 0.03562 0.24321 0.0205 0.0148 0.2673 1.0 0.2456

Table 4.5: Nuclear data for two-energy group systems [7]

The results are displayed in table 4.6, together with the analytical results [7].

Material zone keff (anal. ref.) keff (LBM) RRMSE [%]
1 1.116423 1.116403 0.0018
2 0.889391 0.889352 0.0044
3 1.207672 1.207628 0.0037
4 1.018580 1.018530 0.0049

Table 4.6: Comparison of the neutronics code with analytical result [7]

For the material zone 1, the flux profiles are displayed in figure 4.6 together with the analytical solu-
tions as obtained above. As can be seen in the figure, the results of the developed model correspond
well to the sinusoidal analytical profile, with an RRMSE of 1.3%. The normalised flux profiles of material
zone 2, 3 and 4 can be found in appendix D.1, with RRMSE of 1.0%, 1.1% and 0.89% respectively.

Figure 4.6: Analytical and LBM solution for a two-energy group simulation in homogeneous square cavity with bare boundaries
for material zone 1.

The scalar neutron flux does not go to zero at the walls, as the boundary node lies outside the
reactor core and goes to zero at that boundary node.

4.3.2. Neutronics field in a multi-region solid fuel reactor core
The second simulation for the neutronics uses the TWIGL benchmark problem dating from 1969 [12].
It describes a non-homogeneous reactor core divided into five regions of three different materials, as
can be seen in figure 4.7.
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Figure 4.7: TWIGL benchmark dimensions: Square two-dimensional multiplying cavity filled with seed regions 1 and 2 and
blanket region 3 [12, 48].

Regions 1 and 2 are core regions containing primary fissile material, region 3 is a blanket region
that also contains fissile material. The k-eigenvalue problem is solved using the LB equations as de-
scribed in section 3.1.3 and the power method as in 3.5. The EB condition was used for modelling the
vacuum boundaries. In this situation, one precursor group is considered. In the core no liquid fuel is
present leading to no precursor transport by convection. Further, diffusion effects for the precursors
are neglected. The treatment of the precursors in the LB equations is therefore simplified from the
equations in section 3.1.4 through omitting the collision term, resulting in

cd,i(r + ei∆t, t+∆t) = cd,i(r, t) + ∆tQd,i(r, t) . (4.12)

The rest of the equations in section 3.1.4 remain the same. The nuclear parameters are found in table
4.7.

Material Group Σr,g Σs,1−2 νΣf,g Dg vg
1 1 0.02 0.01 0.007 1.4 1.0 · 107

2 0.15 − 0.2 0.4 2.0 · 105
2 1 0.02 0.01 0.007 1.4 1.0 · 107

2 0.15 − 0.2 0.4 2.0 · 105
3 1 0.018 0.01 0.003 1.3 1.0 · 107

2 0.05 − 0.06 0.5 2.0 · 105

Table 4.7: Nuclear parameters for the seed and blanket regions in the TWIGL benchmark[48], [12], [43].

The k-eigenvalue problem is solved and the results for the scalar neutron fluxes are found in figure
4.8. The eigenvalue is found as 0.908258, whereas the reference solution for the eigenvalue was
0.913237. This results in an RRMSE of 0.545% for the eigenvalue. The reference solution for the
neutron scalar fluxes of the two energy groups are found in appendix D.2 and correspond well to the
figure below.
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Figure 4.8: LB solution for scalar neutron fluxes of the two energy groups in the TWIGL benchmark [12] in the top-right quarter
of the simulation domain.

The flux profile across the domain is assessed over the diagonal, that is in regions 1 and 3. The
flux is lowest at the walls in the blanket region, increases in the seed region and decreases again in
the blanket region.

4.3.3. Phase 0.2, Static fuel with six neutron energy groups and eight neutron
precursor families

In this phase, the reactor is filled with a static, isothermal fuel salt. Static flow results in no convection
affecting precursor distribution and the generated heat does not affect the flow of the salt or the neutronic
parameters. Further, diffusion effects for the precursors in this phase are neglected. The physical
properties are displayed in table 4.8. After convergence of the model the scalar neutron fluxes are
normalised for the total reactor power of 1 GW . The solving scheme is found in appendix D.

Property Units Value
P W 1.0 · 106
T K 900

Table 4.8: Physical parameters used in the neutronics simulations [35].

The nuclear parameters for the simulation are found in appendix B. The equations as described
in section 3.1.3 and 3.1.4 are used for the neutron group fluxes and the precursor concentrations
respectively, but for the precursors again the collision operator is omitted to exclude diffusion effects,
as was expressed in equation 4.12. The k-eigenvalue problem is solved using the power method as in
3.5. The used numerical scheme for this uncoupled system is found in appendix A. The NEES and EB
schemes are both used and their results are compared for different grid refinements. This is displayed
in figure 4.9.
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Figure 4.9: Discrepancy from benchmark codes of the fission rate density for different numbers of grid-points per dimension,
for the EB and NEES boundary schemes in phase 0.2.

The discrepancy from the benchmark results is determined using equation 4.2. As seen, the dis-
crepancy for the NEES boundaries increases with increasing grid refinement. The EB is more capable
of resembling the vacuum boundary condition and the discrepancy seems to converge to a constant
value. Grid convergence is assumed to be achieved at 200 grid-points. At this refinement the discrep-
ancy for the fission rate density is found as 0.77% and for keff as 0.065%. The results corresponding
to the simulation with this lowest discrepancy (EB scheme, grid refinement of NX = 200) are found in
figure 4.10, compared with the different codes from the benchmark by M. Tiberga et al. [35].

Figure 4.10: Fission rate density along center-line AA′ for the various benchmark codes and the LBM simulation in phase 0.2.

One again recognises the non-zero flux at the reactor walls. For the flux profile we recognise the
sinusoidal shape that we found in the simpler case for the 2-group neutronics problem as well. The
found multiplication factors that correspond to the flux profiles in figure 4.10 are found in table 4.9.
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Code keff ρ [pcm] ϵkeff

CNRS-SP1 1.00412999 411.3 0.014%
CNRS-SP3 1.00354955 353.7 0.013%

PSI 1.00422982 421.2 0.014%
PoliMi 1.00413402 411.7 0.014%
TUD-S2 1.0048494 482.6 0.016%
TUD-S6 1.00581461 578.1 0.018%
LBM 1.00523287 520.6 0.017%

Table 4.9: Multiplication factor keff and reactivity ρ found for the various benchmark codes and the LBM simulation, together
with the discrepancies for the multiplication factors in phase 0.2 [7].

4.4. Phase 0.3, Temperature
To asses the capability of modelling the temperature field a simulation is performed that uses a fixed
flow field and heat source. The velocity field found in section 4.2 is used as static input in this phase.
The fission rate density found in section 4.3.3 results in fission heat that is used as a heat source in
the current temperature simulation. Note that the flow field affects heat convection, but the effect of
convection on precursors is neglected. The temperature field is modelled using the LB equations as
described in 3.1.2 until convergence of the temperature. The physical properties as prescribed in the
benchmark are displayed in table 4.10.

Property Units Value
γ W m−2 K−1 1.0 · 106
cp J K−1 3.075 · 103
α m2 s−1 8.13 · 10−8

ρ m−2 2.0 · 103
Pr − 3.075 · 105

Table 4.10: Physical parameters prescribed for the temperature field in the benchmark study [35].

