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Abstract

The energy transition requires a mesmerizing amount of technological innovation
to replace all usage of fossil fuels. One possible contendor to these solutions is the
Molten Salt Reactor. It differentiates itself from the conventional Light Water Re-
actors by its heightened safety profile, lower waste volume with a shorter lifetime
and capability to generate high temperatures which could be used in industrial
applications that currently directly operate on fossil fuels.

This thesis aims to further improve modeling techniques for melting and solidifica-
tion processes in flow. To this end, a double distribution Lattice Boltzmann model
is used where one distribution is employed for the density and one for the enthalpy.
In addition, the Filter Matrix method is used for the collision calculations. Lastly,
adaptive mesh refinement is implemented to investigate the effect on accuracy and
computational time.

The objectives of this thesis were: finding a computationally cheap method to
implement the latent heat of melting into the filter matrix scheme, Saving com-
putational time in simulations for the Stefan Problem and finding criteria for
refinement in a convection melting problem for a rectangular cavity of gallium.

The latent heat was successfully implemented in the Filter Matrix scheme by split-
ting the total enthalpy in a sensible and latent heat part and only applying the
collision to the sensible heat. This was verified by the simulations for the Stefan
Problem and convection melting. Using the adaptive mesh refinement method the
melting front in the Stefan Problem was tracked and refined. This led to a reduc-
tion in computational time of ∼ 3.6 and ∼ 9.9 for one and two levels of refinement.

Furthermore were two criteria for adaptive mesh refinement investigated for air
convection in a square cavity: the absolute velocity and vorticity. neither led to
converging solutions. The main take away is that the temperature and velocity
gradients are not continuous at the interface between the coarse and fine grid.

This research was finalized by investigating the effect of different criteria for refine-
ment on the cavity melting case of gallium. The melting front using the velocity
matched poorly with the front of the purely fine grid. In contrast, using the vor-
ticity and shear rate actually gave very similar results to the fine grid. Using
the refinement led to a reduction of computational time of about 3-4 times with
respect to the purely fine grid.
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1 Introduction

This section will cover the scope of the research, starting with some background
on nuclear energy: the use case, historic developments and new generation of
reactors, with special attention to the molten salt reactor. This thesis aims to
improve modeling on the melting and solidification processes in the presence of
flow in contribution to the further development of modeling the salt in the molten
salt reactor. Particular subjects of interests that require such models are e.g. the
start-up/shut-down procedure and the freeze plug [44], which sits at the bottom
of the first containment vessel and melts upon overheating causing the fuel to a
flow down to non-moderated emergency dump tank.

1.1 The Need for Nuclear Energy

Nuclear energy production is considered to be a necessity in reducing carbon diox-
ide, CO2, emissions. The Intergovernmental Panel on Climate Change, IPCC,
argues that plausible scenarios for limiting warming to a maximum of 1.5 degrees
depend on electrification of energy end use [39]. This means that current applica-
tions of fossil fuels should be replaced by electric alternatives. For instance, electric
vehicles replacing conventional vehicles powered by internal combustion engines.
This will, however, lead to an increased demand for electricity. Currently, the
global demand compromises nearly 20% of total energy consumption and is ex-
pected to grow to 40-60% [6]. The IPCC elaborates that the potential growth
in renewable energy production is too slow to meet the demand for low carbon
energy sources. To meet this demand, an increase in nuclear power production is
proposed in all four of the IPCC’s scenerios. [6].
The potential electricity supply from nuclear power is increasing. Currently, there
are approximately 50 reactors under construction globally. The majority of growth
in the upcoming decades is expected to arise from the installment of Generation
III reactors, among these mainly Pressurized Water Reactors, PWRs, and Boiling
Water Reactors, BWRs [36].
When it comes to construction of new Nuclear Power Plants, NPPs, there are
major public concerns. These include, but are not limited to: a nuclear disaster
such a Chernobyl 1986, the potential leakage of radioactive nuclear waste, weapon
proliferation, a long planning to operation time.
Besides political challenges does advancement in nuclear energy also face techno-
logical challenges. Although the reactors under construction today are, by any
means, much safer than the one in Chernobyl and the Boiling Water Reactors and
Pressurized Water Reactors from Generation I and II, there is still a lot of ongo-
ing research for new reactor designs. Besides advancements in safety, future types
of reactors have to potential to, for instance, produce radioactive waste with a
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shorter half-life and be more cost effective in producing electricity. Currently, the
estimated levelized cost of electricity produced by NPPs is still higher (between
6.5 and 12 ct/kWh) than other low-carbon sources, such as wind and solar [36].

1.2 Generations of Nuclear Reactors.

In 1951, the first nuclear reactor was created that would successfully generate
electricity. This was the Experimental Breeder Reactor I in Idaho, USA. It was
called as such as it was designed to create more fissile material than it consumed.
Later this era, the first commercial NPPs were installed [41]. In the upcoming
years, NPPs were constructed for commercial and or military use. These reactors
are classified as Generation I reactors which were early prototypes. Among these
these were the Gas Cooled Reactor ”Magnox”, UK; the Shippingport PWR reactor,
PA, USA; Wylfa, Wales; CANDU-137, Pakistan. The last of which is the only first
generation reactor still in operation [33].
Generation II reactors differentiate themselves from the first generation by safety
features in their design. Additionally, are these reactors more economical and
more dependable, making them suitable for commercial use. These usually are
Ligth Water Reactors, LWRs. The first second generation reactors were built in
the 1960’s and the majority of todays LWRs belong to this generation [16].
The third generation, Generation III, reactors are improved versions of the former
generation. With regard to safety, are they equipped with more reliable systems,
especially automatic features. These automatic features are intended to stop the
reaction without any human input involved in case of an accident. Other ad-
vancements are in: fuel technology, efficiency, modular construction, lifetime of
operation and the standardization of designs [16]. The latter of which has a ben-
eficial effect on development costs.

1.2.1 Future Reactors

The future designs of nuclear reactors are the so called Generation IV reactors.
In 2001 the Generation IV International Forum, GIF, was established for inter-
national cooperation on research and development [54]. The GIF selected six
contenders for the future Generation IV reactors as the most promising. These
reactors are destined to use advanced fuels and have a high burn-up rate. In ad-
dition, they feature enhancements in safety and reliability.
The six types of reactors are: the Gas-cooled Fast Reactor, GFR; Lead-cooled
Fast Reactor, LFR; Molten Salt Reactor, MSR; Supercritical Water-cooled Reac-
tor, SCWR; Sodium-cooled Fast Reactor, SFR and the Very High Temperature
Reactor, VHTR [15].
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1.2.2 Molten Salt Fast Reactor

This research is focused one of these proposed designs, the MSFR. In the MSFR
the nuclear fuel is in solution in a liquid fluoride or chloride salt. A depiction of
the MSFR is given in Figure 1.1. In the plant one can see the flow cycle of the
fuel. This consists of the reactor itself, the heat exchanger to the coolant salt and
the chemical processing plant to purify the salt. The latter allows the fuel to be
purified on-site. Currently there is still a lot of research required to prove the
safety and feasibility of this reactor.
Together with other universities and research institutes, the TUDelft is part of
the SAMOSAFER consortium. One of the aims of the SAMOSAFER is to prove
the safety of the MFSR through experimental and numerical research. One of the
investigated safety features is the freeze plug, as a part of the emergency draining
system (EDS), which is situated at the bottom of the reactor vessel and melts
upon overheating of the reactor. This plug should melt within a matter of minutes
to prevent the reactor’s temperature from rising excessively [35] in case of a power
outage.

Figure 1.1: Schematic overview of a Molten Salt Reactor [27]
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1.3 Fluid Dynamics Simulations

The are various options for modeling fluid dynamics in nuclear plants. Safety
assessments on light water reactors are often performed with the use of so called
”system codes” [7]. In this code a fluid domain, like a pipe, is split into very coarse
cells in which the thermal hydraulic processes are calculated. These models can
however not capture our interest in this thesis: the localized melting and solidifi-
cation processes as the cells are so coarse.

Various computational fluid dynamics (CFD) codes already exist. These models
aims to solve the Navier-Stokes equations on the mesoscopic scale since microscopic
particle behaviour does often hardly affect a fluid system [46]. Currently there are
already some solvers which could be used directly such as OpenFOAM [30], COM-
SOL [8] and ANSYS [2]. The advantage is that these codes are mostly pre-build,
meaning that that the user can work from an existing validated code. However, do
these codes lack modularity which means that expanding or editing is complicated.

The Lattice Boltzmann model (LB) is in contrast very modular due to it simple
calculation procedure. In addition, is this method very suitable for parallelization
and implementing complex geometries [14]. This thesis aims to further improve
LB modeling for melting and solidification processes with the bigger scope of an-
alyzing the thermohydraulics of the molten salt.

In previous work by van Winden [48] a Lattice Boltzmann model was used for the
flow field and a finite difference scheme for the temperature field. When modeling
melting of gallium by thermal diffusion in one dimension, i.e. the Stefan-problem,
the results were comparable to the analytical solution. This model was then used
to simulate octadecane melting with a high Prandtl number of 50. The results
were in reasonable agreement with other literature, however, the model exagger-
ates the effect of natural convection in comparison with the benchmark case. This
model was also tested in a low Prandtl substance, gallium. In the simulation of
the melting of this substance, severe instabilities arose. The model was found to
contain a bug which makes these results unreliable.

