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Absract
The Freeze Plug is a passive safety feature considered for molten salt reactors. The freeze plug should
melt as quickly as possible when a reactor shuts down. Using a filter matrix lattice Boltzmann method,
this thesis aims to model the melting process of a freeze plug. With a working model, the physical
parameters of the freeze plug can be researched to minimize melting times. The filter matrix method
is a nascent method that can still be optimized and researched.

Several benchmark studies were used to build up to a model for the melting of the freeze plug. The
first benchmark simulates natural convection in a square cavity. The second adds a conjugate boundary
by adding a solid wall at one of the sides. The third benchmark simulates melting a PCM using natural
convection. Simulating the first two benchmarks provided good results except in low Ra number regions
Ra = 104.

The freeze plug model was implemented following a benchmark proposed by Pater and Kaaks. The
temperature measurements inside the domain of the freeze plug without natural convection compared
well to the benchmark. As well as the melting front of the freeze plug without natural convection. The
freeze plug model with natural convection suffered from long compilation times. This made solving
issues tricky since large grid size was needed to improve stability. In the end, even for large grid sizes
the model did not end up being stable.

To improve the boundary method of the filter matrix, corners were specifically examined. Corners
are normally implemented in a special way in lattice Boltzmann wet node boundary methods. To find
whether the filter matrix method should also treat these specially, different corner implementations
were compared to benchmark results. The results show the most success using no special corner im-
plementation. Diagonal and pure adiabatic boundary orientation of corner normals showed the worst
results.

Different grid size options and kinematic viscosity values are tested to try to find a relation between
performance / compilation time and accuracy and stability. Overall it was found that the reaction
became unstable when the time conversion variable went to a value lower than 1.3 · 10−5. Stable
solutions were still obtained for Courant numbers higher than 1 but produced far more error.
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1
Introduction

Some say that nuclear energy is necessary for the transition from fossil fuels to clean energy sources.
Whether that is truly the case is beyond the scope of this project/paper. This paper will focus on the
design properties of the freeze plug utilized in a molten salt reactor.

1.1. Nuclear reactors
Nuclear reactors come in all shapes and sizes, but most have a few things in common. The object
of a reactor is to have neutrons interact with fissile atoms such as uranium-235. This interaction can
then cause fission, which also produces neutrons which then interact with more fuel, which causes more
fissions, and so on. In order to have a critical reactor, the amount of neutrons that are being produced
needs to be equal to the amount of neutrons that are lost due to reactions or leakage. In figure 1.1
this process is represented by a starting number of neutrons n that go through several processes. Each
process alters the number of neutrons which is represented by a factor σi. So, the number of neutrons
after fast fission has occurred would be equal to σfn. So, for the reactor to be critical σc = 1.

Figure 1.1: Schematic of neutron life cycle [1]

To increase the fission cross section of the neutrons, moderators are used to slow down the neutrons
through inelastic collisions. By slowing down the neutrons enough to make them ’thermal’, their fission

1



1.2. Molten salt reactor 2

cross-section is increased. [2] Some modern nuclear reactors do not use moderators but instead use
richer fuel and/or a higher neutron flux to get enough fission reactions. These reactors are called fast
reactors.

A material that is often used as a moderator is water. This material also functions as a coolant.

Figure 1.2: Schematic of a simple pressurized water reactor (PWR) [3]

The fission reactions create heat, which in the case of the pressurized water reactor in figure 1.2 is
stored in the coolant and then transformed into electricity.

1.2. Molten salt reactor
Molten salt reactors (MSRs) are a type of nuclear reactor in which the primary coolant or even the fuel
itself consists of a molten salt mixture. There are two primary subclasses, one in which fissile material
is dissolved in the salt mixture, and one in which the molten salt serves as the low pressure coolant to a
coated particle-fueled core similar to that employed in high temperature reactors (HTRs). [4] We will
focus on liquid-fueled MSRs. Some benefits of these liquid-fueled MSRs or Molten Salt Fast Reactors
(MSFRs) are:

• Price, Molten salt reactors should be relatively cheap compared to reactors from previous gener-
ations due to the possible lack of a thick containment unit and due to the high thermal efficiency
[5] [6]

• The MSFR creates very little TRU (transuranic) waste. This is among other things due to the
fast spectrum under which the MSFR operates.

Because of these benefits, some countries are quick in developing these reactors. In September 2018
China started construction of an experimental thorium-powered molten salt reactor. It was supposed
to finish construction but, the reactor was completed in 2021 and was granted an operating license in
2023. [7]
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Figure 1.3: A schematic of a molten salt reactor including the freeze plug (here called the freeze valve) and drain tank.

This research considers an MSFR breeder reactor under ambient pressure and at 750 ◦C. [10][11]

1.3. Freeze plug
Another advantage of the MSR is the possibility of another safety measure called the freeze plug. The
MSFR freeze plug, also called a freeze valve or cold plug, is a vertically oriented cylinder of salt located
in the draining pipe of the MSF. The freeze plug prevents the molten salt mixture from falling into
a separate containment tank. The plug consists of salt that is kept frozen/solid through the use of
external coolants that are placed outside the pipe. When there is a power outage or station blackout,
this plug melts, which causes the molten salt mixture to fall into the containment tank. This passive
safety feature prevents the reactor core from going critical due to a power outage. It is important that
the freeze plug melts fast enough to let the molten salt mixture in the drain tank before the reactor
temperature in the reactor core is higher than 1473 K [8]. According to previous research, this can
happen between 480 s [8] and 1600 s [9][10].

1.4. Earlier work
1.4.1. Freeze Plug
Quite a lot of earlier work has been done on the freeze plug.

In 2016 Swaroop had investigated the design of the freeze plug. He modeled the melting process
using a deformed geometry method in COMSOL (COMSOL is a finite element analyzer). In his research
he found that a simple single freeze plug placed in parallel with respect to gravity did not meet the
required melting time. [11]

In 2017, Shafer considered a grated design of the freeze plug. Using COMSOL Shafer found that
multiple smaller plugs might result in a faster melting process. [10] The same was also found and
confirmed by Makkinje [12] when researching this grated design with the new lattice Boltzmann method,
which will not be one of the goals of this paper. But it could be considered when there is a lot of extra
time available.

In 2020 Aji considered placing the freeze plug at an angle. If a ’normal’ vertical freeze plug would
be considered at a 0◦ angle. Aji found through finite-volume methods that natural convection in the
molten salt intensified with an increase in the angle of inclination.[13] That is, when the freeze plug



1.5. Research questions 4

(a) Single freeze plug standard design (b) Seven freeze plugs grated design

Figure 1.4: This figure shows a schematic of two freeze plug designs designs that were researched [10] [12]. The grey
represents Hastelloy-N, a blue circle represents a freeze plug.

is tilted more, it melts faster. Aji considered a different salt (FliBe) and significantly different plug
dimensions, so the results cannot be directly translated to the MSFR considered in this paper.

In 2022 van Dijk furthered research on the time dependence of the inclination angle of the freeze
plug. Van Dijk used a linearized enthalpy method to model the melting process of the freeze plug. His
model showed that placing the freeze plug on an incline of 45◦ results in the molten salt falling into the
containment chamber faster compared to the normal 0◦ incline.[14] However, van Dijk had problems
verifying his results, since they did not coincide with the results obtained by Shafer and Reus. [10][15]

In 2023 and 2024 Borstlap continued work on the Freeze plug. She developed a filter-matrix lattice
Bolzmann method with double distribution functions and used a wet-node boundary scheme to develop
a wet-node-solution-vector boundary condition. Separate models were used to model convective thermal
flows, conjugate heat transfer, and phase change. These models were then put together to create a large
model to analyze the behavior of the freeze plug. This large model worked well except when thermal
flow, conjugated heat transfer, and natural convection were combined. When all these aspects were
combined, the model showed severe instabilities. [16]

1.4.2. Numerical method
The lattice Boltzmann method has been a popular method for computational fluid dynamics since the
1990s. [17] Between then and now there has been much research on this method. Some relevant research
includes the Filter-Matrix method developed by Eggels et al. [18]. It has also been used by Zhuo et
al. the filter matrix method is the numerical foundation for this thesis. The further workings of this
method are discussed in section 3.2.

1.5. Research questions
This thesis has two main research goals. Goal one is to further develop and explore the filter-matrix
lattice Boltzmann method, with the goal to improve the accuracy and stability of this method. Specif-
ically, the boundary method and the stability of this LBM method. The second goal is to be able to
model the freeze plug using the FMLBM method and find out which parameters have the greatest effect
on minimizing melting times.

• How can the boundary treatment and overall stability of the filter-matrix lattice Boltzmann
method be improved or optimized in the case of melting problems that involve natural convection?

• Which physical parameters influence the melting time of a freeze plug, and how can these be
adjusted to minimize melting duration?



1.5. Research questions 5

(a) Transient analysis from van Dijk using a 1.1 million mesh at
t=5 seconds and a freeze plug at an inclination angle of 45 ◦

(b) Transient analysis from van Dijk using a 1.1
million mesh at t=730 seconds and a freeze plug at

an inclination angle of 45 ◦

Figure 1.5: Two snapshots from the transient analysis from van Dijk show that the molten salt is able to reach the
containment chamber at t=730 seconds. This is faster than the 0◦ transient analysis performed by van Dijk which

showed an opening at t=1520 seconds.



2
Theoretical Framework

2.1. Fluid Dynamics
The most fundamental equations that are used in Fluid Dynamics (FD) are the conservation laws for
mass and momentum. These conservation laws can be transformed into the continuity equation and
the Navier-Stokes equations respectively. [19] These equations describe the macroscopic phenomena of
fluid motion.