As described in section 3.4.1, these prescribed respectively high and low values for Pr and α
result in the necessity for extremely small grid refinement to ensure the stability condition 3.43. As
described in section 3.4.1, the high Pr results in dominance of convection over diffusion, even in regions
with large gradients in temperature. To assess the effect of the implementation of lower Pr numbers
than prescribed in this simulation, the Pr is varied and the discrepancy from the benchmark codes
is assessed using equation 4.2. Further, the discrepancies along the center-lines are assessed for
different Pr numbers, for equal grids refinement.

Figure 4.11: Temperature field along center-lines AA′ (left) and BB′ (right) for the various benchmark codes and the LBM
simulation in phase 0.3.
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The discrepancy of the with the LBM determined temperature field from the other codes is found for
the horizontal (AA′) and vertical (BB′) center-line as 0.34% and 0.38% respectively.

Figure 4.12: Discrepancy from benchmark codes of the temperature fields along center-lines for different implemented Pr
numbers in phase 0.3.

As can be seen in figure 4.12, the discrepancy of the result compared to the benchmark codes
convergences to a constant value for increasing Pr. Further increasing Pr results in the necessity of
higher grid refinement, increasing numerical effort, while not significantly increasing accuracy.

Figure 4.13: Discrepancy from benchmark codes of the temperature fields at different locations in the core along center-lines
AA′ (left) and BB′ (right) for different implemented Pr numbers in phase 0.3.

Further, the discrepancy across the core was assessed based on the same simulations as for the
results in figure 4.12. Two remarks have to be made. The first is to conclude that indeed the discrepan-
cies from the benchmark codes, that were modelled using Pr = 3.075 · 105, are most significant where
temperature gradients are highest, for instance at the walls. Similarly, when gradients are closest to
zero (e.g. at y = 1.00m), discrepancies approach zero as well. This can be explained by remembering
that lower values for Pr are implemented in the simulations than what was prescribed in the benchmark
by M. Tiberga et al. [35]. As stated in section 3.4.1, when gradients in temperature are high while the Pr
number is low the convection and heat sink terms do not necessarily dominate. In the case with lower
Pr numbers the gradient in temperature, responsible for diffusion, is more significant than it would be
in the high Pr number case. Secondly, it is seen that the discrepancies from the benchmark codes
converge to one line in figure 4.13. Apparently, for a high enough chosen Pr number, the diffusion
effect is overcome even for the highest temperature gradients in this simulation.
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Figure 4.14: Discrepancy from benchmark codes of the temperature field along center-lines for different numbers of grid-point
per dimension in phase 0.3.

Again, to assess the results on grid convergence, the grid is refined and the discrepancy from the
benchmark results is determined using equation 4.2. The results of this convergence study is found
in figure 4.14. The discrepancies converge to approximately constant values, and grid convergence is
assumed to be achieved at 200 grid-points, where the found discrepancies for the horizontal (AA′) and
vertical (BB′) center-line are 0.89% and 0.89% respectively.

4.5. Phase 1.1, Circulating fuel
This phase simulates a cavity with a fixed velocity field as in the first phase with uniform temperature.
This means that the heat generated through fission does not affect the velocity, temperature or neu-
tronics field. In this situation, the effect of convection on the precursor distribution is assessed, which
in turn has an effect on the fission rate in the core. The k-eigenvalue problem is solved using the LB
equations as described in section 3.1.3 and 3.1.4 and the power method as in 3.5. The velocity field
is passively implemented and is not solved throughout the simulation. The fixed velocity field has its
effect in the calculation of the precursor concentrations. The reactor power is normalised at 1GW . The
physical properties as prescribed in the benchmark are displayed in table 4.11. The solving scheme is
found in appendix D.

Property Units Value
T K 900
Dp m2 s−1 1.25 · 10−10

Sc − 2.0 · 108

Table 4.11: Physical parameters prescribed for the precursor fields in the benchmark study [35].

Again, as described in section 3.4.1, these prescribed respectively high and low values for Sc and
Dp result in the necessity for extremely small grid refinement to ensure the stability condition 3.45.
Lower Sc numbers are implemented and the effect of this implementation is discussed later. First, the
NEES and EB schemes are both used and their results are compared for different grid refinements.
This is displayed in figure 4.15
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Figure 4.15: Discrepancy from benchmark codes of the fission rate density for different numbers of grid-points per dimension,
for the EB and NEES boundary schemes in phase 1.1. Implemented Sc number is 100.

The discrepancy from the benchmark results is determined using equation 4.2. As seen, the dis-
crepancy for the NEES boundaries again increases with increasing grid refinement. The EB is more
capable of resembling the vacuum boundary condition and the discrepancy seems to converge to a
constant value. Grid convergence is assumed to be achieved at 200 grid-points for Sc = 100.

As described in section 3.4.1 and similar to the reasoning for the high Pr number, high Sc results
in dominance of convection over diffusion, even in regions with large gradients in mass concentration.
To assess the effect of the implementation of lower Sc in this simulation, the Sc is varied and the
discrepancy from the benchmark codes is assessed for different Sc values using equation 4.2. The
results for NX = 150 and Sc = 400 are shown in figure 4.16, where the discrepancy for the delayed
neutron source over AA′ and BB′ are 1.6% and 1.3% respectively.

Figure 4.16: Delayed neutron source along center-lines AA′ (left) and BB′ (right) for the various benchmark codes and the
LBM simulation in phase 1.1.
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Code keff ρ ρ - ρ0.2 ϵkeff

CNRS-SP1 1.00350021 348.8 −62.5 0.013%
CNRS-SP3 1.00291950 291.1 −62.2 0.011%

PSI 1.00360495 359.2 −62.0 0.013%
PoliMi 1.00349920 348.7 −63.0 0.013%
TUD-S2 1.00422377 420.6 −62.0 0.014%
TUD-S6 1.00520091 517.4 −60.7 0.017%

LBM, Sc = 400 1.00457311 455.2 −65.3 0.015%

Table 4.12: Multiplication factor keff , reactivity ρ and reactivity change from static fuel ρ− ρ0.2 found for the various
benchmark codes and the LBM simulation, together with the discrepancies for the multiplication factors in phase 1.1 [7].

Figure 4.17: Discrepancy from benchmark codes of the precursor source along center-lines for different implemented Sc
numbers in phase 1.1.

As can be seen in figure 4.17, the discrepancy of the LBM result compared to the benchmark codes
convergences to a constant value for increasing Sc. Further increasing Sc results in the necessity of
higher grid refinement, increasing numerical effort, while not significantly increasing accuracy.

Figure 4.18: Discrepancy from benchmark codes of the precursor source at different locations in the core along center-lines
AA′ (left) and BB′ (right) for different implemented Sc numbers in phase 1.1.

Again the discrepancy across the core was assessed. The discrepancies from the benchmark
codes, that were modelled using Sc = 2.0 · 108, are most significant where the concentration gradients
changes are highest, i.e. at the walls. Similarly, when gradients are closest to zero (e.g. at y = 1.00m),
discrepancies go to zero. Again, it is important to remember that lower values for Sc are implemented
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in the simulations than what was prescribed in the benchmark by M. Tiberga et al. [35]. As stated in
section 3.4.1, when concentration gradients in are high while the Sc number is low the convection and
reaction rate terms do not necessarily dominate. In cases with lower Sc numbers the relatively high
concentration gradients impose more significant diffusion effects than it would be in the high Sc number
case. Again, it is also seen that the discrepancies from the benchmark codes converge to one line in
figure 4.18. Apparently, for a high enough chosen Sc number, the diffusion effect is overcome even for
the highest concentration gradients in this simulation.