The model for this research will be a double distribution Lattice Boltzmann model;
one distribution for the momentum field and one for the thermal field. Currently
double distribution melting models are limited to single, double [13] and multiple
[20] relaxation time schemes. The first two models are known for possible numer-
ical diffusion along at the phase change region [26, 17].In a benchmark test for
Rayleigh-Bénard convection the MRT method has shown to be numerically stable
for Rayleigh numbers up to 108 [20] in a 2D cavity with a MRT scheme for both
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distributions. For melting problems of low Prandtl substances the double MRT
model seemed to be in agreement with experimental data and other numerical
models for Rayleigh number in the order of 106, [24, 51].

The downside of MRT model is its dependency on the selection of a set of free pa-
rameters which can significantly influence the accuracy and stability of results [52].
In MRT physical moments are relaxed by a relaxation time. However, there is no
accurate way to determine by what relaxation time these physical moments ought
to be relaxed [49]. Another disadvantage of the MRT method is that simulations
with high Reynolds numbers require very fine grids, since using small viscosities
conveys stability issues [45].

For those reasons this thesis dedicated to the ”Filter Matrix Lattice Boltzmann”
(FMLB) method. Unlike SRT, TRT and MRT models the collision model is non-
linear [52]. In the FMLB model flow parameters are solved with the involvement
of two free parameters that damp higher order terms. The FMLB scheme does
not seem to strongly depend on these damping coefficients [52]. One downside of
FMLB compared to MRT is that the FLMB scheme requires two 9 × 9 matrix-
vector multiplications instead of one to perform the collision step, which makes it
more expensive.

1.3.1 Phase Change Modeling

One issue that ensues from using the FMLB model is the implementation of the
melting. Currently, no models exist for the implementation of the latent heat
of melting in FMLB, which creates a discontinuity in the enthalpy-temperature
dependence. In previous literature for the calculations of the temperature the
source based enthalphy method or linearized enthalpy method were employed [40].
These methods require an iterative process to solve for the temperature [48]. In
the double distribution model, these methods can be used as well to obtain sta-
ble calculations [5, 22]. The source based method can, however, be implemented
without an iterative process. One option is to incorporate the latent heat source
term into the distribution of the temperature [10], which requires to solve a set
of linear equations. Another option is to modify the equilibrium distribution of
the temperature field and implicitly account for the latent heat source term [18].
This is probably even less expensive since it does not require to solve a set of
equations. This thesis aims to efficiently implement the latent heat source term;
without iterative schemes as these are expensive.
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1.3.2 Adaptive Mesh Refinement

One of the complexities that are complementary with fluid dynamic is that coarse
grid might not be able to capture the physical processes, since certain parts of the
domain might require a finer grid. In 2D LB models the computational expense
increases by the power of four with respect to the grid fineness. Ergo, refining only
those regions of the mesh that require fineness may save a lot of computational
expense whilst possibly making to compromise on accuracy and stability. Hence,
this method is also explored in this thesis.

1.3.3 Approach

In order to test these methods benchmark cases are evaluated. The first one is
the Stefan Problem where the phase change region is refined, the second is natural
convection of air in a square cavity where refinement dependent on the vorticity
is compared to refinement based on the absolute velocity. And lastly the melting
of gallium in a square cavity is simulated.

In conclusion, this brings us to the following research questions:

• How can the source based method be implemented in a termal FMLB scheme?

• To what extend does adaptive mesh refinement reduce computational ex-
pense in simulating the Stefan Problem?

• How can adaptive mesh refinement be implemented for convection melting?

• How does this influence the results?
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2 Theory

This section will explain the key theoretical concepts necessary to understand the
Lattice Boltzmann method and the Filter Matrix method for the collision operator.

2.1 Diffusion Advection Problem

The simulation aims to solve the Navier-Stokes equations for momentum mass
transfer in the incompressible limit in conjunction with the diffusion advection
Equation for heat transfer. The continuity equatuion for mass is given by Equation
2.1

∂ρ

∂t
+∇ · (ρ~u) = 0, (2.1)

where ~u is the velocity of the fluid, t the time and ρ the density. For incompress-
ibility this reduces to ~∇·~u = 0. Equation 2.2 specifies the momentum conservation
[32]:

ρ
∂~u

∂t
+ ρ(~u · ~∇)~u = ρ~ggrav − ~∇p+ νρ~∇2~u, (2.2)

where ~ggrav the applied body force; gravitational acceleration, p the pressure and
ν the viscosity, which is considered a constant.

In buoyancy driven flow the Boussinesq approximation is often applied, where the
density is considered to e a function of temperature instead of temperature and
pressure [32]. Aditionally, should the the relative thermal expansion be small, as
shown in Equation 2.3:

βexp(T − T0)� 1, (2.3)

where βexp is the thermal expansion coefficient and T0 is the mean of the coldest and
the hottest part of the fluid. Equation 2.4 approximates the density-temperature
dependence through the Boussinesq approximation [38]:

ρ = ρ0 − ρ0βexp(T − T0), (2.4)

where ρ0 is the average density of the fluid. Equation 2.2 is modified to Eqaution
2.5:

∂~u

∂t
+ (~u · ~∇)~u = − 1

ρ0

~∇(p+ ~ggrav · ẑ) + ν ~∇2~u− ~ggravβexp(T − T0). (2.5)

Where the last term gives the thermal bouyancy force in the Boussinesq approxi-
mation.
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The transport of heat is described by the first law of thermodynamics, as given by
Equation 2.6 [4]. Here Cp is the heat capacity of the material, taken as a constant;
α the thermal diffusivity, also considered to be constant; ρνDviscous the viscous
heat dissipation, considered to be zero and Φ a source term.

ρCp
∂T

∂t
= ∇ · (α∇T ) + βexpT

∂p

∂t
+ ρνDviscous + Φ (2.6)

2.1.1 Melting and Solidification

In this thesis the melting and solidification of fluid is covered for convective flow.
Upon the melting of the solid or liquid fuel latent heat is absorbed/released. This
heat can be implemented as the source term, Φ [W/m3], in the heat equation
which represent the rate of change in latent heat. Under the conditions that the
thermal diffusivity is a constant, that there is no viscous heat dissipation and that
the compressibility effect is negligible, Equation 2.6 reduces to Equation 2.7:

∂T

∂t
+ ~u · ~∇T = α~∇2T +

Φ

ρCp
. (2.7)

2.2 Lattice Boltzmann Method

The Lattice Boltzmann method is used in CFD (Computational Fluid Dynamics)
to solve the Navier-Stokes equations through a discretization of momentum, time
and space. In the scheme, particles are imagined as positioned on a certain point
in a lattice with a certain velocity in the direction towards another adjacent lattice
point. In 2 dimensions one could use the so called ”D2Q9” lattice, which implies
2 dimensions and 9 directions. The first one being the stationary, no momentum,
and the other 8 the directions of the adjacent points in the orthohormbic lattice,
see Figure 2.1. Here the vectors ~c0 through ~c8 represent the discrete velocities of
the distributions, given by Equation 2.8 [42].
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Figure 2.1: Discretization in a D2Q9 lattice [37]. The vectors ~c1 through ~c8

represent the steps to adjecent lattice nodes.

~ci =


(0, 0) i = 0

c(cos[(i− 1)π/2], sin[(i− 1)π/2]) i = 1, 2, 3, 4√
2c(cos[(2i− 9)π/4], sin[(2i− 9)π/4]) i = 5, 6, 7, 8,

(2.8)

where c is the lattice speed. Which is characterized by the magnitude of the lattice
spacing, ∆x, and the time step, ∆t, by c = ∆x/∆t.

In the simulation each point in the lattice is described by these nine distributions,
fi, which represent the particle density moving in that direction. The sum of these
represents the density, ρ on the given point, see Equation 2.9.

ρ(~x, t) =
∑
i

fi(~x, t), (2.9)

where ~x and t refer to a specific point on the lattice on a specific point in time.

In the Lattice Boltzmann scheme density and momentum are related by the fact
that these distributions also add up to the total momentum if the directions of the
velocity of these distributions are taken into account, see Equation 2.10.

ρ~u(~x, t) =
∑
i

~cifi(~x, t), (2.10)

where ~u(~x, t) is the nett velocity.

In general the Lattice Boltzmann scheme consists of two steps: streaming and
collision, see Figure 2.2. During the streaming step particles move to the lattice
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point in line with the extension of their direction. In other words, the distributions
move to a new lattice point. Which is formulated by Equation 2.11:

fi (~x+ ~ci∆t, t+ ∆t) = fi(~x, t). (2.11)

This step also takes into account the specified boundary conditions.

The collision step simulates the interaction of the particles and performs a re-
laxation on the distribution. There many ways to implement this. The chosen
implementation is explained in Section 2.2.1.

Figure 2.2: Time evolution in LB [28]. In the collision step the distributions are
relaxed by the collision operator. In the streaming step, also known as

propagation, the distributions propagate to the adjacent lattice point in their
specific direction. These two steps alternate in the LB algorithm.