Dρ

Dt
+ ρ∇ · u = 0 (2.1)

ρ
Du

Dt
= −∇p+∇ ·

[
µ

(
∇u+ (∇u)

T − 2

3
(∇ · u) I

)]
+∇ [ζ (∇ · u)] + ρf (2.2)

Equation 2.1 and 2.2 are the Navier Stokes equations. On the left-hand side, the term ρDu
Dt represents

the fluid’s inertial response the rate of change of momentum per unit volume. On the right-hand side,
there are several actors that influence the fluid. The term −∇p determines the pressure gradients.
The viscous stress term, involving the dynamic viscosity µ, captures internal friction due to velocity
gradients and adjusts for compressibility effects. An additional term involving the bulk viscosity ζ
models resistance to uniform compression or expansion, relevant in compressible flows. In this thesis
only incompressible flows are considered, and this term is neglected. Since ∇ · u = 0 is true when
dealing with incompressible flows, the term 2

3 (∇ · u) I is also neglected. Finally, ρf includes external
body forces such as gravity. Together, these terms describe the balance of momentum in a viscous,
compressible fluid. To close this system of equations, the equation of state is used. This equation
differs based on the situation that is investigated. These equations cannot be solved analytically for
all but the simplest cases. They are not yet proven to be unsolvable analytically, but they are on the
millenium prize problem list, so at the very least they are currently neigh impossible to solve.

Solving these equations through conventional methods, i.e. through means of finite difference, finite
volume, or finite element, however, is extremely challenging.

2.2. Relevant Physical Phenomena for the Freeze Plug
To accurately model the melting of a freeze plug several forms of heat transfer need to be modeled.
These forms can be modeled and tested separate, after which they are combined and implemented in
relevant simulations.

2.2.1. Natural Convection
Natural convection describes the effect that occurs when the density of a fluid changes due to the
temperature change. This density change combined with gravitational forces causes motion within a
fluid. This is due to the buoyancy force acting on the present fluids.

Fbuoancy = ρV g (2.3)

6
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Figure 2.1: An example of velocity streamlines in a heated square cavity showing the effects of natural convection.[21]

When rewriting this to a body force this buoyancy term becomes:

fbuoancy = ρg (2.4)

The net-buoyancy force that would work on the fluid is

fbuoancy = ∆ρg = (ρ1 − ρ0)g (2.5)

Where ρ1 is the density of the fluid or body that is surrounded by a fluid with density ρ0.
A well known approximation for the density is used in the Boussinesq approximation. It states

that density consist of a consistent part, and a part that is linearly dependent on temperature. When
combined with a taylor expansion, this leads to the following equation [20]:

ρ(T ) ≈ ρ0 − ρ0α (T − T0) . (2.6)

This leads to the following buoyancy force that is applied when dealing with gravity in heated fluids.

fbuoancy = gρ0α (T − T0) (2.7)

When applied to the heating of a fluid inside a square cavity this causes the heated fluid to rise.
This causes velocity streams like the one in figure 2.1.

When applied to a phase change melting problem the influence of natural convection is determined
by the phase of the melting process and the dimensionless Rayleigh (Ra) and Prandtl (Pr) numbers.
[22]

Ra =
∆TαN3g

κν
, Pr = ν

κ
(2.8)

In case of low Rayleigh numbers the basic temperature profile is linear. For high Rayleigh numbers
the temperature profile and velocity streams become buoyancy driven.

The Prandtl number characterizes the ratio between momentum diffusivity and thermal diffusivity,
thereby determining the relative thickness of the velocity and thermal boundary layers in a natural
convection system and influencing the overall heat transfer rate.

The phase of the melting process is also important. Since natural convection is only able to influence
heat transfer through moving particles, only molten fluid material experiences the effects of natural
convection. So, as more and more material melts, the effects of natural convection become larger and
larger. At first there is a conduction regime where conduction is the primary source of heat transfer.
Then after some time the melting process enters the convection regime where convection is the primary
source of heat transfer.
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2.2.2. Conjugate heat transfer
When two different materials transfer heat to each other, typically a form of Fourier’s law of heat
conduction is used:

q̈ = −λ
∂T

∂x
(2.9)

q̈ represents the heat flux pointed in the direction of the interface that stands between the two
materials. At this interface 2 boundary conditions apply. The temperature of material 1 must be equal
to the temperature of material 2 at the boundary. And the heat flux of material 1 must be equal to the
heat flux of material 2 at the boundary.[23] So for the temperature the following is true at the interface:

T1,W = T2,W (2.10)

For the heat flux the following boundary condition is derived:

q̈1,W = q̈2,W (2.11)

λ1,W
∂T

∂x

∣∣∣∣
1,W

= λ2,W
∂T

∂x

∣∣∣∣
2,W

(2.12)

How this is solved numerically will be covered in section 3.4.3.

2.2.3. Enthalpy balance for melting
The freeze plug melts when it undergoes a phase change from solid to fluid. To achieve this phase change
a certain threshold of energy needs to be reached. This energy can be retrieved from the surroundings
of the freeze plug. And since energy is conserved in the domain of the simulation for this thesis, this can
best be shown using an energy balance. The energy balance is derived from the Navier-Stokes equations
2.1 and 2.2. [24]

The simplified equations that solve mass and momentum through use of the LBM are

∂ρ

∂t
+∇ · (ρu) = 0 (2.13)

ρ
Du
Dt

= −∇P +∇ · (ρν∇u) + F (2.14)

The total enthalpy H of a system can be divided into latent heat and sensible heat

H = hS + hL = hS + fLL (2.15)

a sensible part hS and a latent part fLL. Now the sensible part is the energy that is measurable
through measuring the temperature, and thus it fully depends on temperature. The latent part is the
energy that a substance gains during phase change, where the temperature does not alter. So, when
the substance is solid fL = 0 and when the substance has turned fluid fL = 1. This phenomenon can
also be viewed in the subfigure b of figure 2.2 Seperating the enthalpy into two parts is an important
step to reach an energy balance that fully depends on enthalpy, while stil relaying information about
the temperature. This is called the total-enthalpy based approach. [25]

The total enthalpy of a system is defined as [26]

ρφ
DHφ

Dt
= −∇ · �qS. (2.16)

Here φ indicates the state of the substance when the equation is applied. φ denotes between 3
possible states: liquid, mushy and solid.

The source term for pure substances q̈S simplifies to

q̈S =
∂(ρfLL)

∂t
. (2.17)

Two more assumptions lead to the final total enthalpy based balance equation. First it is assumed
that the density and specific heat of the material are the same in both fluid, solid and mushy conditions.
The mushy condition of a material is during the phase change when it is neither solid or fluid. In this
regime 0 < fL < 1.
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Figure 2.2: The enthalpy change with a mushy phase change (a). And the enthalpy change with an isothermal phase
change at Tm (b)

The second assumption is that ∇fL ≈ 0. This assumption can be made since velocities near the
mushy zone are approximately zero.

This all leads to the final energy balance

∂Hφ

∂t
+ u · ∇hφ

S = ∇ · (κφ∇hφ
S) (2.18)

When solving the enthalpy, the temperature can also be recovered through these relations. [25]

T =


H/cP,S T < Ts

Ts +
H−Hs

Hl−Hs
(Tl − Ts) Ts ⩽ T ⩽ Tl

Tl + (H −Hl) /cP,L T > Tl

(2.19)

Here the subscript s signifies the temperature/enthalpy when the substance becomes completely
solid. So that is equal to the maximum temperature at which it is solid. And subscript l signifies the
minimum temperature for which the material is considered completely fluid, so fL = 1. And from these
relations and equation 2.15 a definition of fL for different phase regimes can also be gathered.

fL =


0 if H < Hs
H−Hs

Hl−Hs
if Hs ≤ H < Hl

1 if H ≥ Hl

(2.20)

The same can be done for the specific heat and thermal conductivity, which depends on the material
phase state. For the mushy state the macroscopic value is determined through a simple first order
extrapolation. Which in method differs from previous research. Previous research used either the mean
value [16] cP =

cP,S+cP,L

2 or the harmonic mean value [27] cP,ref =
2cP,LcP,S

cP,L+cP,S
. However due to the nature

of of the fluid fraction this method resembles better the correct value for the specific heat and thermal
conductivity.

cP =

 cP,S if H < Hs

cP,S(1− fL) + cP,LfL if Hs ≤ H < Hl

cP,L if H ≥ Hl

(2.21)

λ =

 λS if H < Hs

λS(1− fL) + λLfL if Hs ≤ H < Hl

λL if H ≥ Hl

(2.22)

An important dimensionless number for melting problems is the Stefan (Ste) number.

Ste =
cp∆T

L
(2.23)

Physically, Ste compares the thermal energy available to raise the temperature of the material to
the energy required to convert solid to liquid. Thus:

• A large Ste number implies abundant sensible heat relative to latent heat, leading to a quickly
moving melting interface and strong buoyancy forces.

• A small Ste number indicates most energy is consumed by melting rather than heating, producing
a thin, slowly evolving melt layer with weak buoyancy forces.
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2.3. Lattice Boltzmann Method
The Lattice Boltzmann method is a particle distribution-based method based on the Boltzmann equation
instead of conservation equations 2.1 2.2.

2.3.1. Kinetic Theory
The base of the Lattice Boltzmann method lies in kinetic theory. This theory works on a mesoscopic
scale instead of a macroscopic scale. Kinetic theory describes the distribution of particles. The theory
relies on the use of the distribution function f(x, ξ, t). The distribution function represents the density
of particles with velocity ξ at position x at time t. [28]

This mesoscopic variable can be translated to macroscopic variables through:

ρ(x, t) =

∫
f(x, ξ, t) d3ξ (2.24)

ρ(x, t)u(x, t) =

∫
ξf(x, ξ, t) d3ξ. (2.25)

ρ(x, t)E(x, t) =
1

2

∫
|ξ|2f(x, ξ, t) d3ξ. (2.26)

In these equations u represents the fluid velocity. Now we can also derive the Boltzmann equation.