4.6. Take-aways for the coupling of fields
From these previously described uncoupled simulations, it can be concluded that certain simulation
conditions ensure accurate results. The following intermediate conclusions are drawn:

• For the neutronics simulations, the implementation of equilibrium boundary conditions results in
lower discrepancy from the benchmark code, especially for more grid-points per dimension, than
the implementation of the non-equilibrium extrapolation scheme. Therefore, for the neutronics
field minimum grid-refinement of 200 lattice points per dimension is advised and the equilibrium
boundary conditions should be implemented.

• For all fields, a minimum grid-refinement of 200 lattice points per dimension is advised.
• Pr and Sc numbers of approximately 400 result in a practical balance between accuracy and
numerical costs. Increasing Pr and Sc results in the necessity of increased grid-refinement to
ensure stability.



5
Validation of steady-state coupled

models

The results obtained from the models for steady-state coupling are displayed here. In all cases, the
criticality eigenvalue problem is solved. For the neutronics, the EB condition is used at the boundaries,
due to the found lower discrepancies for this scheme in the previous chapter. In this chapter, we also
include the simulation parameters. This is crucial because the interaction between the fields introduces
multiple stability and accuracy criteria, which may potentially conflict with each other when chosen
incorrectly. In section 5.1 a simulation is performed with power coupling, in which temperature effects
are included in the scaling of neutronics parameters. In section 5.2, a coupled simulation is performed
with power coupling extended with buoyancy effects. In section 5.3, a coupled simulation is performed
with power coupling, buoyancy effects and an external momentum source. In section 5.4 the fields are
discussed on their differences between how fields interact.

5.1. Phase 1.2, Power coupling
In this phase, the temperature feedback on the neutronics is simulated. The fuel temperature is non-
uniform and the fission heat is taken into account. This fission heat affects the neutron diffusion con-
stants and the neutron reaction cross-sections. The flow field is again fixed as in the first phase and
the reactor power is normalised at 1GW . Physical properties for the temperature field are implemented
as displayed in table 4.10. Physical properties for the precursor fields are implemented as displayed
in table 4.11. The implemented scheme can be found in figure 5.1. The stability criteria described
in section 3.4 are taken into account. The chosen combination of grid refinement x∗, Pr, Sc, lattice
viscosity ν∗ and the resulting Ma and t∗ are displayed in table 5.1.

Simulation parameters Value
x∗ 0.01
ν∗ 0.7
Ma 0.24
Pr 200
Sc 200
τ∗f 2.6

τ∗h 0.5105
τ∗c 0.5105

Table 5.1: Implemented simulation parameters in phase 1.2

Note that the simulation is performed with higher Ma than prescribed in equation 3.36. The tem-
perature field and fission rate change compared to phase 0.2 for all codes are found in figures 5.2 and
5.3. It is expected that the higher Ma does not contribute too much to the simulation error, since the
velocity field is in this case not actively solved, but implemented as a static field. The temperature field
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Figure 5.1: Iteration scheme for phase 1.2
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and change in fission rate density (from phase 0.2) along center-lines are displayed in figures 5.2 and
5.3 respectively.

Figure 5.2: Temperature field along center-lines AA′ (left) and BB′ (right) for the various benchmark codes and the LBM
simulation in phase 1.2.

Figure 5.3: Change in fission rate density (compared to uncoupled fission rate density) along center-lines AA′ (left) and BB′

(right) for the various benchmark codes and the LBM simulation in phase 1.2.

The effective multiplication factor keff , the reactivity ρ and the change in reactivity from phase 1.1
ρ1.2 − ρ1.1 for all codes are found in table 5.2.

Code keff ρ ρ− ρ1.1
CNRS-SP1 0.9920320 −803.2 −1152.0
CNRS-SP2 0.9914576 −861.6 −1152.7

PSI 0.9920458 −801.8 −1161.0
PoliMi 0.9920035 −806.1 −1154.8
TUD-S2 0.9928062 −724.6 −1145.2
TUD-S6 0.9939903 −604.6 −1122.0

LBM, Pr = Sc = 200 0.99288174 −716.9 −1172.1

Table 5.2: Multiplication factor keff , reactivity ρ and reactivity change from circulating fuel without temperature feedback
ρ− ρ1.1 found for the various benchmark codes and the LBM simulation in phase 1.2 [7].
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The results are shown for a simulation with 200 grid-points andPr = Sc = 200. The discrepancies
are determined by equation 4.2 and are found in table 5.3. The discrepancies for the LB method are
an order of magnitude larger than the discrepancies of the different codes. This is most likely due to
the use of Pr = Sc = 200, while in the previous chapter it was seen that Pr and Sc convergence are
at Pr = Sc = 400.

Code ϵT,AA′ ϵT,BB′ ϵFRC,AA′ ϵFRC,BB′ ϵkeff

CNRS-SP1 0.080% 0.066% 1.2% 6.8% 0.000013%
CNRS-SP3 0.079% 0.071% 9.7% 8.7% 0.000088%

PSI 0.096% 0.11% 0.99% 2.4% 0.000012%
PoliMi 0.099% 0.10% 1.0% 1.1% 0.000015%
TUD-S2 0.098% 0.10% 1.9% 1.8% 0.000018%
TUD-S6 0.094% 0.098% 1.2% 2.2% 0.000260%

LBM, Pr = Sc = 200 0.32% 0.42% 2.0% 2.1% 0.000025%

Table 5.3: Discrepancies of the different codes for different fields in phase 1.2 [7]

5.2. Phase 1.3, Buoyancy
In this phase, again the temperature feedback on the neutronics is simulated and additionally the tem-
perature and velocity field are coupled through buoyancy. The fuel temperature is non-uniform and
the fission heat affects the neutron diffusion constants and the neutron reaction cross-sections. The
top lid is not moving and the reactor power is again normalised at 1GW . Physical properties for the
fluid field are implemented as displayed in table 4.4. Physical properties for the temperature field are
implemented as displayed in table 4.10. Physical properties for the precursor fields are implemented
as displayed in table 4.11. The implemented scheme can be found in figure 5.4.

The stability criteria described in section 3.4 are taken into account. The chosen combination of
grid refinement x∗, Pr, Sc, lattice viscosity ν∗ and the resulting Ma and τ∗ are displayed in table 5.4.
In this simulation, the low Ma was necessary for the results to be accurate. It is expected that this is
the case since in this simulation the velocity field is actively solved, contrarily to the previous phase.

Simulation parameters Value
x∗ 0.004
ν∗ 0.44
Ma 0.10
Pr 300
Sc 300
τ∗f 1.82

τ∗h 0.5066
τ∗c 0.5066

Table 5.4: Implemented simulation parameters in phase 1.3

The horizontal and vertical velocities along the center-lines are displayed in figures 5.5 and 5.6
respectively. The temperature field and delayed precursor source along center-lines are displayed in
figures 5.7 and 5.8 respectively.



5.2. Phase 1.3, Buoyancy 52

Figure 5.4: Iteration scheme for phase 1.3
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Figure 5.5: Horizontal velocity field along center-lines AA′ (left) and BB′ (right) for the various benchmark codes and the LBM
simulation in phase 1.3.

Figure 5.6: Vertical velocity field along center-lines AA′ (left) and BB′ (right) for the various benchmark codes and the LBM
simulation in phase 1.3.
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Figure 5.7: Temperature field along center-lines AA′ (left) and BB′ (right) for the various benchmark codes and the LBM
simulation in phase 1.3.

Figure 5.8: Delayed neutron source along center-lines AA′ (left) and BB′ (right) for the various benchmark codes and the
LBM simulation in phase 1.3.

The effective multiplication factor keff , the reactivity ρ and the change in reactivity from phase 0.2
ρ1.3 − ρ0.2 for all codes are found in table 5.2.