2.2.1 Collision Scheme for Momentum

The collision operator, Ω(~x, t) is added to Equation 2.11 to complete the Lattice
Boltzmann equation, see Equation 2.12.

fi (~x+ ~ci∆t, t+ ∆t) = fi(~x, t) + Ωi(~x, t) (2.12)

In this thesis the so called ”Filter Matrix” method is applied to calculate the
collision operator. This method was originally developed by Eggels and Somers
[9]. In this section their methodology is briefly explained. In the Filter Matrix
method the time formulation is staggered by ±∆t/2 around a certain time t, see
Equation 2.13.

fi

(
~x+

~ci∆t

2
, t+

∆t

2

)
− fi

(
~x− ~ci∆t

2
, t− ∆t

2

)
= Ωi(~x, t) (2.13)

From the pre-collision distribution a vector α−k is calculated by means of a matrix
multiplication with the matrix Eki in Equation 2.14. The vector α−k represents a
set of physical parameters of the pre-collision distribution.
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α−k =
∑
i

Ekifi

(
~x− ~ci∆t

2
, t− ∆t

2

)
(2.14)

Here the matrix Eki is given by Equation 2.15 [52]:

Eki =
[
1, cix, ciy, 3c

2
ix − 1, 3cixciy, 3c

2
iy − 1,

cix
(
3c2
iy − 1

)
, ciy

(
3c2
ix − 1

)
,
(3c2

ix − 1)
(
3c2
iy − 1

)
2

] .
(2.15)

And α−k specifies the vector given in Equation 2.16 [52]:

α−k (~x, t) =



ρ
ρux − ∆t

2
Fx

ρuy − ∆t
2
Fy

3ρuxux + ρ (−6ν −∆t) ∂ux
∂x

3ρuxuy + ρ(−6ν−∆t)
2

(
∂ux
∂y

+ ∂uy
∂x

)
3ρuyuy + ρ (−6ν −∆t) ∂uy

∂y

T−1
T−2
F−1


(2.16)

Here Fx and Fy represent the x and y components of the applied body force. In
similar fashion ux and uy represent the x and y components of the velocity. Lastly,
T±1 , T±2 and F±1 represent higher order terms. For the simulations of thermal
convective flow the Boussinesq approximation is used. Equation 2.17 gives the
force generated by the thermal buoyancy effect:

~F = −ρ0~ggravβexp(T − T0), (2.17)

where ρ0 is the average density of the fluid, ~ggrav is the gravitational acceleration,
βexp is the thermal expansion coefficient and T0 is the mean of the coldest and the
hottest part of the fluid. In the case of a melting problem the coldest temperature
is the melting point of the fluid.

Given that α−k is known, a new vector α+
k , as defined in Equation 2.18, can be

calculated which can be transformed back into the post-collision distribution. This
is given in Equation 2.19.
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α+
k (~x, t) =



ρ
ρux + ∆t

2
Fx

ρuy + ∆t
2
Fy

3ρuxux + ρ (−6ν + ∆t) ∂ux
∂x

3ρuxuy + ρ(−6ν+∆t)
2

(
∂ux
∂y

+ ∂uy
∂x

)
3ρuyuy + ρ (−6ν + ∆t) ∂uy

∂y

T+
1

T+
2

F+
1


(2.18)

fi

(
~x+

~ci∆t

2
, t+

∆t

2

)
=
∑
k

ωiEikα
+
k , (2.19)

where ωi represent the weights that are associated with the distributions in Lattice
Boltzmann scheme. In this D2Q9 scheme the weights are given by Equation 2.20:

ωi =


4/9 i = 0

1/9 i = 1, 2, 3, 4

1/36 i = 5, 6, 7, 8

(2.20)

and the matrix Eik is given by Equation 2.21 [52]:

Eik =

[
1, 3cix, 3ciy,

3c2
ix − 1

2
, 3cixciy,

3c2
iy − 1

2
,
3cix

(
3c2
iy − 1

)
2

,

3ciy (3c2
ix − 1)

2
,
(3c2

ix − 1)
(
3c2
iy − 1

)
2

] .

(2.21)

In order to apply the momentum part of the FMLB scheme one needs to provide
a solution for Equation 2.19. This is done by using the following solution for α+

k ,
as in Equation 2.22:

α+
k =



ρ
α−1 + ∆tFx
α−2 + ∆tFy

G(α−3 − 3ρu2
x) + 3ρu2

x

G(α−4 − 3ρuxuy) + 3ρuxuy
G(α−5 − 3ρu2

y) + 3ρu2
y

−γ1α
−
6

−γ1α
−
7

−γ2α
−
8


. (2.22)
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The velocity and density can be obtained from α−k , see Equation 2.23 and 2.24:

~u =

[
(α−1 + ∆tFx)/ρ0

(α−2 + ∆tFy)/ρ0

]
(2.23)

ρ = α−0 (2.24)

The constant G is given by Equation 2.25:

G =
−6ν + 1

−6ν − 1
(2.25)

To reckon with the influence of the melting front on the impulse scheme the en-
thalpy porosity method is implemented [23]. Equation 2.12 is adjusted in the
following manner, as shown in Equation 2.26:

fi (~x+ ~ci∆t, t+ ∆t) = fi(~x, t) + (1−B)Ωi(~x, t) +B(fī(~x, t)− fi(~x, t)), (2.26)

where

B =
(1− fL)ν/c2

fL + ν/c2
(2.27)

gives a measure of the porosity of the liquid. Here B = 0 equates to purely fluid
and and B = 1 to purely solid, anywhere in between is the mushy zone. In this
equation the first term is just the pre-collision distribution. The second term is
the collision operator scaled by (1 − B) which accounts for the porosity. The
third term specifies a bounce-back of momentum on the potential phase-change
interface. The index ī represents the opposite direction of index i.

2.2.2 Collision Scheme for Heat

For the transport of heat another Lattice Boltzmann scheme is used with the
distributions labeled as gi(~x, t). The sum of these distributions form the total
enthalpy in a specific point ~x at time t, as shown in Equation 2.28

H(~x, t) =
∑
i

gi(~x, t) (2.28)

This distribution is applied in the Lattice Boltzmann equation, given in 2.29:

gi (~x+ ~ci∆t, t+ ∆t) = gi(~x, t) + Ψi(~x, t), (2.29)

where Ψ(~x, t) denotes the collision operator on the thermal distribution.
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The enthalpy consists of two parts, which is shown in Equation 2.30:

H = CpT + fLL. (2.30)

Here Cp, fL and L refer to the heat capacity, fluid fraction and latent heat of
melting. The fluid fraction is a value between 0 and 1, where 0 means solid, 1
means fluid and anywhere in between is considered to be the ”mushy zone”. In
Equation 2.30 CpT is referred to as the sensible heat, henceforward denoted with
the superscript ”s”, and fLL is the latent, denoted with the superscript ”l”.

From Equation 2.30 and inverse relation can be distilled for the temperature and
fluid fraction, see Equations 2.31 and 2.32 [18]:

T =


H/Cp H < Hs

Ts + H−Hs

Hl−Hs
(Tl − Ts) Hs ≤ H ≤ Hl

Tl + (H −Hl) /Cp H > Hl

, (2.31)

fL =


0 H < Hs

H−Hs

Hl−Hs
Hs ≤ H ≤ Hl

1 H > Hl

, (2.32)

where Ts and Tl are the solidus and liquidus temperatures, the difference between
these is the width of the mushy zone, ε. Hl is the solidus enthalpy, defined as CpTs
and Hs the liquidus enthalpy, defined as Hs + L.

The enthalpy distribution is split into a sensible part and a latent heat part as
defined by equations 2.33 and 2.34. Here the latent heat is considered to be part of
the stationary distribution by the assumption that the latent heat does not diffuse
since it does not contribute to a temperature difference. If, for instance, a solid
with a certain temperature T is adjacent to a fluid with identical temperature the
net heat transfer through the sold-liquid interface would be zero as heat can only
diffuse from a warmer to a colder body on the macroscopic scale [43].

gi(~x, t) = gsi (~x, t) + gli(~x, t) (2.33)

gli(~x, t) = [fLL, 0, 0, 0, 0, 0, 0, 0, 0]T (2.34)

The collision operation on the thermal distribution is therefore only applied on the
sensible part of the heat, see Equation 2.35:

gsi

(
~x+

~ci∆t

2
, t+

∆t

2

)
− gsi

(
~x− ~ci∆t

2
, t− ∆t

2

)
= Ψi(~x, t). (2.35)
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Splitting the total enthalpy into a sensible part and latent heat part allows us
to perform calculations without the use of computationally expensive iterative
schemes such the linearized enthalpy mehtod [40, 11]. This method of splitting
the total enthalpy was inpsired by Huang et al. [18]. Another possibility is to
define the rate of change in the fluid fraction in terms gi and solve Equation 2.7
[10]. This, however, requires to solve a system of equations, requiring a lot of
computational expense.

In a likewise procedure with respect to the collision scheme for momentum the
pre-collision distribution is transformed into a vector of physical parameters, β−k ,
by means of Equation 2.36:

β−k =
∑
i

Ekig
s
i

(
~x− ~ci∆t

2
, t− ∆t

2

)
, (2.36)

where β±k is defined by Equation 2.37 [52]:

β±k (~x, t) =

[
T, uxT +

−6α±∆t

6

∂T

∂x
, uyT

+
−6α± δt

6

∂T

∂y
, S±1 , S

±
2 , S

±
3 , T

±
1 , T

±
2 , F

±
]T

.

(2.37)

From β+
k the post-collision distribution is found by a reverse transformation of

Equation 2.36 given by Equation 2.38:

gsi

(
~x+

~ci∆t

2
, t+

∆t

2

)
=
∑
k

ωiEikβ
+
k . (2.38)

As a sidenote: After the collision step is performed the total enthalpy in a node
remains unchanged, likewise the amount of heat in the stationary distribution also
remains unchanged after the collision step, which means that the latent heat re-
mains unchanged. In fact, the total enthalpy is only changed by the propagation
step as the sum of the distributions changes. From this new total enthalpy a new
temperature and fluid fraction are calculated which defines the separation between
sensible and latent heat.