∂f

∂t
+ ξβ

∂f

∂xβ
+

Fβ

ρ

∂f

∂ξβ
= Ω(f) (2.27)

This equation describes the total differential of the distribution function. Ω(f) = df
dt and is called

the collision operator. The first two terms on the left hand side represent the distribution function
changing through motion of the particle velocities xi. The third term on the left-hand side represents
the forces acting on this velocity. [28]

2.3.2. Discretisation and Velocity Sets
By discretizing the Boltzmann equation we end up with the lattice Boltzmann equation:

fi(x + ci∆t, t+∆t) = fi(x, t) + ∆tΩi(x, t). (2.28)

This discretized version of the lattice Boltzmann equation can be used to solve numerical problems
on a square lattice. The distances between the lattice points are defined by the lattice spacing constant:
∆x. The time steps are defined by the lattice time step: ∆t, more on both these lattice constants and
other lattice constants and parameters can be found in Section 3.1.1. Ω denotes the collision operator,
this operator represents the collisions between particles that result in a change in the velocity density.
Finally c indicates the discrete velocity vector.

The i in the lattice Boltzmann equation denotes the direction in which the distribution function is
pointing and in which direction the ’particles’ will travel on the next lattice time step. In some cases
there is also a rest velocity which is often denoted by i = 0. This rest velocity signifies the particles
that have no intention of traveling to any neighboring lattice points.

There are a number of possible dimensions and directions that can be chosen for use of the lattice
Boltzmann equation. All the different options are called velocity sets. These are characterized by
their dimension and the amount of directions, respectively. So a 1 dimensional 3 directional (1 rest
velocity) velocity set is called: D1Q3. Different velocity sets can be used for different kinds of problems.
For example: D3Q27 is more computationally taxing than D3Q19, but some truncation terms used in
D3Q19 are not rotationally invariant, leading to problems in non-linear regions, i.e. turbulent regions.
[29]

Investigating the effect of the angle of incidence is a two-dimensional problem. Because of that a
D2Q9 velocity set suffices and is chosen over D3 velocity sets because of computational reasons. In
fact, some research regarding fluid flow use a D2Q4 velocity set for computational efficiency. [30] Using
this method could be considered for future research if it proves accurate enough, since it would reduce
computation times significantly.
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Figure 2.3: Schematic of a D2Q9 velocity set. With ei denoting the direction of the velocity. [31]

2.3.3. Chapman-Enskog analysis
2.3.4. Double Distribution Function
So far, only the momentum distribution has been taken into account in the LBM. To tackle the heat
flow during this project the double distribution function method will be used. This method uses a
second distribution function that describes the heat flow. The momentum distribution function f and
the heat distribution function g are subsequently coupled in the collision step of the LBM method.

The lattice Boltzmann equation for the heat distribution function also follows the same rules as the
lattice Boltzmann equation for the momentum distribution. [32]

gi(x + ci∆t, t+∆t) = gi(x, t) + ∆tΩg
i (x, t). (2.29)

This can also be done for the enthalpy by creating an enthalpy distribution function called m.

mi(x + ci∆t, t+∆t) = mi(x, t) + ∆tΩm
i (x, t). (2.30)

The enthalpy and heat distribution functions contain information that can be translated to macro-
scopic variables as in equations 2.24 2.26 2.25. In a discretized form, the temperature T and the enthalpy
H can be retrieved from:

T (x, t) =
∑
i

gi(x, t) (2.31)

H(x, t) =
∑
i

mi(x, t) (2.32)

2.3.5. Advantages and disadvantages LBM
When comparing the LBM method with more traditional methods such as finite volume, there is no
one method better than the other. Each method has its own advantages and disadvantages. Here are
some of the reasons to choose the LBM method for the research on the freeze plug.

• The heaviest computations of the LBM are local, making some solutions easier and giving the
option for parallelisation of the computations. [33] [34]

• LBM is well suited for multiphase and multicomponent flow in complex geometries. Making it
well suited for the multiphase flow calculations of the freeze plug.

However, the LBM also comes with some disadvantages when analysing the freeze plug behaviour.
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• Adding the ability to simulate compressable flows is not straightforward since this would result in
the collision operator having to be rewritten. [33]

• The range of viscosities and densities are somewhat limited in multiphase and multicomponent
simulations. [33]



3
Numerical Method

For this thesis the Lattice Boltzmann Method is used for all simulations. How these simulations function
and more is discussed in this chapter.

3.1. Lattice units
3.1.1. Conversion factors
The parameters used by the lattice Boltzmann method are in lattice units instead of physical units.
Physical units can be related to lattice units through the use of conversion factors and dimensionless
numbers.

The conversion factors can be found using the same process that is used in non-dimensionalisation.
A quantity can be made non-dimensional by dividing that quantity by a given reference quantity of
the same dimension. In the Lattice Boltzmann method the resulting dimensionless factor is called the
conversion factor. For length we get:

Cl =
∆x

∆x∗ (3.1)

Here ∆x is the ordinary distance between cells of the system with unit [m], ∆x∗ is the chosen
reference distance, and Cl is the resulting length conversion factor. The same can be done for the
density conversion factor and the viscosity conversion factor.

Cρ =
ρ

ρ∗
, Cν =

ν

ν∗
(3.2)

Having 3 independent conversion factors is enough to generate the dimension of any physical quantity.
[28] So with the conversion factors Cl, Cρ and Cν any other physical quantity can be transformed into
lattice units. The other conversion factors that are useful are the following. In this simulation the
temperature is not set to Lattice units and thus CT = 1

Ct =
C2

l

Cν
, Cκ = Cν , Cλ =

C3
ν

C5
l CT

, CCp =
C2

ν

C2
l CT

, Cg =
C2

ν

C3
l

, CL =
C2

l

Cν
(3.3)

Where t stands for time κ is the heat capacity, λ is the thermal conductivity, Cp is the thermal
diffusivity, g is the gravitational acceleration and L is the latent heat. In the LBM Cl is also defined
by Cl = Lx/Nx, where Lx is the physical length of the system in x and Nx is the amount of cells used
on the x axis.

It is standard in the LBM to set ∆x∗ and ∆ρ∗ to 1. This leaves 2 free parameters that can be
chosen. System size Nx and reference viscosity ν∗.

13
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3.1.2. Choice of free parameters
A typical stability restraint in CFD (Computational Fluid Dynamics) is the Courant number. [35]

C = |u|∆t

∆x
(3.4)

From a numerical viewpoint, the time integration schemes can be broadly divided into three groups:
explicit, implicit and semi-implicit. Roughly speaking, in explicit schemes the solution at the time step
n+1 is calculated using the known values of the solution at time n. Conversely, in an implicit scheme,
the solution at time n+1 is calculated using unknown values of the solution at time n+1, hence requiring
the solution of an ODE. Lastly, semi-implicit schemes use both the solution at time n and n+1. [36]
The method used in this thesis is explicit as can be seen at the end of the previous chapter. For explicit
schemes, the CourantFriedrichsLewy (CFL) condition applies. [36]

Co =
u∆t
∆x ≤ Comax (3.5)

The Courant number is so useful since it both contains the physical speed u| at which the fluid is
advected and the speed at which the information passes through the simulation ∆x

∆t . If the physical
speed is greater than the information carry speed the simulation becomes unstable. Because of this it
is standard practice to keep C ≤ 1. Since the ∆x in equation 3.4 is the free parameter ∆x∗ in the LBM
this limits how small ∆x∗ can be based on the max velocity of the simulation.

Something that is closely related to the free lattice parameters ∆x∗ and ν∗ is the grid Reynolds
number Reg. This is defined as:

Reg =
U∗
max∆x∗

ν∗
(3.6)

For the BGK operator method parameters that are used are the relaxation parameter τ and the
lattice speed of sound cs. The kinematic viscosity can be translated into these parameters by the
following equation.

ν = c2s(τ −∆t/2) (3.7)

In the BGK method a necessary condition is τ
∆t ≥

1
2 . This is due to the way the lattice Boltzmann

Equation solves the Navier Stokes equations, and otherwise the BGK method causes negative viscosities
resulting in instability.[28] This is not directly useful information for the stability of the FMLBM, but
it can be used in combination with the grid Reynolds number.

Reg =
U⋆

max ∆x⋆

ν⋆
=

U⋆
max

c⋆2s
(
τ⋆ − 1

2

) =⇒ τ⋆ =
1

2
+

U⋆
max

c⋆2s Reg
. (3.8)

Combining this with the relaxation time condition it can be deduced that the Reg should be of O(10)
or smaller.[28] The physical interpretation of this is the following: This also gives more restrictions to
the free parameters ∆x∗ and ν∗ dependent on U∗

max

3.2. FMLBM Collision
3.2.1. Collision operators
In 2.3 a basis for the LBM is introduced. The collision operator inside the LBE can be defined in many
different ways. The BhatnagarGrossKrook collision operator (BGK)[37] proposed by Bhatnagar, Gross
and Krook is one of the simpler operators.

ΩBGK,i (fi) = −τ−1 (fi − feq
i ) (3.9)

Here τ is the relaxation time, and feq
i is the Maxwell-Boltzmann distribution of ci for a given macro-

scopic velocity u and density ρ [38]. Physically this can be interpreted as the tendency of the distribution
fi to reach it’s equilibrium state feq

i in time τ . [28] Inputting this definition of the collision operator in
equation 2.27 gives the following result which is called the lattice BGK equation.

fi (x+ ci∆t, t+∆t) = fi(x, t)−
∆t

τ
(fi(x, t)− f eq

i (x, t)) (3.10)
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. Even though the BGK operator is quite simple it works well. With this operator the LBE is able to
reproduce the continuity and Navier-Stokes equations. The main drawbacks of the BGK operator are
accuracy and stability issues. There are other operators that try to tackle these issues with more than
one relaxation time, these are called two-relaxation time and multiple-relaxation-time operators. The
basic idea behind a multiple-relaxation time operator is that there are multiple relaxation times which
combine with a certain transformation matrix.