Code keff ρ ρ1.3 − ρ0.2
CNRS-SP1 0.9919730 −809.2 −1220.5
CNRS-SP3 0.9914045 −867.0 −1220.7

PSI 0.9920064 −805.8 −1227.0
PoliMi 0.9919857 −807.9 −1219.6
TUD-S2 0.9927933 −725.9 −1208.5
TUD-S6 0.9939735 −606.3 −1184.4

LBM, Pr = Sc = 300 0.99278435 −726.8 −1247.4

Table 5.5: Multiplication factor keff , reactivity ρ and reactivity change from the fully uncoupled neutronics solution ρ− ρ0.2
found for the various benchmark codes and the LBM simulation in phase 1.3 [7].

The results are shown for a simulation with 500 grid-points and P = Sc = 300. The discrepancies are
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determined by equation 4.2 and are found in table 5.6. The discrepancies for the effective multiplication
factor are found in table 5.7. The discrepancies for the LB method are an order of magnitude larger
than the discrepancies of the different codes. This is most likely due to the use of Pr = Sc = 300, while
in the previous chapter it was seen that Pr and Sc convergence are at Pr = Sc = 400.

Code ϵux,AA′ ϵuy,AA′ ϵuy,BB′ ϵT,AA′ ϵT,BB′ ϵDNP,AA′ ϵDNP,BB′

CNRS-SP1 0.53% 0.20% 0.14% 0.025% 0.051% 0.12% 1.3%
CNRS-SP3 0.19% 0.10% 0.33% 0.030% 0.044% 0.12% 1.2%

PSI 1.9% 0.46% 0.55% 0.078% 0.089% 5.3% 1.1%
PoliMi 0.53% 0.39% 0.64% 0.085% 0.11% 0.14% 0.92%
TUD-S2 0.78% 0.40% 0.14% 0.056% 0.092% 0.17% 1.2%
TUD-S6 0.23% 0.42% 0.55% 0.071% 0.096% 0.17% 1.5%

LBM, Pr = Sc = 300 5.9% 1.5% 1.5% 0.30% 0.39% 2.4% 2.6%

Table 5.6: Discrepancies of the different codes for different fields in phase 1.3 [7]

Code ϵkeff

CNRS-SP1 0.000015%
CNRS-SP3 0.000092%

PSI 0.000012%
PoliMi 0.000014%
TUD-S2 0.000019%
TUD-S6 0.000266%

LBM, Pr = Sc = 300 0.000019%

Table 5.7: Discrepancies of the different codes for the effective multiplication factor in phase 1.3 [7]

5.3. Phase 1.4, Full coupling
In this phase, the coupling scheme of phase 1.3 is repeated, but with the external momentum source of
themoving top lid at a velocity of 0.5ms−1. The temperature feedback on the neutronics is simulated and
the temperature and velocity field are coupled through buoyancy. The fuel temperature is non-uniform
and the fission heat affects the neutron diffusion constants and the neutron reaction cross-sections.
The reactor power is again normalised at 1GW . Physical properties for the fluid field are implemented
as displayed in table 4.4. Physical properties for the temperature field are implemented as displayed
in table 4.10. Physical properties for the precursor fields are implemented as displayed in table 4.11.
The implemented scheme can be found in figure 5.9.

The stability criteria described in section 3.4 are taken into account. The chosen combination of
grid refinement x∗, Pr, Sc, lattice viscosity ν∗ and the resulting Ma and t∗ are displayed in table 5.8.

The stability criteria described in section 3.4 are taken into account. The chosen combination of
grid refinement x∗, Pr, Sc, lattice viscosity ν∗ and the resulting Ma and τ∗ are displayed in table 5.8.
In this simulation, the low Ma was necessary for the results to be accurate. It is expected that this is
the case since in this simulation the velocity field is actively solved.

Simulation parameters Value
x∗ 0.004
ν∗ 0.35
Ma 0.048
Pr 100
Sc 100
τ∗f 1.55

τ∗h 0.5105
τ∗c 0.5105

Table 5.8: Implemented simulation parameters in phase 1.4



5.3. Phase 1.4, Full coupling 56

Figure 5.9: Iteration scheme for phase 1.4
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The horizontal and vertical velocities along the center-lines are displayed in figures 5.10 and 5.11
respectively. The temperature field, delayed precursor source and fission rate density along center-
lines are displayed in figures 5.12 and 5.13 respectively. Note that the profiles are not compared
against the other codes due to a lack of available data.

Figure 5.10: Horizontal velocity field along center-lines AA′ (left) and BB′ (right) in phase 1.4.

Figure 5.11: Vertical velocity field along center-lines AA′ (left) and BB′ (right) in phase 1.4.
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Figure 5.12: Temperature field along center-lines AA′ (left) and BB′ (right) in phase 1.4.

Figure 5.13: Delayed neutron source along center-lines AA′ (left) and BB′ (right) in phase 1.4.

The effective multiplication factor keff , the reactivity ρ and the change in reactivity from phase 0.2
ρ1.4 − ρ0.2 for all codes are found in table 5.2.

Code keff ρ ρ1.4 − ρ0.2 ϵkeff

CNRS-SP1 0.9921275 −793, 5 −1204.8 0.000015%
CNRS-SP1 0.9915569 −851, 5 −1205.2 0.000092%

PSI 0.9921344 −792, 8 −1214.0 0.000014%
PoliMi 0.9921806 −788, 1 −1199.8 0.000011%
TUD-S2 0.9929461 −710, 4 −1193.0 0.000019%
TUD-S6 0.99411879 −591, 6 −1169.7 0.000263%

LBM, Pr = Sc = 100 0.99316295 −688.4 −1085.3 0.000043%

Table 5.9: Multiplication factor keff , reactivity ρ, reactivity change from the fully uncoupled neutronics solution ρ− ρ0.2, found
for the various benchmark codes and the LBM simulation in phase 1.4 [7].
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5.4. Comparing the differences between phases
After we have validated the gradually coupled tools, it is interesting to assess what physics is respon-
sible for the differences between the results of the different fields. The different velocity profiles are
analysed first, after which the temperature profiles are looked at. Finally, concentration profiles of two
precursor families are compared. The reader is referred to the benchmark by M. Tiberga et al. [35] for
the obtained fields by the benchmark codes.

5.4.1. Velocity field
A comparison is made between velocity fields that are differently induced. In phase 0.1, the velocity
field was driven by a moving top lid. In phase 1.3, the velocity was induced by buoyancy effects from
rising temperatures due to fission. In phase 1.4, the velocity was both induced by a moving top lid and
buoyancy effects.

Figure 5.14: Magnitude of the velocity field obtained by LBM simulations for three differently coupled phases.

As can be seen by comparing the different velocity fields found in the different phases of coupling,
the velocity field changes when different fields interact. In the left graph of figure 5.14, the uncoupled
velocity field is displayed, with the moving lid as a momentum source. The lid is moving to the right
with a speed of 0.5ms−1, and it is seen that indeed at the top this maximum speed is achieved. The
fluid moves clockwise along with the top lid moving right.

In the middle graph of figure 5.14, no external source of momentum is present. The temperature
field affects the velocity field through buoyancy effects. Fission heat adds energy tot the fluid resulting in
a density difference in the fluid. This density difference imposes a pressure gradient that results in fluid
motion. Hot and low density fluid ascends, while cold and high density fluid descents. At the cavity
center fission rates peak and temperatures are increased most. Consequently, fluid in that location
ascends, to cool down at the top and move left and right towards the boundaries to flow down again.
The result is two vertical convection cells with opposite flow direction, the left moving counter-clockwise
and the right moving clockwise.