Similar to solving Equation 2.19 for the impulse scheme we solve Equation 2.38
for the thermal scheme. The solution for β+

k is given by Equation 2.39:
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β+
k =



T
Ḡ(β−1 − Tux) + Tux
Ḡ(β−2 − Tuy) + Tuy

−γ2α
−
3

−γ2α
−
4

−γ2α
−
5

0
0
0


. (2.39)

Where T is given by β−0 and ~u is extracted from the impulse scheme. Similar to
the impulse scheme, Ḡ is given by Equation 2.40:

Ḡ =
−6α + 1

−6α− 1
(2.40)
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3 Methodology

In this section the implementation of boundary conditions is explained. In addition
is the implementation of Adaptive Mesh Refinement given with the applied criteria
for refinement. At last, are the benchmarks given used to validate the code. A
general overview of all these operations can be found in Appendix 6.0.1

3.1 Boundary conditions

For the density distribution the half-way bounce back boundary conditions are
used. This means that the boundary is the perimeter of a distance of ∆x/2 around
the lattice points. As shown in Figure [45] the distributions are reflected in opposite
direction. This forces the velocity along the wall to be zero; it enforces a ’stick
boundary’ [45].

Figure 3.1: Schematic of the half-way bounce-back condition. The distributions
are reflected to the inverse direction on the imaginary wall which represents the

boundary of the domain [1].

Two types of boundary conditions are applied to the temperature scheme: the
isothermal (Dirichlet) and zero-flux boundary conditions. For the isothermal
boundary condition, the bounce-back method is applied (Equation 3.2) in the
propagation step to enforce the wall temperature, Tw [50]:

gi (~x+ ~ci∆t, t+ ∆t) = 2ωīTw − (gī(~x, t) + Ψ(~x, t)). (3.1)

As such Equation 3.2 replaces Equation 2.29 for the concerning boundary nodes,
for the directions, i, moving out of the boundary. Hence, if n̂ is the normal to the
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boundary going inwards to the geometry, it concerns those directions for which
n̂ · ~ci > 0. The zero-flux boundary is formulated by defining the wall temperature
as the temperature of the node adjacent to the wall. For instance if the zero-flux
boundary is applied to y = 0 the definition becomes [50]:

gi

([
x
0

]
+ ~ci∆t, t+ ∆t

)
= 2ωīT

[
x
1

]
−
(
gī

([
x
0

]
, t

)
+ Ψ

([
x
0

]
, t

))
,

(3.2)
again for those directions that satisfy n̂ · ~ci > 0, i.e. the directions going into the
domain.

3.2 Adaptive Mesh Refinement

Using adaptive mesh refinement, certain parts of the domain can calculated on
a fine grid, whilst other cells can remain coarse. Taking into consideration that
the collision operator requires two matrix-vector multiplications, this step com-
promises the majority of the computational expense.

3.2.1 Collision and Propagation

The implementation of mesh refinement is based on earlier work by Rohde et al.
[34], yet in a simplified manner; such that only the collision operation is performed
on either the coarse grid or the fine grid, depending if a cell is refined or not but
the propagation is always on the finest grid. In the method by Rohde et al [34]
the propagation on the coarse cells is performed on a coarse grid and the cells
that lay in between the coarse and fine grid are temporarily refined in order to
communicate changes on the fine grid to the coarse grid. Numerically this gives
the exact same results for possibly shorter calculation times, yet requiring a lot
more coding. Here we will discuss the methodology for one refinement level, for
the simplified scheme where propagation happens on the finest grid.

Initially a cell is identified that needs to be refined under some arbitrary criterion.
In Figure 3.2a this cell is marked in green. The cell is first split into four smaller
cells which have the exact same distributions, i.e. densities, as the larger parent
cell, see Figure 3.2b. Then the collision is performed only on the cells in the fine
grid as shown in Figure 3.2c. In succession, these changes need to be communi-
cated to the surrounding grid. In order to do so, the coarse cells are temporarily
split into finer cells. This is again done by splitting the coarse cells into smaller
cells with equal distributions as shown Figure 3.2d, likewise the process described
in Figure 3.2b.
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Then the propagation step is performed on the fine grid as seen in Figure 3.2e.
After the post-collision distributions of the fine grid have been communicated to
the cells belonging to the coarse grid, these cells can be made coarse again. This
is done by averaging the distributions of the four child cells, as seen in Figure 3.2f.

Subsequently these steps are repeated but now the collision is performed on both
the fine and coarse grid. Figure 3.2g shows the collision on both grids, then again
the coarse cells are split, see Figure 3.2h. After which the propagation is per-
formed, as shown in Figure 3.2i and after that the temporarily split cells are once
again averaged to become the coarse grid again, the result of which is shown in
Figure 3.2j. This completes one time step.

Notice that collision is performed once on the coarse grid and twice on the fine grid
for each time step, hence potentially reducing the calculation time significantly.
In addition, the propagation step is performed twice on the fine grid.

3.2.2 Computational Time Reduction

The computational expense grows rather fast with increasing fineness. In fact, the
expense grows by a power of 4 with respect to the refinement. This is because
the number of gridpoints grows quadratically if a coarse grid is replaced by a fine
grid and, under the condition that the value of the thermal diffusivity and heat
conductivity in LB units (∆x2/∆t) are left unchanged, the size of the time step
has to be decreased quadratically.
The case for adaptive grid refinement is made by the logic that one might only
need a fine grid on certain parts of the domain. The savings in computational
expense stem from the fact the collision operator doesn’t need to be calculated on
the entire fine grid, which has 4 cells for 1 coarse cells and requires the collision
to be performed twice on each of these 4 child cells. Which means that a fine cell
needs 8 collision operations in one time step instead of one for coarse cell. The
collision operation is costly since it requires two matrix-vector multiplications with
9× 9 matrices.

However the adaptive grid refinement also brings in some computational expense.
In this implementation the propagation step is performed on the fine grid which
makes this more expensive and also twice as frequent for the coarse cells. The
expense of the propagation step is however very minor compared to the propagation
step, since it only requires moving elements in an array. Besides that, does it
require to split the coarse cells before the propagation step and average them
again after the propagation. Lastly, is there overhead from checking refinement
criteria.

19



(a) green marks the cell to
be refined.

(b) Copying the distribu-
tions of the coarse cell to
four finer cells.

(c) Collision on the fine
grid only.

(d) Temporarily refining
the coarse grid.

(e) Propagation on the
fine grid.

(f) Averaging the coarse
grid cells.

(g) Collision on fine and
coarse grid.

(h) Temporarily refining
the coarse grid.

(i) Propagation on the fine
grid.

(j) Averaging the coarse
grid cells

Figure 3.2: Figures a through j give the steps of the adaptive mesh refinement
method.

20



3.2.3 Re-scaling of variables

The magnitude of the cells is halved for each refinement, see Equation 3.3.

∆xn = ∆x · 2−n, (3.3)

where n is the level of refinement, ∆x is the magnitude of the cell size on the
coarsest grid and the subscript n in ∆xn indicates the value of that variable in
the nth refinement. A value of n = 0 represents the coarse grid, n = 1 the first
refinement etc. The size of the time step is scaled scaled by Equation 3.4 in order
to keep the lattice speed fixed in the refined cells.

∆tn = ∆t · 2−n (3.4)

As both alpha and nu have units of m2/s they are scaled by the following relations,
see Equations 3.5, 3.6

αn = α · 2−n (3.5)

νn = ν · 2−n (3.6)

These rescaled values for the thermal diffusivity and viscosity are used to rescale
G and Ḡ, as shown in Equations 3.7 and 3.8:

Gn =
−6νn + 1

−6νn − 1
(3.7)

Ḡn =
−6αn + 1

−6αn − 1
. (3.8)

The body force is in LB units is scaled by Equation 3.9:

~Fn = ~F · 2n. (3.9)

Which is used for the calculations of the velocity, see Equation 2.23, the value on
a refined grid n is found through Equation 3.10:

~un =

[
(α−1,n + ∆tnFx,n)/ρ0

(α−2,n + ∆tnFy,n)/ρ0

]
(3.10)

Where α−k,n marks the value of α−i on refinement level n and is just found by

Equation 2.14. The value of α+
k on the refined grid, α+

k,n, is obtained through 2.22
by adjusting the values to the appropriate refinement, as in Equation 3.11:
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α+
k,n =



ρ
α−1,n + ∆tnFx,n
α−2,n + ∆tnFy,n

G(α−3,n − 3ρu2
x,n) + 3ρu2

x,n

G(α−4,n − 3ρux,nuy,n) + 3ρux,nuy,n
G(α−5,n − 3ρu2

y,n) + 3ρu2
y,n

−γ1α
−
6,n

−γ1α
−
7,n

−γ2α
−
8,n


. (3.11)

β+
k can be found on the refined grid in a similar fashion by implementing Ḡn and
~un in Equation 2.39, see Equation 3.12:

β+
k,n =



T
Ḡn(β−1,n − Tux,n) + Tux,n
Ḡn(β−2,n − Tuy,n) + Tuy,n

−γ2α
−
3,n

−γ2α
−
4,n

−γ2α
−
5,n

0
0
0


. (3.12)

3.3 Benchmark Cases

Benchmarks are used to validate the methodology. The Stefan Problem is used to
validate the implementation of the latent heat source term in the thermal FMLB
scheme. In addition, do we apply grid refinement to the Stefan Problem set against
a case without refinement to compare computational time.