ΩMRT (f) = −
(
M−1SM

)
(f − feq) (3.11)

Where S = diag (τρ, τe, τϵ, τj , τq, τj , τq, τs, τs)−1, and M is just an orthogonal transform matrix. Use of
an MRT operator results in more stability and accuracy due to more degrees of freedom. [39]

The collision operator for the filter matrix method looks somewhat different, since it does not rely
on the equilibrium distribution directly.

ΩFM,i = ρωi

(
(ciα∂α) (ciβuβ)

c2s
− ∂αuα

)
(3.12)

.
The lattice Boltzmann equation using this collision operator can be performed using a staggered,

explicit, first-order scheme. [40]

fi
(
xα ± ciα

∆t
2 , t± ∆t

2

)
= fi (xα, t)± 1

2∆tΩi (fi) +O
(
∆t2

)
=

ρωi

(
1 + ciαuα

c2s
+

(ciαuα)(ciβuβ)
2c4s

− u2
α

2c2s
+
(

−ν
c2s

± ∆t
2

) [
(ciα∂α)(ciβuβ)

c2s
− ∂αuα

])
+O

(
∆t2

) (3.13)

This can (and should) be more concisely written as

fi

(
xα ± ciα

∆t

2
, t± ∆t

2

)
= ωiEikα

±
k (xα, t) (3.14)

ωi is a weights vector, Eik is the filter matrix and α±
k (xα, t) is the solution vector. The weights

vector is defined as:
ω = [

4

9
,
1

9
,
1

9
,
1

9
,
1

9
,
1

36
,
1

36
,
1

36
,
1

36
], (3.15)

for a D2Q9 scheme. The filter matrix and the solution vector are distribution scheme dependent and
will be further derived below.

3.2.2. Momentum
Equation 3.14 is the basis for the use of the FMLBM in momentum and density simulations. The filter
matrix is square and reversible. Because of this the solution vector can be gained from

α±
k (x, t) =

∑
i

Ekifi

(
x ± ci∆t

2
, t± ∆t

2

)
(3.16)

For a D2Q9 scheme the solution vector results in

α±
k (xα, t) =



ρ
ρux ± ∆t

2 fx
ρuy ± ∆t

2 fy
3ρuxux + ρ(−6ν ±∆t)∂ux

∂x

3ρuxuy + ρ−6ν±∆t
2

(
∂ux

∂y +
∂uy

∂x

)
3ρuxuy + ρ(−6ν ±∆t)

∂uy

∂y

T±
1

T±
2

F±


(3.17)

Here the ± sign indicates whether the solution vector is from the preceding timestep (−) or from the
subsequent timestep (+). The last three terms T±

1 , T±
2 and F± are higher order terms that originate
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from the O
(
∆t2

)
term and are thus unphysical. These terms can be neglected and in calculations are

set to 0. The filter matrix is defined as

Eik =



1
3cix
3ciy

3c2ix−1
2

3cixciy
3c2iy−1

2
3cix(3c

2
iy−1)

2
3ciy(3c

2
ix−1)

2
(3c2ix−1)(3c2iy−1)

2


(3.18)

In practice the algorithm to perform timesteps is as follows:

1. Determine α−
k (x, t) through use of the inverse filter matrix.

α−
k (xα, t) = (ωiEik)

−1
fi

(
xα − ciα

∆t

2
, t− ∆t

2

)
(3.19)

2. Through α−
k (x, t) it is easy to obtain α+

k (x, t) through use of equation 3.17 and changing the
necessary - signs to + signs.

3. And by using the obtained α+
k (x, t) the momentum distribution function for the new timestep can

be gained.

fi

(
xα + ciα

∆t

2
, t+

∆t

2

)
= ωiEikα

+
k (xα, t) (3.20)

3.2.3. Temperature
The lattice Boltzmann equation for the temperature is very similar to the lattice Boltzmann equation for
momentum. The differences are the use of the heat distribution function gi(x, t) and the accompanied
change in solution vector. So now the Filter Matrix Lattice Boltzmann equation looks like this

gi

(
xα ± ciα

∆t

2
, t± ∆t

2

)
= ωiEikβ

±
k (xα, t) (3.21)

Now β±
k (xα, t) represents the solution vector and can be obtained similarly through

β±
k (x, t) =

∑
i

Ekigi

(
x ± ci∆t

2
, t± ∆t

2

)
(3.22)

In vector form this ends up being equivalent to [41]

β±
k (xα, t) =



T
Tux + −6κ±∆t

6
∂T
∂x

Tuy +
−6κ±∆t

6
∂T
∂y

S±
1

S±
2

S±
3

T±
1

T±
2

F±


(3.23)

S1,2,3, T1,2 and F can once again be neglected and set to 0 in simulations since they are second-,
third-, and fourth-order terms respectively. The filter matrix remains the same for temperature since
the same D2Q9 scheme is used.
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3.2.4. Enthalpy
The enthalpy variation is slightly different. First we divide the total Enthalpy into 2 parts

H = cPT + fLL (3.24)

a sensible part CPT and a latent part fLL.
The enthalpy distribution function is also divided into a sensible and latent part.

mi = ms
i +ml

i (3.25)

The latent part only has a stationary component which is equal to fLL. This is under the assumption
that the latent heat does not diffuse (it does not disperse energy to it’s surroundings). [42]

For ms
i the same process is applied that was used for the temperature and momentum distributions.

ms
i

(
xα ± ciα

∆t

2
, t± ∆t

2

)
= ωiEikγ

±
k (xα, t) (3.26)

And the new solution vector for the sensible enthalpyγ±
k (xα, t) can be found in the same manner as

well.

γ±
k (xα, t) =



h
hux + −6κ±∆t

6
∂h
∂x

huy +
−6κ±∆t

6
∂h
∂y

S±
1

S±
2

S±
3

T±
1

T±
2

F±


(3.27)

And once again all unphysical higher order terms are negligible and set to 0 in calculations.

3.3. Streaming
The collision step of the Lattice Boltzmann Method is the step where the collision operator is alters the
distribution vector on the current cell. In formula form this looks like this

f∗
i (xα, t) = fi(xα, t) + ∆tΩg

i (xα, t) (3.28)

To change the distribution function values on other cells another step is required

f (xα + ciα∆t, t+∆t) = f∗
i (xα, t) (3.29)

So practically speaking the act of streaming is the act of copying the memory content of f∗
i (xα, t) to

the lattice site xα+ciα
∆t
2 . One thing to be careful of when rewriting the memory at the new lattice site

is to no change memory that is still needed in the other streaming steps. For example, if the memory
at site (3, 3) is changed from site (3, 2) then the data given by site (3, 3) onward might be faulty. There
are ways to tackle this problem, one might two data sets while streaming, one for reading data and one
for writing the new data.

3.3.1. Opposite Streaming direction
The implementation that is used is to take the 3d distribution array g[d,i,j]. Here d stands for the
velocity direction and i and j are the coordinates of the lattice cell or α. For each lattice direction
d ∈ {2, . . . , 9}, and for each cell (i, j) , the destination location (idest, jdest) is computed and a source
location (isrc, jsrc) is computed through use of the following index calculators.

i
(p)
1 = Nx + 1− i, i

(p)
2 = i

(p)
1 − 1, i

(n)
1 = i, i

(n)
2 = i+ 1,

and
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(a) link wise boundary method.

(b) wet node boundary method

Figure 3.1: Schematic of both boundary methods. The computational boundary of the link wise method is placed at a
distance of ∆x

2
from the Physical boundary.

j
(p)
1 = Ny + 1− j, j

(p)
2 = j

(p)
1 − 1, j

(n)
1 = j, j

(n)
2 = j + 1,

For each direction, the destination and source indices are chosen according to the direction of
propagation. For example, in direction d = 2 (eastward), the destination index is (ip1 , j) and the source
index is (ip2 , j). Similarly, for d = 3 (westward), the destination is (in1 , j) and the source is (in2 , j). In
diagonal directions like d = 6 (northeast), we write:

g[6, ip1 , j
p
1 ] = g[6, ip2 , j

p
2 ],

where the source cell lies ahead in both i and j directions.
Because the destination indices mirror the grid along both axes (e.g., idest = x2+2− i), and because

the outer loops increment i and j from the lower to upper bounds, each write operation targets a
memory location that has not yet been visited by the loop. Simultaneously, the source cell lies ahead
in the loop order and thus still contains the unmodified data from the previous timestep. This ensures
that no cell is read after it has been overwritten, enabling correct and efficient in-place propagation
without the need for temporary storage. This approach is conceptually similar to the Esoteric Twist
algorithm [43] which uses mirrored indexing and loop reordering to achieve conflict-free streaming in a
single pass.

3.4. Boundary Conditions
There are 2 different main methods of applying boundary conditions for the FMLBM. There are link
wise methods and wet node methods.

3.4.1. Bounce back methods
The prime example of link-wise boundary conditions are bounce back methods.

The principle of bounce back methods is that populations hitting a solid wall are reflected back to
where they originally came from. This would work for all three relevant distributions. The bounce back
implies no flux across boundaries since no populations get through the boundary. It also implies a no
slip boundary since there is no relative transverse motion.

Halfway bounce back (HBB) is implemented through the following rule at the boundary

fi (x, t) = f⋆
j (x, t+∆t) (3.30)
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Figure 3.2: The physical representation of a halfway bounce back boundary interaction. During the collision process
both normal and tangential momentum components are reversed. The average particle momentum, before and after

collision, is ⟨mv⟩ = (mv(t) +mv(t+∆t))/2 = 0 [28]

Where i notates the opposite directional index of j. Since the difference between fi and f⋆
j is ∆t,

the bounce occurs at t+ ∆t
2 at the computational boundary.