The right graph of figure 5.14 displays a situation where both buoyancy and movement of the top
wall affect the velocity field. One still sees two convection cells, but the displacement of the top wall
introduces a significant effect, causing a notable velocity shift at the top towards the right.

5.4.2. Temperature field
A comparison is made between temperature fields that are differently affected by the other fields. In
phase 0.3, temperature rises due to fission heat, and the velocity field is static as in phase 0.1. Flow
affects the temperature distribution through convection. In phase 1.3, temperature again rises due to
fission energy and additionally the velocity and temperature field are coupled through buoyancy effects.
In phase 1.4, the coupling is the same as in phase 1.3, but with the velocity field driven by both buoyancy
effects and the moving top lid.
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Figure 5.15: Temperature field obtained by LBM simulations for three differently coupled phases.

The left graph of figure 5.15 displays the temperature field in a situation where heat is generated
from fission which as stated before peaks at the center of the cavity. A source of momentum is again
imposed at the top wall. One can recognise the high temperatures at the center being spread by
convection, resulting in an asymmetric temperature profile. In this left situation, the temperature does
not in turn affect the fluid flow.

The middle graph of figure 5.15 displays the temperature field in the situation where heat again
is generated from fission, but the flow filed is not imposed by a momentum source at the top but by
buoyancy effects. As previously described, hot fluid ascends, while cold fluid descends resulting in the
higher temperatures at the top. Due to the absence of a momentum source at the top, the temperature
field is symmetric.

The right graph of figure 5.15 is the result of a temperature field with both buoyancy effects and
the external momentum source of the moving top lid. Comparing the temperature field with the velocity
field, one sees that the larger convection cell on the right falls together with the high temperature region
suggesting that the fluid in that region is less prone to mixing with the rest of the fluid. Further, hot low-
density fuel is transported upwards, resulting in higher temperatures at the top.

5.4.3. Precursor concentration fields
A comparison is made between the effect of the velocity field in different phases on the precursor
concentrations throughout the core. Two precursor families are assessed. The half-lives of family 1
and 5 are given as 55.6 seconds and 2.37 seconds respectively. The comparison of these two energy
groups is chosen to analyse the effect of their different half-lives.
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Figure 5.16: Concentration of the first family of precursors (T1/2 = 55.6s) obtained by LBM simulations for three differently
coupled phases.

The result of this difference is clearly seen in the concentration profiles. For all situations, the con-
centration profiles of family 1 have much more time to shape itself into the velocity profile as described
above since the lifetime of the precursors is much larger. For family 5 on the other hand, the precursors
have already decayed before the full convection profile is mimicked.

Figure 5.17: Concentration of the fifth family of precursors (T1/2 = 2.37s) obtained by LBM simulations for three differently
coupled phases.



6
Validation of transient coupled

models

In this section, results are displayed for the simulation of transient reactor behaviour making use of
the integration of the predictor reactor quasi-static method and the lattice Boltzmann method. Three
primary initiators of transient behavior can be identified in MSFRs: reactivity insertions, variations in
primary pump operations, and alterations in heat exchanger cooling capabilities [11]. In this research
reactivity insertions are used to initiate transient behaviour. In the benchmark by M. Tiberga et al. [35]
the perturbation in the system is imposed on the heat transfer coefficient that ultimately affects the
reactivity of the core. In this chapter, first a simpler perturbed system is simulated using a perturbation
directly in the reactivity and the results are displayed in section 6.1. This initial simpler simulation
is performed is to assess the capability of the integration of PCQSM and LBM, without the solution
being affected by computational errors in the PK equations. After, a situation is modelled where the
perturbation is imposed in the heat transfer coefficient, of which the results are shown in section 6.2.

6.1. Transient model with perturbed reactivity
First the tool’s capability of handling the integration of LBM with PCQSM is tested, without determining
the PK parameters. Instead, a transient situation is assessed where a periodically changing reactivity
affects the reactor power. Starting from the critical situation of phase 1.4, a reactivity is inserted. The
reactivity as a function of time is given by:

ρ = ρmaxsin(2πft) . (6.1)

It is assessed how the reactor power is affected by the changing reactivity.

Simulation parameters Units Value
ρmax - 0.001
Λ s 2.9 · 10−5 s
f Hz 2.0

Table 6.1: Point kinetics parameters

The results are shown in figure 6.1.
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Figure 6.1: Transient results for sinusoidal perturbation of 2.0 Hz in reactivity for the first 2.5 s after the initial perturbation.

As can be seen, the amplitude function and reactor power are affected by the reactivity instanta-
neously. A prompt jump is observed in the reactor power and amplitude function at the beginning of the
simulation, after which the simulation follows the sinusoidal shape of the reactivity. From this simulation
it can be concluded that the integration of PCQSM with the LBM was successful and can be expanded
with integrating the time-varying PK parameter ρ and Λ.

6.2. Transient model with perturbed heat transfer coefficient
In line with the benchmark by M. Tiberga et al. [35], the transient reactor behaviour is analysed by
perturbing the volumetric heat transfer coefficient γ. Starting from the critical situation of phase 1.4, the
volumetric heat transfer coefficient is perturbed. The change in γ results in a change in the heat sink
as in equation 4.3. Higher γ means that the reactor loses heat more efficiently, while lower γ means
that the reactor loses heat less efficiently. The perturbation of γ is uniform throughout the reactor
and changes with time according to a sine wave of amplitude 10%. The heat transfer coefficient as a
function of time is given as

γ = γinitial + 0.1 · γ · sin(2πft) . (6.2)

The frequency is varied, and for each frequency the gain and phase shift is observed. When γ is lower,
less heat is removed, and the reactor core’s temperature will rise. Conversely, when γ is higher, more
heat is removed, and the core’s temperature will decrease. The temperature gradient within the reactor
will change, impacting the flow and behavior of the molten salt. Changes in the temperature profile of
the reactor core will affect neutron moderation and absorption. Higher temperatures typically mean
less dense fuel and moderator, leading to a lower likelihood of neutron absorption. As the temper-
ature increases, the reactor may become less reactive, leading to a decrease in neutron production.
Conversely, a decrease in temperature increases the reactivity. The gain is defined according to the
benchmark by M. Tiberga et al. [35] as

Gain =
(Pmax − Pavg)/Pavg

(γmax − γavg)/γavg
. (6.3)

The simulation parameters are found in table 6.2.
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Simulation parameters Units Value
x∗ [−] 0.04
ν∗ [−] 0.02
Ma [−] 0.014
Pr [−] 10
Sc [−] 10
βtot [−] 0.006882528
∆tB s 1.28 · 10−3

∆tM s 1.28 · 10−4

∆tS s 1.28 · 10−6

τ∗f [−] 0.54

τ∗h [−] 0.504
τ∗c [−] 0.504

Table 6.2: Simulation parameters for transient simulation

In this phase, the mean generation time Λ and the reactivity ρ are determined at each time-step
based on the neutron fluxes and neutronic parameters at that time-step through equations 2.34 and
2.37. It is noted that in this simulation βtot and βd are considered constant throughout the simula-
tion. Neutronic parameters are affected by the temperature in the core using equations 2.48 and 2.49.
Results for the gain and phase shift for the different frequencies can be found in figure 6.2.

Figure 6.2: Gain and phase-shift as a function of perturbation frequency in the heat transfer coefficient.

The observed parameters from in interval t = [35 s, 40 s] are displayed in figure 6.3 for a frequency
of 0.8Hz. In that interval, the results are considered to have converged. The results for the other
frequencies can be found in appendix E. It can be seen that the implemented perturbation in γ, seen
in the bottom graph, does not instantly result in changes in the other parameters. When looking at the
graphs along the red vertical line in figure 6.3, the delay in reactivity change and power change are
clearly visible.