3.3.1 Stefan Problem

In the Stefan Problem, 1-dimensional melting is simulated and compared to an
analytical solution. In Figure 3.3 a representation is given of this geometry. Here
the left side is an isothermal hot wall at temperature TH and the right side an
isothermal cold wall at temperature TC . The upper and lower boundary have a
zero net flux perpendicular to the bounds. The red on the left side marks the fluid
and the blue on the right marks the solid material. This interface is moving to the
right upon melting. The variables that have been used for this problem are given
in Table 1.
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Table 1: Parameters used for the Stefan problem for no refinement

Variable Physical Meaning value, unit
Lx Size in the x-direction 1.28 cm
Ly Size in the y-direction 0.32 cm
Nx Number of cells in the x-direction 64
Ny Number of cells in the y-direction 16
∆x Magnitude of coarsest cell 0.02 cm
∆t Magnitude of time step 5.628 · 10−4 s
αphys Physical value of the thermal diffusivity 1.422 · 10−5 m2/s
α Thermal diffuvisity in LB units 0.2∆x2/∆t
L Latent heat 80160 J
Cp Heat capacity 381 J/(kg K)
Ste Stefan number 0.0941
k solution to the transcendental equation 0.2133
TH Hot wall temperature 320.93 K
TC Cold wall temperature 300.93 K
Tm Melting point 301.13 K
T0 Initial temperature 300.93 K
ε Width of the mushy zone 0.2 K

Figure 3.3: Representation of the Stefan Problem for no refinement.

Besides the case where the entire mesh is fine, two other cases are investigated
with 1 and 2 levels of refinement. The method of refinement is explained in the
following two paragraphs. The representations of the resulting meshes are given
in Figures 3.7 and 3.11.
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One level of Refinement
For a single refinement the refined cells are defined as such that in the initial
condition the leftmost two layers of coarse cells of the geometry are refined. For
tracking the melting interface the fluid fraction, fL, is projected on the fine grid
by splitting the coarse grid cells into 4 smaller cells. Upon melting the solid nodes
are identified by where fL < 0.5 on the fine grid. The inner boundary of this solid
domain, excluding the bounds the geometry; i.e. the leftmost fine cells of the solid
domain, are identified as a part of the phase change region, see Figure 3.4. In
addition, the neighbours to the solid nodes; i.e. the right most cells of the fluid
domain on the fine grid, are identified as a part of the phase change region 3.4.

Figure 3.4: Representation of the Stefan Problem for one level of refinement. The
dark blue cells show the inner boundary of the solid domain and the darker red

cells mark the outer boundary of the solid domain. The union of these is the
phase change region.

For this phase change region the parent cells are found on the coarse grid and are
refined, see Figure 3.5.

Figure 3.5: Representation of the Stefan Problem for one level of refinement. The
parent cells of the phase region are identified and refined.
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If the phase change interface moves one fine grid cell to the right it is still on the
fine grid. If it then moves an additional fine grid cell to the right the phase change
region is between a fine and a coarse grid cell. However, since the inner boundary
of the solid domain is refined, the bordering coarse cells will become fine and a
such the phase change region is always on the fine grid, see Figure 3.6

Figure 3.6: Representation of the Stefan Problem for one level of refinement. The
phase change region is between the fine and the coarse grid. The coarse grid cells
at the phase change region belong to the inner boundary of the solid domain and
are that reason refined. The cells on the left of the phase change region no longer

contain the phase charge interface and are for that reason coarsened.

A final representation of this grid is shown in Figure 3.7. Notice that the solid-
liquid interface has moved to the right.

Figure 3.7: Representation of the Stefan Problem for one level of refinement.

The variables on the coarse cells are the same as in Table 1, apart from ∆x and
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∆t which are 0.04 cm and 2.251 · 10−3 s for the coarse cells. The values on the
refined cells are scaled as explained in Section 3.2.3.

Two levels of Refinement
For two levels of refinement a quite similar procedure is followed. The paramter
n defines the fineness of the grid, where n = 2 is the finest cell and n = 0 the
coarsest. The fluid fracton is projected on the finest, n = 2, grid on which phase
change region is defined, see Figure 3.8.

Figure 3.8: Representation of the Stefan Problem for two levels of refinement.
The figure shows the size of the cells for different levels of refinement, n.

Again is the phase change region defined as the union of the inner boundary of
the solid domain and the neighbours to this solid domain, see Figure 3.9.

Figure 3.9: Representation of the Stefan Problem for two levels of refinement.
The dark blue cells show the inner boundary of the solid domain and the darker
red cells mark the outer boundary of the solid domain. The union of these is the

phase change region.
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Of this phase change region the cells are found in the coarsest grid, n = 0, of which
they are a part of. These coarse grid cells are kept at a refinement of n = 2, the
finest grid, see Figure 3.10.

Figure 3.10: Representation of the Stefan Problem for one level of refinement.
The n = 0 cells on which the phase region lies are identified and refined.

The cells bordering these coarse grid cells, are refined to n = 1, see Figure 3.10.
When the phase change region moves to the right it will remain on the n = 2 grid
until it borders the n = 1 grid. Correspondingly to one level of refinement, upon
bordering the n = 1 grid by the phase change region on the right side, these n = 1
cells are refined to n = 2 since the inner boundary of the solid domain is refined
to the finest n = 2 grid. As such the phase change region remains on the finest
grid. A final representation of the grid, after moving of the interface, is shown in
Figure 3.11

Figure 3.11: Representation of the Stefan Problem for two levels of refinement.

The variables on the coarse grid cells for this case are again the same as for no
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refinement, see Table 1, apart from ∆x and ∆t which are 0.08 cm and 9.004 · 10−3

s for the coarsest cells.

Analytical Solution to the Stefan Problem
In the Stefan Problem a comparison is made to an analytical solution. This solution
is defined by the transcendental equation. The melting front, xpc, moves forward
by the relation:

xpc = 2k
√
αt. (3.13)

Where k is the solution of the transcendental equation, Equation 3.14 [47]:

e−k
2

k erf(k)
= Ste

√
π, (3.14)

Where Ste is the Stefan number which is a non-dimensional ratio between sensible
and latent heat characterized by the hot wall temperature, TH ; melting point, Tm
and latent heat, L, see Equation 3.15:

Ste =
Cp(TH − Tm)

L
(3.15)

The temperature profile in the liquid area is then given by:

T = TH − (TH − Tm)
erf
(

x
2
√
αt

)
erf(k)

for x < xpc (3.16)

The temperature in the solid area can be characterized by the penetration theorem
initially. Note that this solution very quickly becomes inaccurate since penetration
will no longer hold in case the heat reaches the right boundary.

3.3.2 Natural Convection of Air

Secondly a study has been conducted on the natural convection of air, hence
implying to only be in the gaseous phase, in a square cavity and compared to
a previous study [52]. In this instance refinement is based on the velocities and
vorticity. The results of the adaptive mesh refinement are compared to a fully fine
grid. The geometry is defined as shown in Figure 3.12. The boundary conditions
are similar to the Stefan Problem.
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Figure 3.12: Representation of the geometry for natural convection in a cavity.

For this simulation the following parameters are used, see Table 2. These pa-
rameters can be reduced to three non-dimensional numbers that characterize the
problem: the Rayleigh number, Ra; the Prandtl number, Pr and the Fourier
number, Fo. The Rayleigh number represents the ratio between heat transport
through diffusion and convection, see Equation 3.17 [21]:

Ra =
ggravβexp(TH − TC)L3

c

να
, (3.17)

where Lc is the characteristic length of the geometry. In this case Lc = Lx =
Ly. The Prandtl number, Pr, is the ratio between the viscosity and the thermal
diffusivity: Pr = ν/α. Lastly, the Fourier number is basically a non-dimensional
representation of time as given by equation 3.18 [21]:

Fo =
tα

L2
c

(3.18)

Initially a grid convergence study will be performed based upon the convergence
of the minimum, maximum and average Nusselt number on the cold wall.
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The Nusselt number on the cold wall is given by Equation 3.19 [52]:

Nu(y) = − Ly
∆T

(
∂T

∂x

)
x=Lx

. (3.19)

Besides a grid convergence study the as aforementioned two cases for refinement
are investigated. The first case is where areas are refined based upon the vorticity,
ω, as this a is common parameter used for refinement [12, 31]. The vorticity is
given by Equation 3.23:

ω(i, j) =

∣∣∣∣∂uy(i, j)∂x
− ∂ux(i, j)

∂y

∣∣∣∣ . (3.20)

If the vorticity exceeds a certain threshold, ωupper, that lattice point is refined.
If the vorticity in a refined cell undercuts the lower threshold, ωlower, that cell is
coarsened.

The gradients in ω are obtained through a finite difference on the velocity, see
Equations 3.21, 3.22 and 3.23 ] [53]. Here i and j represent the discretized coordi-
nates in the grid. The boundary nodes here are not considered and the vorticity is
set to be 0 on the boundary nodes. This is not an issue for the refinement since the
boundary cells are always refined because the bounce-back scheme is inaccurate on
the coarse grid for this implementation of mesh refinement. If the boundary nodes
would be coarse the boundary condition would be applied twice on the fine grid
followed by a collision step on the coarse grid, this causes inaccuracies in the heat
influx. Thus it is necessary to refine these nodes to the fineness of the propagation
step.