Another popular bounce back method is the full way bounce back method (FBB). The full bounce
back method changes the boundary rule from HBB slightly to

fi (x, t−∆t) = f⋆
j (x, t+∆t) (3.31)

Between t − ∆t and t + ∆t (so at t) the information aboutthe distribution is stored in a solid node
beyond the computational boundary. This method thus requires nodes that are set slightly in the solid
domain.

Neither of these bounce back methods were used to generate the results of this thesis. However,
these methods were used to verify the working of the filter matrix boundary method.

3.4.2. Filter matrix boundary method
The wet node boundary technique is a little different. Instead of the physical boundary being outside
of the computational domain, it is instead the last node inside the computational domain which lies
on the physical boundary. [44] The main idea of the wet node approach is to guesstimate what the
distribution function of the boundary wet node should be. This estimation is made using the surrounding
non boundary nodes and extrapolating and by setting specific rules depending on what type of oundary
condition is present. There are 3 different types of boundary conditions that are used in this thesis, a
Dirichlet boundary condition, a Neumann boundary condition and a conjugated boundary condition.

Now for this thesis a specific wet node boundary method is used that was originally proposed by
M. Rohde. [40] The proposed method integrates the filter matrix method with a wet node boundary
method to create the filter matrix boundary method, or lattice boltzmann filter matrix boundary method
(LBFMBM) for long. The filter matrix method uses solution vectors from which macroscopic quantities
such as temperature and density can be easily translated. However, these macroscopic quantities can
also be easily translated back into the solution vectors. This makes setting boundary conditions using
the filter matrix boundary method more straightforward.

The following are the steps to perform the filter matrix boundary method for the temperature field.
Step 1 Estimate the solution vector at the boundary. This is done using a first order spatial

extrapolation.
(βi=0

k )extr = 2βi=1
k − βi=2

k (3.32)

Previous research done by L. Borstlap investigated the accuracy of other orders of spatial extrap-
olation as well as temporal extrapolation. The results found by L. Borstlap showed inaccurate non
converging results for 0th order spatial extrapolation, (βi=0

k )extr = βi=1
k , and first order temporal ex-

trapolation, (βi=0,t
k )extr = βi=1,t

k −βi=1,t−1
k +βi=0,t−1

k . It also showed little difference in result accuracy
between first order spatial extrapolation and higher orders of extrapolation. [16]

Step 2 Determine the temperature at the boundary according to the boundary condition. Dirichlet
For the Dirichlet boundary condition the temperature at the boundary is a set temperature.

TBC = TDir (3.33)

Neumann The Neumann boundary condition sets the flux through the boundary to a known value.
In the case of this thesis all Neumann boundaries are adiabatic boundaries.



3.4. Boundary Conditions 20

dT

dxi
= 0 (3.34)

At the boundary a 2nd order extrapolation is used to determine the temperature at the boundary
and transform the Neumann boundary condition into a Dirichlet boundary condition.

TBC =
4

3
βi=1 − 1

3
βi=2 (3.35)

Step 3 Set up the final estimation of the solution vector.

βi=0
k =

(
βi=0
k

)
extrp −



Textrp
uxTextrp
uyTextrp

0
0
0
0
0
0


+



TBC

uxTBC

uyTBC

0
0
0
0
0
0


(3.36)

The initial estimation of
(
βi=0
k

)
extrp is adjusted with the TBC found using the Boundary conditions.

Textr is defined as
(
βi=0
0

)
extrp and represents the initial guess of the temperature based on extrapolation.

Step 4 Finally for the collision and streaming steps the distribution functions at the boundary
are needed, not the solution vectors. So the solution vectors are translated back to the distribution
functions using the FM matrix multiplication.

gi(x = 0, t) =
∑
k

ωiEikβ
i=0
k (3.37)

These steps work similar for the density distribution and the enthalpy distribution.
Changes for density distribution The most important difference is the difference in boundary

condition. All boundaries are assumed to be no-slip boundaries. This can be assumed since the Rayleigh
number will be kept small enough so that all flow is laminair during the simulations.

Step 1 Remains unchanged.
(αi=0

k )extr = 2αi=1
k − αi=2

k (3.38)

Step 2 Now the boundary condition that is applied states:

uiBC = 0 (3.39)

Where i is the direction parallel to the boundary, signifying a no-slip boundary.
Step 3 The operation performed is similar to the temperature case, it only looks slightly different

since the form of the solution vector is different.

(
αi=0
k

)
BC

=
(
αi=0
k

)
extrp

−



ρ
ρ (ux)extrp
ρ (uy)extrp
3ρ

(
u2
x

)
extrp

3ρ (uxuy)extrp
ρ
(
u2
y

)
extrp

0
0
0


+



ρ
(ρux)BC

ρ (uy)BC
3ρ

(
u2
x

)
BC

3ρ (uxuy)BC
ρ
(
u2
y

)
BC

0
0
0


(3.40)

Step 4 Step 4 remains unchanged.

fi(x = 0, t) =
∑
k

ωiEikα
i=0
k (3.41)
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Changes for enthalpy distribution The most important difference when handling the boundary
for the enthalpy case is that the Dirichlet/Neumann boundary temperature needs to be translated into
Enthalpy.

Step 1 Remains unchanged.
(γi=0

k )extr = 2γi=1
k − γi=2

k (3.42)

Step 2 First steps are the same to determine TBC , then this is translated into HBC .

HBC =

 cp,sTBC if TBC ≤ Ts

cp,sTs + f i=0
L L if Ts < TBC < Tl

cp,sTs + cp,l (TBC − Tl) + L if TBC ≥ Tl

(3.43)

Step 3 Remains unchanged.

γi=0
k =

(
γi=0
k

)
extrp −



Hextrp
uxHextrp
uyHextrp

0
0
0
0
0
0


+



HBC

uxHBC

uyHBC

0
0
0
0
0
0


(3.44)

Step 4 Remains unchanged.
mi(x = 0, t) =

∑
k

ωiEikγ
i=0
k (3.45)

3.4.3. Conjugate boundary
At the conjugate boundary the boundary condition also needs to be translated into a Dirichlet boundary
condition. There can also be 2 relevant domains carrying different information. The PCM (phase
change material) domain which uses enthalpy distribution functions, and the solid wall domain which
uses temperature distribution functions. For one benchmark case handled in section 4.2 both domains
use the temperature distribution function. All said below can still be applied there with less steps, so
this case is not handled seperately.

The start point are equations 2.12 and 2.10. These need to be translated into a Dirichlet boundary
condition.

For the derivation the fluidsolid interface (wall) is located at x = 0. The fluid PCM domain occupies
x > 0, the solid domain occupies x < 0.

First, a first-order one-sided difference on each side is used:

∂T

∂x

∣∣∣∣
0+

≈ β1,l
1 − TBC

∆x
. (3.46)

∂T

∂x

∣∣∣∣
0−

≈ TBC − β1,s
1

∆x
. (3.47)

By then imposing.
λl(β

1,l
1 − TBC)

∆x
=

λs(T0 − β1,s
1 )

∆x
(3.48)

The first order interface temperature is found.

TBC = T0 =
λl β

1,l
1 + λs β

1,s
1

λl + λs
. (3.49)

For second order this derivation comes out to

∂T

∂x

∣∣∣∣
0+

≈ −3TBC + 4β1,l
1 − β2,l

1

2∆x
. (3.50)
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Figure 3.3: A schematic showing both convex and concave corner cells in a LBM simulation. The arrows signify
unknown density populations when using the NEBB method.

∂T

∂x

∣∣∣∣
0−

≈ 3T0 − 4β1,s
1 + β2,s

1

2∆x
. (3.51)

TBC =
λl(4β

1,l
1 − β2,l

1 ) + λs(4β
1,s
1 − β2,s

1 )

3(λl + λs)
(3.52)

For the PCM domain, the enthalpy solution vectors can be translated to the temperature solution
vectors using the relations from equation 2.19.

βi
1 =


γi
1/Cp γi

1 < Hs

Ts +
γi
1−Hs

Hl−Hs
(Tl − Ts) Hs ⩽ γi

1 ⩽ Hl

Tl +
(
γi
1 −Hl

)
/Cp H > Tl

(3.53)

3.4.4. Corners
In LBM methods corners can be considered a special case. [45] For Bounce back methods, no special
treatment is necessary and both convex and concave corners can be treated as straight walls.

A more developed wet node approach is called the non-equilibrium bounce-back (NEBB). This
method has to treat corners different from straight walls, and also discriminates between concave and
convex corners. [45] In short, the concave corner has extra unknown populations compared to straight
walls. Therefore the corner needs extra constraints. The issue surrounding corners becomes more
complex when handling more dimensions and directions. [46]

Regarding the Filter Matrix method there has not yet been a lot of research done on how corners
should be handled. There are 2 key points to consider for the FM method.

Connecting seperate boundary conditions At a corner point it is possible for that cell to be subjected
to two seperate boundary conditions. An example that will come up is a corner that is the connecting
point of a Neumann BC and a Dirichlet BC.

Extrapolation direction corners When extrapolating from a straight wall to form an initial guess of
the solution vector, it is clear what direction needs to be extrapolated in. When dealing with convex
corners there are 3 possible directions that could be considered viable. There are the 2 orthogonal
choices (directions ±[1, 0] and ±[0, 1]), and there is the diagonal choice (directions [±1,±1]).