The entire domain of simulation is shown in figure 6.4, for a frequency of 0.8Hz. When looking at
the initial response to the perturbation, a rapid initial rise in amplitude function and reactor power is
observed. It is expected that this is not caused by the initial perturbation but rather by the high initial
reactivity, that is in the order of magnitude of 2β. This is considered an extremely high reactivity, and the
initial reactivity calculation might include numerical errors. This rapid rise in power is counterbalanced
by temperature feedback mechanisms that reduce fission cross-sections and thus fission rates, as can
be seen by the rapid drop in reactivity and reactor power. After, the reactivity seems to asymptotically
go to fluctuate around a more physical value.

Overall, the gain observed by the LBM tool developed in this research project is observed higher
than the gain observed in the TUD − S6 benchmark model. Further, the phase shift observed by the
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LBM tool is less negative than the phase shift observed in the TUD−S6 benchmark model. A possible
way to explain these discrepancies is the different Pr number implemented in the LBM tool.

The Pr number might play a role in the fluid’s responsiveness. Fluids with lower Pr numbers
might demonstrate a more rapid response to temperature changes, because heat diffuses more quickly
through the fluid, leading to a more uniform temperature distribution and a prompter adjustment to ther-
mal variations. Consequently, in lower Pr number fluids, temperature gradients might adjust more
swiftly in response to the reactor’s thermal fluctuations, enhancing the reactor’s overall thermal regu-
lation. Conversely, fluids with higher Pr numbers exhibit slower thermal response due to the lower
thermal diffusivity relative to momentum diffusivity. In such fluids, heat transfer within the convection
cells is less efficient, resulting in more pronounced temperature gradients. The slower diffusion of heat
means that temperature changes in the reactor core might take longer to propagate through the fluid,
potentially leading to less effective thermal regulation. To affirm the validity of this statement, it is essen-
tial to simulate the transient response of reactors with varying Pr and, more importantly, to compare
the alterations in their temperature profiles. This comparison is critical as the evolving temperature
profiles fundamentally underlie the source of reactivity changes in the reactors and thus the reactor’s
response to the perturbation.

Deviations can also come from numerical errors in determining the PK parameters that may lead
to deviations. These errors can arise from approximations in numerical methods or inaccuracies in
computational algorithms. Additionally, the assumption that βd and βtot, representing the fraction of
delayed neutrons in family d and the total fraction of the families combined respectively, is constant
with time can lead to deviations. In real reactor systems, these parameters might vary due to changes
in fuel composition. Lastly, using a small number of lattice nodes in the computational models might
also contribute to deviations.
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Figure 6.3: Transient results for perturbation of 0.8 Hz from 35 seconds to 40 seconds
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Figure 6.4: Transient results for perturbation of 0.8 Hz from 0 seconds to 10 seconds



7
Conclusion

This research has been directed towards developing tools that can simulate the interaction between
thermal-hydraulics and neutronics within MSFRs, a key factor in understanding and predicting their
operational behavior. The aim was to develop and validate a tool capable of accurately simulating
the interactions between thermal-hydraulic processes and neutron behavior in MSFRs using LBM. For
this purpose, the coupling was gradually increased. The capability of simulating the fields and their
interactions was assessed using a leading numerical benchmark study by M. Tiberga et al. [35] that
compares coupling capabilities of codes using several different numerical methods. Additionally, some
simpler benchmarks were used for validation in the uncoupled neutronics phase.

7.1. Steady-state models
All fields in this research are solved in two-dimensional space using the lattice Boltzmann method
with the BGK operator. A multiple distribution function approach is implemented, assigning separate
distribution functions to different fields. For the velocity simulation, Dirichlet boundary conditions are
numerically implemented using the half-way bounce back boundary condition. The results for the un-
coupled velocity field is validated by a lid-driven cavity benchmark case, with left bottom and right walls
resting and the top wall moving with 0.5ms−1 [35]. Grid convergence is tested and it is concluded that
grid convergence is achieved at 200 grid points per dimension.

For the neutronics simulation, the LBM is used to solve the NDE. The equilibrium boundary condition
is used for simulating the vacuum boundaries. For the precursor concentration field, the LBM is used
to solve the advection-diffusion equation. Von Neumann boundary conditions are implemented as
free-slip boundary conditions. The power method was used to solve the eigenvalue problem for the
multiplication factor keff , and the scalar neutron energy group fluxes ϕg. The uncoupled neutronics
simulation is tested against several benchmarks, both analytical and numerical.

First the neutronics model was validated against a two-group analytical solution for a homogeneous
square reactor core for four different core compositions. Subsequently, the neutronics model was vali-
dated against the TWIGL benchmark, a two-group benchmark that also includes one precursor family
inside a heterogeneous core [12, 30, 48]. Since diffusion effects were neglected in the benchmark, the
collision operator in the LBM for the precursors was omitted. Finally, the uncoupled neutronics model
was validated against the six-group and eight-family benchmark [35]. Again, since diffusion effects
were neglected in this benchmark phase, the collision operator in the LBM for the precursors was omit-
ted. In this latter, most complex uncoupled benchmark study the effect of implementation of different
boundary conditions for the neutronics was assessed. Both the equilibrium boundary condition and
the non-equilibrium extrapolation scheme are used for different grid refinements. The discrepancy in-
creases with number of grid points per dimension for the NEES scheme, while it decreases for the EB
scheme. It was concluded that the EB scheme is more appropriate for simulating vacuum boundary
conditions. Further, it was concluded that the lattice Boltzmann method in combination with the power
method can accurately solve the neutronics eigenvalue problem without coupling to thermal-hydraulics.

For the temperature field, the LBM is used to solve the advection-diffusion equation. Von Neumann
boundary conditions were implemented as free-slip boundary conditions. Due to the difficulty of imple-
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menting high Pr numbers in the LBM, lower Pr numbers are implemented and the effect on accuracy
is assessed. Deviations from benchmark codes are highest in regions with highest temperature gra-
dients. At high Pr numbers, increasing Pr further does not significantly lead to increased accuracy.
However, increasing Pr does lead to the necessity of using a high number of grid points per dimen-
sion, increasing numerical cost. Thus, increasing Pr numbers does not increase accuracy significantly,
while rapidly increasing numerical cost.

For the coupled neutronics simulations that include the effect of non-static fuel on the neutronics and
precursor fields, the diffusion and convection of precursors plays a role, and the collision operator for
the precursors can not be omitted. Due to the difficulty of implementing high Sc numbers in the LBM,
lower Sc numbers are implemented and the effect on accuracy is assessed. In a similar reasoning
as for the implementation of lower Pr numbers, increasing Sc numbers does not increase accuracy
significantly, while rapidly increasing numerical cost. Again, the NEES and EB boundary conditions
were implemented and compared on their capabilities. Again, the discrepancy increases with number
of grid points per dimension for the NEES scheme, while it decreases for the EB scheme. It was
concluded that the EB scheme is more appropriate for simulating vacuum boundary conditions and
this scheme was used in the next coupled phases.

For both the simulations for power coupling, i.e. with and without buoyancy effects, the LBM in
combination with the power method are capable of accurately simulating the physics in the reactor core,
even when implementing lower Sc and Pr than prescribed. As expected from the previous results,
deviations are mostly seen at boundaries, where gradients of the precursor and temperature fields
are highest. It should be noted that for both simulations the results of the integrated LBM tool does
not outperform the other codes for all the fields observed. However, it should also be noted that the
integrated LBM tool can still be improved when implementing the prescribed Pr and Sc numbers but this
goes at the expense of numerical costs. The steady-state coupled model developed in this research
project using the LBM proves to be efficient in modelling the complex physics in MSFRs.