∂uy(i, j)

∂x
≈uy(i+ 1, j)− uy(i− 1, j)−

1

4
(uy(i+ 1, j + 1)− uy(i− 1, j + 1)− uy(i− 1, j − 1) + uy(i+ 1, j − 1))

(3.21)

∂ux(i, j)

∂y
≈ux(i, j + 1)− ux(i, j − 1)−

1

4
(ux(i+ 1, j + 1) + ux(i− 1, j + 1)− ux(i− 1, j − 1)− ux(i+ 1, j − 1))

(3.22)

ω(i, j) =

∣∣∣∣∂uy(i, j)∂x
− ∂ux(i, j)

∂y

∣∣∣∣ (3.23)
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Secondly, a simulation will be performed where grid points are refined if the velocity
exceeds a certain value. This is chosen because the higher order terms in the
Chapman-Enskog expansion become have more impact for higher velocities [45],
causing errors. Again, in this case the boundary nodes are also refined. All of these
simulations are ran to converge to a steady state. The convergence is defined by
minimal change in the velocity field and temperature field for any cell in the domain
for an interval of 1000 time steps, see Equation 3.24 [52]:

max

{
|~u (~x, t)− ~u (~x, t−1000∆t)|

|~u (~x, t)|
,√∣∣∣∣T (~x, t)− T (~x, t− 1000∆t) |

T (~x, t)

∣∣∣∣
}
< 10−3.

(3.24)

Table 2: Parameters used for the simulation of natural convection of air in a cavity.
The physical size of the grid is dependent on the number of mesh point since ∆x
is always 1 m.

Variable Physical Meaning value, unit
Lx Size in the x-direction Nx m
Ly Size in the y-direction Ny m
Nx Number of cells in the x-direction variable
Ny Number of cells in the y-direction variable
∆x Magnitude of coarsest cell 1 m
∆t Magnitude of time step 1 s
αphys Physical value of the thermal diffusivity 2.608 · 10−2 m2/s
α Thermal diffuvisity in LB units 2.608 · 10−2∆x2/∆t
νphys Physical value of the viscosity 1.852 · 10−2 m2/s
ν Viscosity in LB units 1.852 · 10−2∆x2/∆t
Cp Heat capacity 381.5 J/(kg K)
ggrav Magnitude of the gravitational acceleration 9.8 m/s2

βexp Thermal expansion coefficient 1 K−1

Ra Rayleigh number 105

Pr Prandtl number 0.71
TH Hot wall temperature 19◦C
TC Cold wall temperature 1◦C
T0 Initial temperature 10.5◦C
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3.3.3 Cavity Melting of Gallium

Finally, a simulation for melting in a rectangular cavity is performed, see Figure
3.13. This combines the two earlier cases for the melting in the Stefan Problem
and the natural convection in the air convection case. Firstly a grid convergence
study is done after which the converged grid is chosen to be the fine grid. In the
adaptive mesh refinement simulations the size of the refined cells are equal to the
cell size of this converged grid.

Figure 3.13: Representation of cavity melting. The curved arrows represent the
flow of the liquid.

Refinement is applied to the boundaries and the phase change region, in similar
fashion as the Stefan problem. In addition to these two, another criterion is added:
either the absolute velocity, absolute vorticity or the shear rate. The shear rate,
γ̇, is given by Equation 3.25 and is represented by the determinant of the shear
rate tensor. The gradients in this tensor can be found from the collision step, see
Equations 3.26, 3.27 and 3.28.
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γ̇ =

√√√√det

([
2∂ux
∂x

∂ux
∂y

+ ∂uy
∂x

∂ux
∂y

+ ∂uy
∂x

2∂uy
∂y

])
=

√
4
∂ux
∂x

∂uy
∂y
−
(
∂ux
∂y

+
∂uy
∂x

)2

(3.25)

∂ux
∂x

=
1

2∆t
(α+

3 − α−3 ) (3.26)

∂uy
∂y

=
1

2∆t
(α+

5 − α−5 ) (3.27)

1

2

(
∂ux
∂y

+
∂uy
∂x

)
=

1

2∆t
(α+

4 − α−4 ) (3.28)

In addition to a grid convergence study, a comparison is made between three cases.
One case for a fine grid of 252 × 180 for which convergence is reached, secondly
one on a coarse grid of 126×90 for which no convergence is reached and lastly one
the same 126 × 90 coarse grid with one level of refinement. The variables of the
simulation on the fine grid are given by Table 3. For the latter two cases all the
variables on the coarse grid are the same apart from the time step and cell size of
the coarsest cells, ∆t and ∆x, which are 3.205 · 10−3 s and 7.056 · 10−4 m. Note
that for the case with one refinement α and ν are kept the same for the coarse
grid cells and are rescaled for the refined cells in accordance with Equations 3.5
and 3.6. Besides are the results of the fully fine grid compared to other benchmark
studies.
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Table 3: Parameters used for cavity melting for no refinement

Variable Physical Meaning value, unit
Lx Size in the x-direction 8.89 cm
Ly Size in the y-direction 6.35 cm
Nx Number of cells in the x-direction 252
Ny Number of cells in the y-direction 180
∆x Magnitude of coarsest cell 3.532 · 10−4 m
∆t Magnitude of time step 8.027 · 10−4 s
αphys Physical value of the thermal diffusivity 1.377 · 10−5 m2/s
α Thermal diffuvisity in LB units 8.862 · 10−2∆x2/∆t
νphys Physical value of the viscosity 2.971 · 10−7 m2/s
ν Viscosity in LB units 1.912 · 10−3∆x2/∆t
L Latent heat 80160 J
Cp Heat capacity 381.5 J/(kg K)
ggrav Magnitude of the gravitational acceleration 9.8 m/s−2

βexp Thermal expansion coefficient 1.2 · 10−4 K−1
Ste Stefan number 0.0391
Ra Rayleigh number 6.052 · 105

Pr Prandtl number 2.158 · 10−2

TH Hot wall temperature 38.00◦C
TC Cold wall temperature 28.30◦C
Tm Melting point 29.78◦C
T0 Initial temperature 28.30◦C
ε Width of the mushy zone 0.0◦C
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4 Results

In this section the results of the simulations of the Stefan Problem will be discussed.
For the Stefan problem this section mostly provides a proof of concept on the time
savings gained from the mesh refinement. Besides that, the results are presented
for the natural convection of air and cavity melting of tin, which are compared to
other literature.

4.1 Stefan Problem

Section 6.1 of the Appendix shows the results for the simulations of the Stefan
problem. Results are obtained of the temperature profile and melting front posi-
tions for a:

• 64× 16 grid, no refinement (See Section 6.1.1);

• 32× 8 main grid, one level of refinement (See Section 6.1.2);

• 32× 8 main grid, no refinement (See Section 6.1.2);

• 16× 4 main grid, two levels of refinement (See Section 6.1.4);

• 16× 4 grid, no refinement (See Section 6.1.5);

In general all results match well with the theoretical values. As such is the refine-
ment not implemented to improve the accuracy of the computations but rather to
provide a proof of concept of saving computational time.

Looking at Figure 4.1 we see the temperature profile for one refinement on a 32×8
grid. The data is superimposed on the fine grid, meaning that a coarse grid cell is
represented as two fine grid cells with equal value on the line of x-values. What
can be seen, for instance looking at the line for t = 10s, are 5 single crosses just
before the melting front. This means that the grid is fine in that area. On the left
of that the values are double, which implies that those cells are coarse.
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Figure 4.1: Simulated temperature profile vs analytical solution for a 32× 8 grid
and one level of refinement.

The same interpretation can be used to analyse the case for two refinements, see
Figure 4.2. Again the temperature values are superimposed on the finest grid.
Looking at the line for t = 40s one can see two singular crosses just before the
melting front, this is where the refinement is at level two. Left of that we see two
pairs of double values, this is where the refinement is at level one. At the other
cells left of that, we see pairs of four. This is where the grid is coarse.

Figure 4.2: Simulated temperature profile vs analytical solution for a 16× 4 grid
and two levels of refinement.
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4.1.1 Time Savings

In Table 4 the effect of using one level of refinement is given. Comparing a 32× 8
grid to a 64× 16 grid, both without refinement, one would ideally expect a factor
16 difference in computational time. As the there are 4 times more gridpoints in
the fine grid and the time step is 4 times as small, as explained in Section 3.2.2.
Here that is about 12.6. This is because this scaling law is not very accurate for
smaller geometries since it does not consider that parallelization is not efficent for
small data sizes.

Using a 32 × 8 grid with one refinement gives a reduction in computational time
of 3.6 times. This however deviates quite a lot from the factor 12.6. This is
firstly because the propagation step is performed on the fine grid, which means
that for each time step two propagation steps need to be performed on the fine
grid resulting in 8 times more computational expense for the propagation step.
Secondly, we require more collision steps since on average 12.5% of the coarse cells
are refined and each require 8 collision steps per time step. Lastly, is there 33.7%
overhead in the calculations caused by averaging fine cells to coarse cells, which
happens after the propagation step and splitting coarse cells into fine cells, which
happens before propagation.

Table 4: Comparison of computational expense for a 64 × 16 grid, a 32 × 8 grid
with one refinement and a a 32×8 grid without refinement. ’Refinement’ specifies
the percentage of coarse cells in each level of refinement, ’Overhead %’ specifies the
amount of overhead in the calculations caused by the AMR and ’Total’ specifies
the total computational time.

One Refinement
Dimensions 64 x 16 32 x 8 32 x 8
# of Refinements 0 1 0
Refinement level 0: 100.0% 87.5% 100.0%

level 1: 12.5%

Overhead % 2.3% 33.7% 4.1%
Total (seconds) 371.59 104.47 28.46

Table 5 represents the savings in computational expense when two levels of refine-
ment are used. For that matter a 64× 16 grid has been compared to a 16× 4 grid.
Hypothetically should a 4 times coarser grid give a 256 smaller computational ex-
pense, as there are 16 times less gridpoints and the timestep is 16 times smaller
(see Section 3.2.2). Again we see that this difference is less, 151.1 times. For two
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refinements the computational time is 9.9 times shorter compared to the fine grid.
This again deviates a lot from just using a coarse grid for the same reasons as
previously mentioned. However we do still see a significant reduction by using two
levels of refinement instead of one.