3.4.5. Phase front
During each time step the melting front should have its own no slip boundary conditions since a no
slip interface is also assumed there. A rudimentary method of accomplishing this would be to track
the melting front and apply a no slip HBB BC. This is considered a computationally heavy method
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compared to the more elegant enthalpy-porosity method. The enthalpy-porosity method uses a friction
component S to simulate the no slip boundary. The term S, represents an equivalent frictional resistance
force per unit mass, which originates from the consideration that the morphology of the phase-changing
domain can be treated as an equivalent porous medium that offers a frictional resistance towards fluid
flow in that region. Hence it is called the enthalpy porosity method. This friction term can be introduced
as a Darcy momentum sink in the Navier-Stokes equation. [24]

ρ

(
∂ux,y

∂t
+ ux,y∇u

)
= − ∂P

∂x, y
+ ρ∇ (ν∇ux,y)− Sx,yux,y (3.54)

The term S is modeled as

Sx,y = Amush
(1− fL)

2

f3
L + σ1

(3.55)

Here Amush is a morphological constant set to 108 kg
m K s and σ1 is a very small computational

constant introduced to avoid division by zero. This method was successfully adapted for FMLBM use
by C. Bus.[27] This was done by modifying the solution vector for density distributions.

α±
1,2 =

(
ρ∓ ∆t

2
Sx,y

)
ux,y ±

∆t

2
fx,y (3.56)

C. Bus also redefined how to find the velocities when using the enthalpy-porosity method.[27]

ux,y =
α−
1,2 +

∆t
2 fx,y

ρ+ ∆t
2 Sx,y

(3.57)

3.5. Algorithm
This section will explain which steps the algorithm takes to compute a melting simulation. The algo-
rithm will be for the Pater & Kaaks study [47]. This case handles everything discussed prior. A slightly
simpler version of the algorithm that just handles temperature and momentum distributions can be
found in the appendix. It handles a simpler benchmark case based on studies from de Vahl Davis [48]
and Zhuo & Zong.[41]

• Initialize the distribution functions in the PCM domain for density fi(x, t) and enthalpy mi(x, t)
using chosen macroscopic quantities.

• Initialize the distribution functions in the Wall domain for density fi(x, t) and temperature gi(x, t)
using chosen macroscopic quantities.

• Initialize enthalpy properties such as the liquid fraction fL and the total enthalpy of all cells using
mi(x, t).

• For each time step t from 0 to T, do:

1. Collision step PCM domain
– Substract latent enthalpy (fL(x, t) ∗ L) from mi(x, t)
– Determine solution vector γ−

i (x, t) using equation 3.19 and mi(x, t)
– Translate γ−

i (x, t) into γ+
i (x, t) 3.27

– Get the post collision enthalpy distributions from γ+
i (x, t) 3.26

– re apply latent heat to mi(x, t)

2. Propogate mi(x, t)
3. Update enthalpy properties

– Find total enthalpy in all cells 2.32
– Find temperature in the PCM domain 2.19
– Determine liquid fraction 2.20
– Determine specific heat 2.21
– Determine thermal conductivity 2.22

4. Collision step Wall domain
– Determine solution vector β−

i (x, t) using equation 3.19 and gi(x, t)
– Translate β−

i (x, t) into β+
i (x, t) 3.23
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– Get the post collision enthalpy distributions from β+
i (x, t) 3.22

5. Propogate gi(x, t)
6. Apply enthalpy Neumann boundary condition edges PCM domain (See steps from

section 3.4.2
7. Apply enthalpy Dirichlet boundary condition edge PCM domain
8. Apply enthalpy boundary conditions to corners on the PCM domain
9. Apply temperature Neumann boundary condition edges Wall domain

10. Apply temperature boundary conditions to corners on the Wall domain
11. Update enthalpy properties

– Find total enthalpy in all cells 2.32
– Find temperature in the PCM domain 2.19
– Determine liquid fraction 2.20
– Determine specific heat 2.21
– Determine thermal conductivity 2.22

12. Apply conjugate boundary condition on interface edge as specified in section
3.4.3

13. Apply conjugate boundary condition on corners
14. Update enthalpy properties

– Find total enthalpy in all cells 2.32
– Find temperature in the PCM domain 2.19
– Determine liquid fraction 2.20
– Determine specific heat 2.21
– Determine thermal conductivity 2.22

15. Collision step PCM domain for density distributions
– Determine friction component S(x, t) 3.55
– Determine solution vector α−

i (x, t) using equation 3.19 and mi(x, t)
– Determine acting body forces due to natural convection 2.7
– Determine velocities 3.57
– Translate α−

i (x, t) into α+
i (x, t) 3.56

– get the post collision enthalpy distributions from α+
i (x, t) 3.20

16. Apply density boundary conditions to edges on the PCM domain
17. Apply density boundary conditions to corners on the PCM domain
18. For each nth time step t

(a) retrieve all relevant macroscopic values for data and intermediary plots

• End simulation when past maximum time steps OR when a converging solution is found OR when
the part of the freeze plug has melted completely through in freeze plug simulations.

The converging criteria is stated as follows:√√√√∑
i (ϕ (xi, t)− ϕ (xi, t− Γ∆t))

2∑
i

(
ϕ (xi, t− Γ∆t)

2
< δϕ (3.58)

Where ϕ (xi, t) is the chosen indicator variable and δϕ is the converging criterium. i.e. how stable
the solution must be. Γ is the number of timesteps between each instance that the converging criteria
is checked.



4
Benchmarking Individual Models

Before being able to properly simulate and research the influence of design parameter on the melting
times of the freeze plug, it is important to first benchmark the simulation. By testing each individual
thermodynamic problem before proceeding to the final step, it becomes easier to expose flaws during
development. Below are the results from benchmarking against individual models.

4.1. Natural convection
The first benchmark follows papers from Vahl Davis [48] and Zhuo and Zhong [41]. Both papers
simulate a square cavity that is heated from the side for different Rayleigh numbers. Vahl Davis used
a finite difference method that used a stream function-vorticity formulation. This is just a practical
way to describe the velocities of the fluid. Zhuo and Zhong used a FM-LBM. However, instead of a FM
boundary method they used bounce back schemes at the boundary.

Simulation benchmark goals
Show workings of

• base code (LBM collision scheme, translating macro variables into LBM variables and vice versa,
etc.)

• Temperature field collision, propagation and boundary conditions
• Density field collision, propagation and boundary conditions.

The square cavity contains a Boussinesq fluid with properties that can be seen in table 4.1. The
Rayleigh number dictates how large the natural convection effect is. This benchmark aims to show the

Figure 4.1: A schematic of the natural convection benchmark case, as performed by Davis [48] and Zhuo [41]. The
type of the boundary condition is noted by both text and color.

25
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effects of natural convection in fluid flow. The Rayleigh number in all simulations was kept below a
threshold where the fluid would undergo turbulence. For all simulations, the Rayleigh number does not
go higher than 106, which should keep it in the laminar regime. [49]

Table 4.1: Physical and lattice parameters (Natural convection benchmark case)

Description Variable Physical value Unit Lattice value Unit
Kinematic viscosity ν 8.56 · 10−7 [m2/s] 1

100 ,
1

100 ,
1

150 [ls2/lt]
Thermal diffusivity κ 1.23 · 10−6 [m2/s] 1.23 · 10−6/Cκ [ls2/lt]
Cubic thermal expansion coeff. α 2.07 · 10−4 [K−1] 2.07 · 10−4 [K−1]
Gravitational acceleration g 9.81 [m/s2] 9.81/Cg [ls/lt2]
Initial density ρ0 1.293 [kg/m3] 1.0 [ls−3]
Rayleigh number Ra 104, 105, 106 − same −
Prandtl number Pr 0.7 − 0.7 −
Wall temperature TH,C T0 ±∆T/2 [K] same [K]
Initial temperature T0 1 [K] 1 [K]
Height & Width cavity H ×H 0.001× 0.001 [m] N ×N [ls]
Number of cells in 1 direction N - − 180, 180, 220 -

The temperature difference between the walls is calculated from the initial value given by Ra.

Ra =
∆TαN3g

κν
⇒ ∆T =

Raκν
αN3g

(4.1)

For different Rayleigh numbers, different values were taken for the kinematic viscosity and the grid size.
ν and N were chosen to ensure that the simulations run stable and produce accurate results. These
specific numbers were also chosen to compare exact results with the results from Borstlap [16].

Figures 4.2, 4.3 and 4.4 show the temperature isolines ascertained in the simulation during specific
time stamps. A qualitative reference can be made by comparing the flow patterns during the same time
stamps from the source papers. The results compare well qualitatively as can be seen from the isolines
from the source material. They also make physical sense. The heated fluid rises next to the heated wall,
flows over to the cold wall, and cools down. Finally, the steady-state solution is reached when both
δp = 10−4 for ϕ =Nu and δp = 10−5 for ϕ = T . The amount of time steps Γ between each conversion
check was set to 500.

(a) t = 0.008 s (b) t = 0.016 s (c) t= 0.033 s

Figure 4.2: The temperature isotherms of the natural convection benchmark shown at 3 different times (beginning,
middle and end). The final time shown is the the time for which the solution has converged. Ra = 104 in this simulation.

A good quantitative way to compare results in thermodynamic fluid flow is the Nusselt number.
The Nusselt number is defined by:

NuL =
Convective heat transfer
Conductive heat transfer

=
∆T hT

∆T k/L
=

hTL

k
, (4.2)

where h is the convective heat transfer coefficient of the flow, L is the characteristic length, and k
is the thermal conductivity of the fluid.

The Nusselt number at the cool wall can be translated to [41] [50]

Nu = − H

∆T

(
∂T

∂x

)
w

(4.3)
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(a) t = 0.008 s (b) t = 0.016 s (c) t = 0.043 s

Figure 4.3: The temperature isotherms of the natural convection benchmark shown at 3 different times (beginning,
middle and end). The final time shown is the the time for which the solution has converged. Ra = 105 in this simulation.

(a) t = 0.008 s (b) t = 0.016 s (c) t = 0.0179 s

Figure 4.4: The temperature isotherms of the natural convection benchmark shown at 3 different times (beginning,
middle and end).The final time shown is the the time for which the solution has converged. Ra = 106 in this simulation.

(a) Ra = 104 (b) Ra = 105 (c) Ra = 106

Figure 4.5: These figures show the temperature isotherms found by De Vahl Davis [48]. Each figure shows the
converged solution for a different Rayleigh number.