7.2. Transient models
To simulate the transient behaviour in a nuclear reactor core the multi-physics LBM is integrated with
the PCQSM. In the PCQSM the steady-state multi-physics LBM is used to solve for the neutron flux
shape functions and the Euler method is used to solve for the neutron and delayed precursor amplitude
functions. Each time-step, the PCQSM outputs the neutron fluxes after which the precursor concentra-
tions are determined based on these found fluxes using the LBM. Subsequently, the LBM is used to
determine the temperature and momentum fields at the time-step, before repeating the process for the
next time-step. In the PCQSM, interpolated neutron shape functions are used to determine the point
kinetics parameters ρ and Λ.

The transient model that integrates the PCQSM and the LBM is validated against the transient
coupled results from the benchmark by M. Tiberga et al. [35]. Although most simulation conditions are
similar, a much lower Pr and Sc are implemented to mitigate numerical costs. Further, numerical issues
arise in the determination of the initial reactivity, resulting in a steep initial peak in reactivity and thus
in reactor power. Nevertheless, the developed tool delivers promising results, accurately capturing the
trends in gain and phase shift across varying perturbation frequencies. This achievement underscores
its potential, although there remains scope for further refinement in its numerical implementation to
enhance its performance.

The transient model represents a pioneering and successful integration of the PCQSM and the LBM
for perturbations in coupled reactor simulations, marking a notable first in this field of study.

7.3. Recommendations
• The LBM is highly parallelizable, making it well-suited for implementation on Graphics Processing
Units (GPUs). Future research could leverage this advantage to simulate flows with higherPr and
Sc numbers more efficiently. GPU acceleration has the potential to significantly reduce computa-
tion time, allowing for more realistic simulations. This could lead to more accurate simulations of
thermal and mass transfer processes.

• Although the tool developed in this research already incorporates the complex coupling of physi-
cal fields, it does not account for all phenomena observed in reality, such as turbulence, Doppler
effects, phase transitions and heat radiation. The Lattice Boltzmann method is capable of mod-
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eling turbulence, phase transitions and radiation, but their integration into the current framework
has not yet been applied. Future developments could focus on integrating additional physical
phenomena into the LBM framework. This would enhance the realism and applicability of the
simulations.

• The current approach uses the power method to solve the eigenvalue problem, which may not
always be the fastest. Alternative iterative schemes, such as the Chebyshev method, could po-
tentially offer faster convergence. Research could be directed towards comparing different itera-
tive schemes against the in this framework used power method for solving eigenvalue problems.
This comparative analysis could lead to more efficient algorithms, potentially reducing computa-
tion times for large-scale simulations. Additionally, it is important to dedicate research efforts to
exploring the feasibility and effectiveness of integrating the alternative iterative methods (e.g. the
Chebyshev method) with the LBM.

• The current research is focused on two-dimensional simulations. Extending this to three dimen-
sions can significantly enhance the realism and applicability of the simulations.

• The current simulation is less effective in regions where temperature and concentration gradients
are high. Implementing adaptive grid refinement in LBM simulations particularly in regions ex-
hibiting high temperature or concentration gradients is useful in capturing the nuances of heat
transfer and fluid flow. The technique involves dynamically adjusting the grid resolution based on
the local thermal or concentration characteristics of the fluid.

• Further research is suggested to investigate the role of the Pr in determining the thermal re-
sponse of fluids in nuclear reactors. The relevance of this research lies in its potential to enhance
understanding of how different Pr fluids affect reactor thermal regulation. Observations of more
rapid temperature gradient adjustments in low Pr fluids, versus slower thermal responses in high
Pr fluids, could significantly impact simulation results.

• Further research is recommended to improve the numerical method used in determining the PK
parameters used in the PCQSM. The current approach treats βd and βtot as constants over time.
However, employing the PCQSM suggests that these parameters should be dynamically solved
at certain medium time-steps throughout the simulation. Adopting this methodology could lead to
enhanced accuracy in the simulation results. Further, a deeper assessment of the determination
of the initial reactivity ρ is suggested, as the current method seems to show numerical inaccuracies
in its calculation. It is important to investigate the sources of these inaccuracies to improve the
model’s reliability.
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Figure A.1: Iteration scheme for phase 0.2
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Figure A.2: Iteration scheme for phase 1.1



B
Neutronics and precursor data

The data in this appendix is used in the simulations with 6 neutron energy groups and 8 precursor
families, and is retrieved from the benchmark by Tiberga et al. [35].

B.1. Neutronics data

Group, g Σf,g [m−1] Σt,g [m−1] Dg [m] vg [m/s]

1 0.111309 16.5512 0.0280064 2.49771 · 107
2 0.108682 21.7253 0.0184021 1.35163 · 107
3 0.152219 31.8009 0.011311 3.82047 · 106
4 0.25819 24.2093 0.0144786 1.49417 · 106
5 0.536326 25.0351 0.013975 6.41663 · 105
6 1.44917 27.2079 0.0128252 2.35592 · 104

Table B.1: Fission cross-sections, total (removal) cross-sections, diffusion constants and velocities for the 6 neutron energy
groups as retrieved from Tiberga et al. [35].

Σs,g′→g

[m−1]
g g′ 1 2 3 4 5 6

1 1.08476 · 101 0 0 0 0 0
2 5.23318 · 100 1.83666 · 101 0 0 0 0
3 4.01805 · 10−1 3.19138 · 100 2.98293 · 101 0 0 0
4 1.09869 · 10−2 2.34218 · 10−3 1.6347 · 100 2.17472 · 101 0 0
5 2.5329 · 10−3 2.25259 · 10−4 1.70575 · 10−3 1.90243 · 100 2.27173 · 101 0
6 3.78334 · 10−4 2.00405 · 10−5 1.24625 · 10−4 1.36858 · 10−6 1.05885 · 100 2.37826 · 101

Table B.2: P0 scattering cross-sections for the 6 neutron energy groups as originating group and destination group as retrieved
from Tiberga et al. [35].

Group, g νtot,g [−] χp
g [−] χd

g [−] Efiss [J ]

1 2.85517 0.353812 0.00430325 3.240722 · 1011
2 2.54532 0.523642 0.387734 3.240722 · 1011
3 2.43328 0.121033 0.581848 3.240722 · 1011
4 2.43127 0.00135457 0.0227947 3.240722 · 1011
5 2.4333 0.000151226 0.0028913 3.240722 · 1011
6 2.4333 7.37236e− 06 0.000428935 3.240722 · 1011

Table B.3: Average number of neutrons emitted per fission event, prompt neutron spectrum, delayed neutron spectrum and
average energy emitted per fission event for the 6 neutron energy groups as retrieved from Tiberga et al. [35].
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B.2. Precursor parameters

Family, d λd [s−1] βd [−]

1 0.0124667 0.000233102
2 0.0282917 0.00103262
3 0.0425244 0.000681878
4 0.133042 0.00137726
5 0.292467 0.00214493
6 0.666488 0.000640917
7 1.63478 0.000605805
8 3.5546 0.000166016

Table B.4: Decay constant and delayed neutron fraction for the 8 delayed precursor families as retrieved from Tiberga et al.
[35].