Table 5: Comparison of computational expense for a 64 × 16 grid, a 16 × 4 grid
with two levels of refinement and a a 16× 4 grid without refinement. ’Refinement’
specifies the percentage of cells in each level of refinement, ’Overhead %’ specifies
the amount of overhead in the calculations caused by the AMR and ’Total’ specifies
the total computational time.

Two Refinements
Dimensions 64 x 16 16 x 4 16 x 4
# of Refinements 0 2 0
Refinement level 0: 100.0% 79.5% 100.0%

level 1: 12.5%
level 2: 8.1%

Overhead % 2.3% 34.5% 9.7%
Total (seconds) 371.59 37.44 2.46

4.2 Natural Convection of Air

Initially it is determined for which grid size the solution converges. After which,
it is investigated whether the converged grid can be made partially coarse with
adaptive mesh refinement, yet yielding the same converged solution.

4.2.1 Grid Convergence

For a 302, 402, 452, 602, 762 and 902 grid the average, maximum and minimum
Nusselt numbers are calculated on the cold wall, see Equation 3.19. These values
can be found in Table 6 under ”Present (No Refinement)”. In addition to the
Nusselt number the values of the maximum x-velocity on the central vertical line
are given and the maximum y-velocity on the central horizontal line.

38



Table 6: Comparison of results for simulations of natural convection of air in a
cavity. Nx specifies the size of the square grid, ux,max is the maximum x-component
of the velocity on the vertical middle line in units of α/Nx, y is the y-position of
this maximum. Similarly uy,max is the maximum y-component of the velocity on
the horizontal middle line in units of α/Nx, x is the x-position of this maximum.
Numax is the maximum Nusselt number on the cold wall and yNu the y-position
of this maximum. Numin, Nuavg are the minimum and average Nusselt number
on the cold wall.
In the table we see the values by another study by Zhuo et al. [52], the present
model for no refinement, the present model for one level of refinement based on
the vorticity and the absolute value of the velocity.

Zhuo et al.
Nx ux,max y uy,max x Numax yNu Numin Nuavg
59 34.81816 0.85593 67.89461 0.05932 7.66019 0.90678 0.73319 4.50307
119 34.75526 0.85294 68.50212 0.06303 7.70739 0.92017 0.72943 4.51775
239 34.74358 0.85565 68.61521 0.06485 7.71749 0.91841 0.72835 4.52078

Present (No refinement)
30 36.48588 0.83333 66.15523 0.06667 7.50799 0.86667 0.82905 4.42636
40 35.83754 0.85000 68.08506 0.05000 7.64289 0.90000 0.78587 4.48440
45 35.11937 0.84444 67.37750 0.06667 7.68202 0.88889 0.77258 4.49928
60 35.11937 0.85000 67.73321 0.05000 7.73802 0.90000 0.74834 4.52164
76 35.11937 0.85526 68.05201 0.06579 7.75973 0.90789 0.73496 4.53036
90 35.11937 0.85556 68.24862 0.05556 7.76684 0.91111 0.72795 4.53340

Present (One level of Refinement, ω)
45 35.48262 0.85000 67.46654 0.07222 7.88646 0.93333 0.74470 4.60657

Present (One level of Refinement, |~u|)
45 34.77736 0.85000 68.37225 0.05556 8.36675 0.94444 0.77044 4.54968

Figures 4.3a, 4.3b and 4.3c show that the average, minimum and maximum Nusselt
number on the cold wall indeed converge at Nx = 90. Therefore it is interesting to
see if similar results can be obtained on a 452 grid with adaptive mesh refinement.

Furthermore, the question is whether the numbers of the non-refined model are
in good agreement with the numbers of Zhuo et al. [52]. This study also uses
a double FMLB algorithm but uses the a finite difference to obtain the Nusselt
number on the cold wall.
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(a) (b)

(c)

Figure 4.3: The value of the average Nusselt number on the cold wall versus the
size of the grid given by Nx (a), the value of the minimum Nusselt number on the
cold wall versus the size of the grid (b) and the value of the maximum Nusselt
number on the cold wall versus the size of the grid (c).

4.2.2 Refinement Based on Vorticity

First we analyse the vorticity field without refinement, see Figure 4.4a. Based
on this we choose ωupper = 0.010 [∆t−1] and ωlower = 0.005 [∆t−1] so that the
area with higher vorticity is refined. It should be noted that the solution did not
fully converge to a stable field. This could be due to the fact that the grid kept
coarsening and refining.
Figures 4.4c through 4.4f show the results for the vorticiy, streamlines, refinement
and absolute value of the temperature gradient. It can be seen that indeed the
areas with higher vorticity are refined. In addition the pattern of the streamlines
matches well with the case for no refinement, see Figure 4.4b.

However, we can also see discontinuities in the temperature gradient at the inter-
face of the coarse and fine grid. In these simulations the solution is supposed to
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converge to a stable flow field where the vorticity field is also stable and thus the
refinement area’s are stable. In actuality certain parts of the domain kept coarsen-
ing and refining which could have impeded the temperature field from converging.
Moreover, is the pattern in the vorticity not continuous at the interface between
the coarse and fine grid; comparing the area inside the red boxes in Figure 4.4c to
Figure 4.4a, the vorticity is smoother at the interface for the case of no refinement.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.4: Figures a and b show the vorticity profile (a) and streamlines (b)
for a 452 grid with no refinement. Figures c through f show the vorticity profile
(c), streamlines (d), refinement profile (yellow = fine, blue = coarse) (e) and
temperature gradient (f) for refinement based on the vorticity on a 452 grid.
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4.2.3 Refinement Based on Absolute Velocity

Figures 4.5a through 4.5d show the results for the absolute velocity, streamlines,
refinement and absolute value of the temperature gradient. Again, we see the
discontinuity in the temperature gradient. The refinement is indeed applied in the
area’s where velocity is higher, in this case the threshold was set to 0.03 ∆x/∆t.
Comparing the data in Table 2 for refining based on vorticity and absolute velocity
no concluding remarks can be made which more accurate, i.e. being similar to the
case with a 902 grid.
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(a) (b)

(c) (d)

Figure 4.5: The absolute velocity profile (a), streamlines (b), refinement profile
(yellow = fine, blue = coarse) (c) and temperature gradient (d) for refinement
based on the absolute velocity on a 452 grid.

4.3 Convection Melting of Gallium

Firstly, a grid convergence study is taken using the melting front as a criterion
for convergence. Secondly, is melting the front of the converged grid compared
to similar benchmark studies. Lastly, is the influence of refinement investigated
by comparing a fully coarse, fully fine and a partially refined grid in terms on
accuracy and calculation time.
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4.3.1 Grid Convergence

This study starts with an analysis on grid convergence. For this we define the
melting front profile as indicator as it represents an accumulation of errors, which
is also used in other studies [25, 29]. In Figure 4.6 we see the profiles for different
grid sizes, with equal aspect ratio’s. There is a relatively small difference between
the melting front of the 252× 180 grid and the 196× 140 grid, which implies that
the grid is converged or at least almost converged. Henceforth, the prior is chosen
in further analysis on refinement.

Figure 4.6: Grid convergence study for no refinement. The profiles represent the
melting front after 19 minutes which corresponds to a Fourier number of 3.9821

4.3.2 Comparison Study

In order to validate the accuracy of the model, we compare the position of the
melting front to other Benchmark studies for the exact same case, in 2D. The fol-
lowing studies have been chosen: Geadtke et al. which features a two-relaxation-
time (TRT) double distributions LB model [13], a double distribution multiple-
relaxation-time (MRT) model by Zhu et al. [51] and an OpenFOAM model based
on the linearised enthalpy method by Reus [19]. One can see that all cases, apart
from the TRT study by Geadtke match well. This might be beacuse, as afore-
mentioned, a TRT models permits numerical heat diffusion causing inaccuracies.
The fact that the model corresponds well with the MRT and OpenFOAM model
further solidifies that the developed method for the latent heat implementation
works correctly, also in a case where flow is involved.
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Figure 4.7: Comparison between melting fronts at 19 minutes for various
benchmark studies. The model by Geadtke [13] is an SRT model, the study by

Reus was done in OpenFOAM [19], the present model is for the case of a
252× 180 grid and the model by Zhu [51] is a double MRT model.

4.3.3 Adaptive Mesh Refinement for Cavity Melting

The adaptive mesh refinement is investigated for different refinement criteria: the
absolute velocity, the vorticity and the shear rate. For each criterion the melting
front is compared to a fully coarse and a fully fine grid.

Another criterion one could think of is the temperature gradient, i.e. where one
would refine if the temperature gradient would exceed a certain value. For a
liquid metal like Gallium the Prandtl number is very low, which means that the
temperature field quickly becomes rather smooth compared to the velocity field.
This means that the high temperature gradients vanishes soon and this criterion
has little added value.
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(a) (b)

(c) (d)

Figure 4.8: The absolute velocity profile (a), vorticity (b), shear rate (c) and
streamlines (d) for a 126× 90 coarse grid without refinement.