To take the average Nusselt number at the cool wall Nu0 a simple integration is enough.

Nu0 = − 1

∆T

∫ H

0

(
∂T

∂x

)
x=0

dy (4.4)

To calculate this numerically, Simpson’s rule is used. [51]

∫ b

a

f(x)dx ≈ 1

3
h

f (x0) + 4

n/2∑
i=1

f (x2i−1) + 2

n/2−1∑
i=1

f (x2i) + f (xn)

 (4.5)

∂T
∂x is obtained using a second-order finite difference method. The reason why this option is chosen

and not taking it directly from the temperature solution vector is because the solution vector at the
boundary is only first order accurate, since only first order extrapolation is used as is discussed in
section 3.4.2. The third-order finite difference method should produce more accurate Nusselt number
results.
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∂T

∂x
≈ 1

12
(−25Ti + 48Ti+1 − 36Ti+2 + 16Ti+3 − 3Ti+4) (4.6)

The error produced by the quantitative test is calculated using L2 since it is more rigorous than L1

ϵϕ =

√∑
i (ϕi − ϕi,ref )

2∑
i (ϕi,ref )

2 (4.7)

Ra Study Nu0

104

Davis 2.238
Zhuo 2.245

Borstlap 2.232
Current 1.625

Error [%] 27 - 27.6

105

Davis 4.509
Zhuo 4.521

Borstlap 4.543
Current 4.532

Error [%] 0.24 - 0.5

106

Davis 8.817
Zhuo 8.819

Borstlap 8.890
Current 8.807

Error [%] 0.11 - 0.93

Table 4.2: Comparison of results for different Rayleigh numbers for natural convection benchmark.

From both the qualitative and quantitative tests it can be seen that for Ra = 105 and Ra = 106

there is good agreement with the benchmark studies. However, the results for Ra = 104 show a lack of
heat transfer. Ra = 104 has a smaller ∆T and in consequence also a smaller natural convection effect.
It could be a possibility that there is an error in the conduction regime where the effects of natural
convection are not yet large enough. This error gets diminished for higher heat transfer and body forces.
Increasing grid size and changing the kinematic viscosity did not yield better results. Also changing
from wet node boundary conditions to bounce back methods did not improve the results generated.

4.2. Conjugate Boundary
Following simulations performed by Kaminski [52] and Misra [53]. Neither of them used the LBM
method. Kaminski used a finite difference model, while Misra used a finite elements model. The set-up
is similar to the previous benchmark. The exception is a solid wall that is positioned to the right of the
square cavity. The wall itsself is heated on the right side. And on the left side it is connected to the
fluid domain through a conjugate boundary.

Simulation benchmark goals
Show workings of

• Conjugate boundary condition

Most physical and lattice parameters were also kept the same as in the previous benchmark. Relevant
parameters that were changed can be found in the table below. Also some new parameters of the wall
can be found in the table. One might notice that the relation between κW and κ and the relation
between λ and λW is the same. This is because the specific heat capacity and the density in both
domains are equal.

ρcP =
λ

κ
(4.8)
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Figure 4.6: The schematic for the conjugate boundary condition benchmark. The right edge of the wall is heated, and
the wall and fluid domain are connected through a conjugate boundary.

This implies that while both materials store thermal energy similarly, they transport it at different
rates. As a result, temperature fields evolve at different speeds through each domain, influencing the
thermal coupling across the interface.

Table 4.3: Physical and lattice parameters (Conjugated boundary bench mark)

Description Variable Physical value Unit Lattice value Unit
Prandtl number Pr 0.71 − 0.71 −
Rayleigh number Ra 104,0.7 · 105,0.7 · 106 − same −
Wall thickness ratio d

H 0.2 NW

N 0.2
Kinematic viscosity ν 8.56 · 10−7 [m2/s] 1

100 ,
1

100 ,
1

150 [ls2/lt]
Thermal diffusivity wall κW 6.15 · 10−6 [m2/s] 6.15 · 10−6/Cκ [ls2/lt]
Thermal conductivity fluid λ 51.74 · 10−3 [kgm/s3K] 51.74 · 10−3/Cλ [ls−1lt3K]
Thermal conductivity wall λW 258.7 · 10−3 [kgm/s3K] 258.7 · 10−3/Cλ [ls−1lt3K]
Number of cells in 1 direction N - − 180, 180, 220 −

First the temperature isotherms are plotted to see if they make sense physically. After looking at
the figures 4.7, 4.8 and 4.9 it can be seen that they do. In the converged solutions the fluid domain
shows the same properties as it did in the original benchmark. Which makes sense, since the Boussinesq
fluid is still getting heated, just with an solid wall between the fluid and the heat source. To analyze
the effects that the wall has on the domain it is easier to also view the Nusselt numbers . The steady
state solution is once again reached when both δp = 10−4 for ϕ =Nu, δp = 10−5 for ϕ = T but for this
case Γ was set to 1000 due to longer converging times.

(a) t = 0.007 s (b) t = 0.014 s (c) t = 0.020 s

Figure 4.7: The temperature isotherms of the conjugated boundary benchmark shown at 3 different times (beginning,
middle and end). The final time shown is the the time for which the solution has converged. Ra = 104 in this simulation.

Once again the Nusselt number is used to verify quantitative results. For this results comparison
the Nusselt number is taken at the intersection between the wall and the fluid domain NuW. Where ∂T

∂x
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(a) t = 0.007 s (b) t = 0.014 s (c) t = 0.027 s

Figure 4.8: The temperature isotherms of the conjugated boundary benchmark shown at 3 different times (beginning,
middle and end). The final time shown is the the time for which the solution has converged. Ra = 0.7 · 105 in this

simulation.

(a) t = 0.007 s (b) t = 0.014 s (c) t = 0.016 s

Figure 4.9: The temperature isotherms of the conjugated boundary benchmark shown at 3 different times (beginning,
middle and end). The final time shown is the the time for which the solution has converged. Ra = 0.7 · 106

is taken in the direction of the fluid domain.

Ra Study NuW

104

Kaminski −
Misra 2.021

Borstlap 2.025
Current 1.602

Error [%] 20.7 - 21.0

0.7 · 105

Kaminski 3.42
Misra 3.436

Borstlap 3.423
Current 3.422

Error [%] 0.03 - 0.41

0.7 · 106

Kaminski 5.89
Misra 5.910

Borstlap 5.857
Current 5.832

Error [%] 0.43 - 1.3

Table 4.4: Comparison of results for different Rayleigh numbers for conjugateed heat benchmark.

The results show the same pattern as in the previous benchmark. The results for the relatively low
Rayleigh number Ra = 104 show a major deviation from the benchmark results. While the deviation is
unfortunate, it is in line with the previous results. Also the higher Rayleigh number results once again
seem to be correct. By comparing the resulting Nusselt numbers it is also easy to see the effect that
the wall has on the converging solution. Even though the Rayleigh numbers are only slightly lower,
the Nusselt number is substantially lower in relative terms. This means that in this simulation the
heat transfer is lower at the conjugate boundary than it was at the Dirichlet boundary. This makes
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Figure 4.10: The schematic for the enthalpy melting benchmark. The left edge is heated, while the rest of the walls
are adiabatic. The domain is filled completely with PCM.

sense, since the wall can be seen as a sort of barrier for the heat transfer because of the higher thermal
conductivity.

4.3. Enthalpy melting
The enthalpy melting bench mark is an adaptation on the 2 phase Stefan problem [54] that includes
the effects of natural convection. The benchmark studies chosen are from Huber [55] and Darzi [56].
Huber and Darzi both used the Lattice Boltzmann method. However, they used an MDF (Multiple
Distribution Function) approach [57] [58]. The melting method Huber and Darzi used was similar since
they also used an enthalpy based melting method [59] instead of a phase field method. [60].

Simulation benchmark goals
Show workings of

• Enthalpy field collision, propagation and boundary conditions
• Enthalpy porosity method

The set up for the enthalpy melting benchmark is as follows. There is a solid in a square cavity at T0.
The solid has a melting temperature of Tl which is slightly higher than the solidifying temperature Ts.
The left wall is constantly heated at a temperature TH where TH > TL > T0. The melting temperature
is slightly higher than the solidifying temperature. The solidification temperature is taken to be higher
than the melting temperature to account for phase change hysteresis. [61] This distinction can also aid
in numerical stability by preventing ambiguity at the phase interface during thermal transitions.

The figures 4.11, 4.12, 4.13 and 4.14 show the melting process in 2 different ways. The first set
shows a temperature heatmap throughout different stages of the process. The second set of images
shows the liquid fraction of the substance. These images provide a qualitative view over the benchmark
experiment. They can not be directly compared to results from Huber and Darzi. But, they aim to
show physical validity.