C
Derivation of non-dimensional

governing equations for
concentration and temperature

C.1. Non-dimensional heat equation
One defines the dimensionless quantities

x̃ =
x

L
ỹ =

y

L
T̃ =

T

T0
ũ =

u

v
, (C.1)

with L the characteristic length, T0 the characteristic temperature and v the characteristic magnitude
of velocity. The dimensionless nabla-operator is defined as

∇̃ =

[ ∂
∂x̃
∂
∂ỹ

]
. (C.2)

The relevant non-dimensional numbers are

Re =
vL

ν
& Pr =

ν

α
& Nu =

γL2

λ
. (C.3)

Starting from the steady-state heat equation without the fission heat source,

u · ∇T = −α∇2T + γ(Text − T ) , (C.4)

substituting the dimensionless quantities and operator above results in
ρcpvT0

L
[ũ · ∇̃T̃ ] = −λT0

L2
∇̃2T̃ + γT0(1− T̃ ) . (C.5)

Multiplying with L2, dividing by ν and T0 and substituting α = λ
ρcp

results in

vL

ν
[ũ · ∇̃T̃ ] = −α

ν
∇̃2T̃ +

α

ν

γL2

λ
(1− T̃ ) . (C.6)

Recognising the non-dimensional numbers Re, Pr and Nu and after some rewriting one obtains

PrRe[ũ · ∇̃T̃ ] = −∇̃2T̃ +Nu(1− T̃ ) . (C.7)

The Nu number is measure for the ratio between convective and conductive heat transfer. In the case
of free convection in laminar flow conditions it is a function of the Grashof number Gr and the Prandtl
number Pr in the form of

Nu = K(GrPr)1/4 (C.8)
with K a constant, in literature given as 0.52 [1] for 104 < GrPr < 108 resulting in

PrRe[ũ · ∇̃T̃ ] = −∇̃2T̃ +K(GrPr)1/4(1− T̃ ) . (C.9)
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C.2. Non-dimensional concentration advection-diffusion equation
One defines the dimensionless quantities

x̃ =
x

L
ỹ =

y

L
C̃ =

C

C0
ũ =

u

v
, (C.10)

with L the characteristic length, C0 the characteristic concnetration and v the characteristic magnitude
of velocity. The dimensionless nabla-operator is defined as

∇̃ =

[ ∂
∂x̃
∂
∂ỹ

]
. (C.11)

The relevant non-dimensional numbers are

Re =
vL

ν
& Sc =

Dp

α
& Da =

λdL
2

Dp
. (C.12)

Starting from the steady-state precursor concentration equation without the fission source,

∇ · (uCd) = ∇ · (Dp∇Cd)− λdCd . (C.13)

substituting the dimensionless quantities and operator above results in

vC0

L
[ũ · ∇̃C̃] =

DpC0

L2
∇̃2C̃ − λdC0C̃ . (C.14)

Multiplying with L2 and dividing by ν and C0 results in

vL

ν
[ũ · ∇̃C̃] =

Dp

ν
∇̃2C̃ − Dp

ν

λdL
2

Dp
C̃ . (C.15)

Recognising the non-dimensional numbers Re, Pr and Da and after some rewriting one obtains

ScRe[ũ · ∇̃C̃] = ∇̃2C̃ −DaC̃ . (C.16)

The Da number is used in reaction engineering to relate the timescale of reactions to the timescale of
transport processes, in this case the timescale of diffusion. It is defined as the ratio of the characteristic
time of reaction to the characteristic time of transport.



D
Results for uncoupled neutronics

simulations of chapter 4

D.1. Results for the neutron fluxes in a homogeneous solid fuel re-
actor core

Figure D.1: Analytical and LBM solution for two-energy group simulation in homogeneous square cavity with bare boundaries
for material zone 2.
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Figure D.2: Analytical and LBM solution for two-energy group simulation in homogeneous square cavity with bare boundaries
for material zone 3.

Figure D.3: Analytical and LBM solution for two-energy group simulation in homogeneous square cavity with bare boundaries
for material zone 4.

D.2. Results for the benchmark flux field in the TWIGL reactor
These results are obtained from [30]
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E
Results for the fully coupled transient

simulations

E.1. Results for the transient simulations in first 3 seconds after
perturbation

In this section the results for the transient situation are displayed in the first 3 seconds after the initiation
of the heat transfer coefficient perturbation.
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Figure E.2: Transient results for perturbed heat coefficient with f = 0.4Hz, for first 3 seconds after initial perturbation
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Figure E.1: Transient results for perturbed heat coefficient with f = 0.8Hz, for first 3 seconds after initial perturbation
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Figure E.3: Transient results for perturbed heat coefficient with f = 0.2Hz, for first 3 seconds after initial perturbation
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Figure E.4: Transient results for perturbed heat coefficient with f = 0.1Hz, for first 3 seconds after initial perturbation
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Figure E.5: Transient results for perturbed heat coefficient with f = 0.05Hz, for first 3 seconds after initial perturbation
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Figure E.6: Transient results for perturbed heat coefficient with f = 0.025Hz, for first 3 seconds after initial perturbation
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E.2. Results of transient simulations displaying outcomes after power
jump stabilization period

In this section the results for the transient situation are displayed after the results have converged. If
the simulation terminated before convergence the last time interval with at least one period is displayed.
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Figure E.7: Transient results for perturbed heat coefficient with f = 0.8Hz, for time-interval t = [15s, 40s] after initial
perturbation.
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Figure E.8: Transient results for perturbed heat coefficient with f = 0.4Hz, for time-interval t = [15s, 40s] after initial
perturbation.
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Figure E.9: Transient results for perturbed heat coefficient with f = 0.2Hz, for time-interval t = [15s, 40s] after initial
perturbation.
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Figure E.10: Transient results for perturbed heat coefficient with f = 0.2Hz, for time-interval t = [15s, 40s] after initial
perturbation.
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Figure E.11: Transient results for perturbed heat coefficient with f = 0.1Hz, for time-interval t = [15s, 40s] after initial
perturbation.
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Figure E.12: Transient results for perturbed heat coefficient with f = 0.05Hz, for time-interval t = [15s, 40s] after initial
perturbation.
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Figure E.13: Transient results for perturbed heat coefficient with f = 0.025Hz, for time-interval t = [15s, 60s] after initial
perturbation.



F
Wall-clock times and memory storage

F.1. Wall-clock times for selected simulations
In this chapter, the wall-clock times for three simulation types are represented. These three are chosen
as they represent the 3 different simulation types that were performed in this research: an uncoupled
steady-state simulation (phase 1.1), a fully coupled steady-state simulation and a fully coupled transient
simulation.

Phase Description of conditions Wall-clock time [hrs]

1.1 Simulation of phase 1.1 for 200x200 lat-
tice nodes 42

1.1 Simulation of phase 1.1 for 150x150 lat-
tice nodes 25

1.1 Simulation of phase 1.1 for 100x100 lat-
tice nodes 12

1.1 Simulation of phase 1.1 for 50x50 lat-
tice nodes 3

1.3 Simulation of phase 1.1 for 300x300 lat-
tice nodes 65

2.1

Simulation of response to periodic per-
turbation for first 100,000 time-steps af-
ter first perturbation for 50x50 lattice
nodes

23

Table F.1: Wall-clock times for selected simulations

F.2. Memory usage per node in simulations
The memory usage for each node is calculated by evaluating the size of the arrays maintained at that
node. Since the array elements are float64 values, the total memory requirement is determined by
multiplying the count of stored parameters per node by 64 bits.
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Phase Memory usage [bits / node]
0.1 1472
0.2 14592
0.3 1408
1.1 16256
1.2 16384
1.3 18752
1.4 18752
2.1 19072

Table F.2: Memory usage per node for selected simulations
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