Adaptive Mesh Refinement Based on Absolute Velocity
Figure 4.9a shows a comparison of the melting fronts of a fully coarse grid, a
coarse grid with adaptive mesh refinement based on the velocity and a fully fine
grid. The chosen criterion for the velocity was |~u| > 0.06∆x/∆t. There is a rather
large difference between the fully coarse case (126× 90 grid) and the fully refined
case (252× 180 grid). This is because the grid is not converged yet at a grid size
of 126 × 90, as shown in Figure 4.6. The results for one level of refinement are
much better, but do not completely match the case for the fully refined grid at the
bottom of the domain. In Figure 4.8b and Figure 4.9b we can see that the vorticity
is high the bottom of the ”belly” of the melting front, yet this area is not refined.
This is however an area where the flow changes direction quite significantly judging
from 4.8d.
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(a) (b)

Figure 4.9: Comparison between a fully coarse grid (black line, 126× 90); a
coarse grid with one refinement for high velocity areas, bounds and phase change

region (red line, 126× 90) and a fully fine grid (blue line, 252× 180). The
profiles represent the melting front after 19 minutes which corresponds to a

Fourier number of 3.9821 (a). Representation of the grid fineness. Yellow marks
the refined cells, blue marks the coarse cells (b).

Adaptive Mesh Refinement Based on Vorticity

Figure 4.10a shows the melting front for refinement based on a high vorticity. The
criterion for the vorticity was ωupper = 0.06 ∆t−1 and ωlower = 0.03 ∆t−1. Figure
4.10b shows the refinement profile. Looking at Figure 4.8b it can be seen that
the high vorticity area at the bottom of the ”belly” of the melting front is indeed
refined. Furthermore, does the profile of the melting front match well with the
fully refined case.
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(a) (b)

Figure 4.10: Comparison between a fully coarse grid (black line, 126× 90); a
coarse grid with one refinement for high vorticity areas, bounds and phase

change region (red line, 126× 90) and a fully fine grid (blue line, 252× 180). The
profiles represent the melting front after 19 minutes which corresponds to a

Fourier number of 3.9821 (a). Representation of the grid fineness. Yellow marks
the refined cells, blue marks the coarse cells (b).

Adaptive Mesh Refinement Based on Shear Rate

The results for the last criterion are given in Figures 4.11a and 4.11b. Indeed the
areas of high shear rate are refined. However the refinement criterion might be
too strict. The threshold for refinement for the shear rate was set to γ̇ >0.0025
∆t−1. From Figures 4.8b and 4.8c one can see that the high shear rate area and
high vorticity area overlap at the bottom of the belly of the melting front. This
suggests that a looser criterion on the shear rate that guarantees that this area
is at least refined is probably also sufficient. This would decrease the number of
cells that need to be refined with consequentially saving computational time. Just
like the case for the refinement based on vorticity, the melting front for refinement
based on the shear rate matches well with the fully fine grid, see Figure 4.11a.
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(a) (b)

Figure 4.11: Comparison between a fully coarse grid (black line, 126× 90); a
coarse grid with one refinement for high shear rate areas, bounds and phase

change region (red line, 126× 90) and a fully fine grid (blue line, 252× 180). The
profiles represent the melting front after 19 minutes which corresponds to a

Fourier number of 3.9821 (a). Representation of the grid fineness. Yellow marks
the refined cells, blue marks the coarse cells (b).

4.3.4 Computational Time

Table 7 shows the results for the computational time for a fully fine grid, a fully
coarse grid and the cases for adaptive mesh refinement based on the velocity, vor-
ticity and shear rate. All three criteria lead to a grid which mostly consists of
coarse cells, which gives a reduction of about 3 to 4 times in computational ex-
pense. Comparing the three refinement criteria we see that a higher percentage of
fine cells leads to more computational time, as expected. The refining based on
the shear rate is significantly more expensive than refining based the vorticity. As
aforementioned, the prior would be cheaper if a looser criterion would have been
used.

The fact that the results for the vorticity are very close to the fully fine grid, with
so little refined cells, does not necessarily mean it is a superior criterion to the
shear rate. In fact, the vorticity only captures the rotation in the velocity field but
does not capture areas with high velocity gradients: ∂ux/∂ux and ∂uy/∂uy. The
shear rate, in the contrary, does capture these.

50



Table 7: Computational time for a case with a fine grid of 252×180 (first column),
a case for a coarse grid of 126× 90 with one refinement level based on the velocity
(second column), a case for a coarse grid of 126 × 90 with one refinement level
based on the vorticity (third column), a case for a coarse grid of 126×90 with one
refinement level based on the shear rate (fourth column) and a case for a 126× 90
grid with no refinement (fifth column). ’Refinement’ specifies the percentage of
cells in each level of refinement, ’Overhead %’ specifies the amount of overhead in
the calculations caused by the AMR and ’Total’ specifies the total computational
time.

Simulations
Dimensions 252× 180 126× 90 126× 90 126× 90 126× 90
# of Refinements 0 1 1 1 0
Criterion Velocity Vorticity Shear rate
Refinement level 0: 100.0% 90.2% 93.1% 71.9% 100.0%

level 1: 9.8% 6.9% 28.1%

overhead % 0.67% 8.88% 6.06% 4.79% 0.95%
overhead time (hours) 0.42 1.66 1.00 1.03 0.03
col and prop (hours) 62.45 17.01 15.42 20.50 3.65
total (hours) 62.86 18.67 16.42 21.53 3.68
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5 conclusion

The aims of this research were: to find a way to implement the latent in the FMLB
scheme, quantify the time reduction from using AMR in the Stefan Problem and
investigating criteria for AMR in convection melting in terms of computational
time and accuracy. All of this in the broader purpose to improve modeling of
convection melting. The methodology was tested by simulating benchmarks and
comparing the results to literature, which were: the Stefan Problem, natural con-
vection of air in a square cavity and convection melting in a rectangular cavity.

The first issue was solved by separating the total enthalpy in a latent heat part and
sensible heat part. The collision operation would only be applied to the sensible
heat after which the latent heat was added again to obtain the post-collision dis-
tribution for the enthalpy. The results from the Stefan Problem simulation show
that this implementation works as they match the theoretical solution.

In addition, did the simulations on the Stefan Problem also show potential for
time reduction, which was the second aim. By refining the phase change region a
significant reduction compared to a fully fine grid was found. For a single refine-
ment this amounted to ∼ 3.6 times and for two refinements ∼ 9.9 times.

Before testing the AMR criteria for the convection melting case, it was validated
that the grid-converged case on a fully fine grid matched well with other literature.
After which, three criteria for refinement were studied: absolute velocity, vorticity
and the shear rate. The latter two delivered a solution with similar melting front
to the fully fine grid. However, the velocity criterion was not effective on refining
key areas of the domain where the flow changed direction and as such the melting
front deviated. All three criteria led to a reduction in calculation time of about 3-4
times. In this specific case the vorticity could be a more efficient criterion since it
requires less cells to be refined. Be that as it may, it only captures regions where
the flow strongly changes direction but ignores certain regions with high velocity
gradients. For that reason the shear rate might still be a more reliable criterion.

Besides the current implementation of mesh refinement, there is still room for
improvement. In this research the streaming step was performed on the finest grid
only. Which means that for a higher refinement levels the streaming impedes the
savings in computational time. This could be fixed by applying the methodology
of Rohde et al. [34], where the coarser cells need not to be temporarily refined
for the streaming. Another interesting topic for the refinement scheme is to use
curve-linear coordinates, see the thesis by Reyes Barrazza [3]. Here certain parts
of the domain can be made fine by locally contracting the grid.
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5.0.1 Contributioms

The most important contributions of this researsch were:

• Finding a computationally efficient method to implement the latent heat of
melting in the thermal scheme for the Filter-Matrix method, using a source-
based implementation.

• Quantifying the reduction of computational time through applying adaptive
mesh refinement on the Stefan Problem, where the phase change region was
tracked and refined.

• Performing simulations on the cavity melting of gallium using a double-
distribution Filter Matrix scheme, enthalpy porosity method and the efficient
source based implementation of the latent heat.

• Comparing the absolute value of the velocity, vorticity and shear rate as
criteria for convection melting of gallium in terms of computational expense
and accuracy.

5.0.2 Code Repository

The code for this project is written in python and mostly parallelized in using
the Numba package. The code can be found on: https://gitlab.tudelft.nl/

mrohde/msc-project-thorben-besseling.git, or use the QR code:
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6 Appendix

6.0.1 Structure of the Algorithm

Figure 6.1: Structure of the algorithm. The thick arrows mark the order of opera-
tions through the algorithm, the thin arrows mark the inputs and outputs of data
and the subscripts mark whether a variable is on the coarse grid (n = 0) or fine
grid (n = 1).
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6.1 Results Stefan Problem

6.1.1 Nx = 64, Ny = 16, no refinement

Figure 6.2: Simulated temperature profile vs analytical solution for a 64× 16
grid and no refinement.

Figure 6.3: Simulated temperature profile vs analytical solution for a 64× 16
grid and no refinement.
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6.1.2 Nx = 32, Ny = 8, one level of refinement

Figure 6.4: Simulated temperature profile vs analytical solution for a 32× 8 grid
and one level of refinement.

Figure 6.5: Simulated temperature profile vs analytical solution for a 32× 8 grid
and one level of refinement.

62



6.1.3 Nx = 32, Ny = 8, no refinement

Figure 6.6: Simulated temperature profile vs analytical solution for a 32× 8 grid
and no refinement.

Figure 6.7: Simulated temperature profile vs analytical solution for a 32× 8 grid
and no refinement.
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6.1.4 Nx = 16, Ny = 4, two levels of refinement

Figure 6.8: Simulated temperature profile vs analytical solution for a 16× 4 grid
and two levels of refinement.

Figure 6.9: Simulated temperature profile vs analytical solution for a 16× 4 grid
and two levels of refinement.
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6.1.5 Nx = 16, Ny = 4, no refinement

Figure 6.10: Simulated temperature profile vs analytical solution for a 16× 4
grid and no refinement.

Figure 6.11: Simulated temperature profile vs analytical solution for a 16× 4
grid and no refinement.
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