It can be seen that the liquid fraction is mostly either 1 or 0. This makes sense, since a liquid
fraction between 1 and 0 only signifies how much of the particular cell has turned into liquid. So the
fact that this can only be seen at the melting border is a good sign. Furthermore, the melting process
at different time steps, show the different phases properly as well according to figure 4.15. First there
is a dominant conduction regime i). Here the temperature difference between the heated boundary and
the solid phase drives heat transfer primarily through thermal conduction. In this stage, the liquid
phase formed at the heated surface is relatively thin, and buoyancy-induced fluid motion is negligible
due to the limited volume and minimal temperature gradients in the fluid. The melting front advances
predominantly by conduction of heat into the solid, leading to a relatively uniform and smooth phase
interface progression.
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Table 4.5: Physical and lattice parameters (Case 2 - Phase Change)

Description Variable Physical value Unit Lattice value Unit
Thermal conductivity λ 1.5 [W/m/K] 1.5/Cλ [ls/lt3/K]
Thermal diffusivity κ 7.5 · 10−3 [m2/s] 7.5 · 10−3/Cκ [ls2/lt]
Specific heat cp 0.0456 [Ws/kg/K] 0.0456/Cp [ls2/lt2/K]
Latent heat L 159 · 103 [Ws/kg] 159 · 103/CLat [ls2/lt2]
Thermal expansion coeff. α 2.5 · 10−4 [K−1] same [K−1]
Kinematic viscosity ν 0.0075 [m2/s] 1/45, 1/80 [ls2/lt]
Prandtl number Pr 1.0 − 1.0 −
Stefan number Ste 10 − 10 −
Rayleigh number Ra 5 · 104, 1.7 · 105 − same −
Wall temperature TH T0 +∆T [K] same [K]
Initial temperature T0 301.14 [K] 301.14 [K]
Solidifying temperature Ts 301.14 [K] 301.14 [K]
Melting temperature Tl Ts + 0.002 [K] same [K]
Gravitational acceleration g 9.81 [m/s2] 9.81/Cg [ls/lt2]
Height & Width cavity H ×H 0.6× 0.6 [m] N ×N [ls]
Number of cells in 1 direction N − − 100,100 −

(a) t = 1.05 s (b) t = 1.57 s

(c) t = 2.09 s (d) t = 2.61 s

Figure 4.11: Temperature gradient for enthalpy melting benchmark at different times for Ra = 5 · 104
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(a) t = 1.05 s (b) t = 1.57 s

(c) t = 2.09 s (d) t = 2.61 s

Figure 4.12: The liquid fraction for the enthalpy benchmark at different times for Ra = 5 · 104
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(a) t = 0.037 s (b) t= 0.074 s

(c) t = 0.111 s (d) t = 0.149 s

Figure 4.13: The temperature gradient for the enthalpy benchmark at different times for Ra = 1.7 · 105
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(a) t = 0.037 s (b) t = 0.074 s

(c) t = 0.111 s (d) t = 0.149 s

Figure 4.14: The liquid fraction for the enthalpy benchmark at different times for Ra = 1.7 · 105
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Figure 4.15: Different regimes of melting. From conduction dominated melting to natural convection dominated
melting. [55]

Notably, the heat flux preferentially pushes the melting front sideways along the heated wall because
the temperature gradient normal to the wall is largest near the boundary. This anisotropic propagation
results in a lateral spreading of the melted region before any significant convective motion develops.

As the melted liquid layer thickens, temperature gradients within the fluid increase as well as the
available volume and buoyancy effects become non-negligible.

Eventually, the buoyancy forces fully dominate the heat transfer process, giving rise to classical nat-
ural convection patterns within the liquid phase. In this regime, warm fluid near the heated boundary
rises due to its lower density, while cooler fluid descends, establishing circulating flow cells. This con-
vective circulation enhances heat transport from the hot boundary into the melt, accelerating melting.

The quantitative check is done once again by the Nusselt number. But now it is taken over dimen-
sionless time. The dimensionless time is defined as

θ = Fo · Ste (4.9)

Where

Fo =
κt

N2
Ste =

cP∆T

H
(4.10)

The reason a dimensionless time is used here, is because Jany found the Nusselt number to scale with
the dimensionless time [62]. The Nusselt number scales differently in different regimes. The different
regimes can be found in figure 4.15, and the Nusselt number scales as follows at the start in regime i.

Nu ∝ θ−1/2 + Ra θ3/2 (4.11)

This ends at a time θ1 which coincides with regime iii. At the end the Nusselt number evens out at

Nu ∝ θ−
1
4 (4.12)

One more quantitative measurement is taken for the average melting front. This is calculated using

sav(θ) =
1

H

∫ H

0

xfront (y, θ)dy (4.13)

Here xfront is determined by taking the first cell that is not liquid. From that x coordinate (1− fL)
is distracted. fL here has the value of the cell to the left of the solid cell. The integral is once again
calculated using Simpson’s rule from equation 4.5.

The melting front and Nusselt number coincide quite well with the benchmark. However, the Nusselt
number is slightly to high. This does not however, coincide with the results seen in the average melting
front. In this case it is better to look at the Nusselt number and not at the average melting front, namely
with wrong results the melting front can take different shapes that might still produce a correct looking
average melting front. For improvement in the results different solutions were attempted. Increasing
grid size and changing the kinematic viscosity did not yield definitive positive results. Also changing
the Dirichlet and Adiabatic boundary conditions to HBB and FBB (Full way Bounce Back) respectively
did not improve the results generated. Also change in corner use had hardly any effects on quantitative
results. This can further be seen in section 6.1. When looking at the results in different regimes, it seems
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(a) The results for the average melting front over
dimensionless time θ.

(b) The results for the Nusselt number at the left wall over
dimensionless time θ.

Figure 4.16: Quantitative results for enthalpy melting benchmark with Ra = 5 · 104

(a) The results for the average melting front over
dimensionless time θ.

(b) The results for the Nusselt number at the left wall over
dimensionless time θ.

Figure 4.17: Quantitative results for enthalpy melting benchmark with Ra = 1.7 · 105
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that the conduction regime produces good results, also corresponding well with the literature value for
Nu.[62][55]. However, the convective effect seems overestimated. This does not seem related to the
issue with the previous bench mark as that error undershot the Nusselt number instead of overshooting
it. One possibility for the discrepancy is the change in numerical method from the benchmark that just
produces slightly different results.



5
Freeze Plug model

The goal testing the previous benchmark models was to work towards a set up that can handle the
freeze plug melting process. Altough by taking different steps a study by Pater & Kaaks [47] also
modelled the melting process of the freeze plug. They started by modelling a square cavity enclosed
with adiabatic boundary conditions with a transient dirichlet boundary condition at the top. This is
similar to the final benchmark of the previous chapter.

The transient boundary condition simulates the decay heat from a shut-down reactor. The transient
temperature is based on a study by Tiberga.[63] The study used

QR(t) = 6.45908 · 106 − 6.9200 · 105 ln(t[s])
(
W m−3

)
(5.1)

for the time-trend of the residual heat of the reactor [64]. Then, by using a lumped capacitance
model and assuming no external heat losses

QR(t) = ρcp
dT (t)

dt (5.2)

This gives the following transient boundary condition used by Pater $ Kaaks.

T (t) = −0.0001t2 + 0.5244t+ 923 (K) (5.3)

The second stage of the study done by Pater $ Kaaks adds a time-dependent volumetric heat source
to the entire domain. This heat comes from energetic neutrons and photons that originate from the
fuel. These neutrons and photons can also interact with the molten salt, and the not (yet) molten salt
in the freeze plug. The heat is approximated to be 1% of the decay heat of the reactor. 1% of equation
5.1 gives the following transient heat source term.

Q(t) = 6.45908 · 104 − 6.92 · 103 · ln(t)
(
W m−3

)
(5.4)

Implementing the source term is easy enough. By converting the source term to lattice units

Qlat(t) = Q(t)
C3

time

C2
L

(5.5)

And adding it to the solution vector during the collisison step.

γ±
0 (x, t) = h± ∆t

2

Qlat(t)

ρlat
(5.6)

The top of the PCM domain is put in an already molten state. This shortens the period of the
first melting regime when natural convection is activated. The height of the already molten part h is
equal to 0.1H. There is once again a difference in the melting temperature Tl and the solidification
temperature Ts for the same reasons as before. The salt is modeled after LiF -ThF4 and the wall is
considered to be made of Hastelloy-N.

39
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Figure 5.1: Schematic of freeze plug model and boundary conditions used. The Dirichlet boundary condition is
dependant on decay heat as well as the volumetric heat source in the PCM domain. The PCM domain is considered a

solid salt that is partially molten in the upper part with a height of 0.1 NY . The wall is made of Hastelloy-N and spans
0.2 NX in the x direction.[47]

Table 5.1: Used thermophysical properties for fuel salt and Hastelloy N and some general parameters

Material Property Physical value Unit Lattice value Unit

Salt

ρs = ρf 4390 kg/m3 1.0 ls−3

λs = λf 1.5 W/m/K 1.5/Cλ ls/lt3/K
cp,s 815 J/kg/K 815/Ccp ls2/lt2/K
cp,l 1000 J/kg/K 1000/Ccp ls2/lt2/K
Ts 841 K 841 K
Tl 841.002 K 841.002 K
L 159 · 103 J/kg 159 · 103/CLat ls2/lt2

α 2.5 · 10−4 K−1 2.5 · 10−4 K−1

ν 7.5 · 10−4/ρ m2/s 1/45 ls2/lt
Pr 5 − 5 −
Ste 0.063 − 0.063 −
TS,0 831 K 831 K
TL,0 841.001 K 841.001 K
h/H 0.1 − − ls

Hastelloy-N
ρ 8860 kg/m3 8860/Cρ ls−3

λ 23.6 W/m/K 23.6/Cλ ls/lt2/K
cp 578 J/kg/K 578/Ccp ls2/lt2/K
d/H 0.2 − 0.2 −
T0 831 K 831 K

General
H 0.2 m − ls
L 0.1 m − ls
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5.1. Conjugated conductive heat model
In the first case, the natural convection is not yet added. This follows stage 3 from Pater. The specific
lattice parameters that were used can be found in table 6.1.

Lattice parameter unit Value
ν [ls2/lt] 1/40
NX [ls] 100
NY [ls] 200

Table 5.2: Lattice parameters chosen for freeze plug model without natural convection.

The qualitative results can be compared with the benchmark at t = 2500 s. When looking at the
way the isolines at t = 1000 s compare to the isolines at t = 2500 s. It looks like the results will perform
well. The isolines make physical sense as well as the melting pattern. The wall conducts heat efficiently
to the PCM due to the higher thermal conductivity that the Hastelloy-N wall has. The isolines also
compare qualitively well with the figure 5.3a from OpenFOAM by Pater.

(a) Liquid fraction of freeze plug showing melting
front at t = 1000 s (b) Temperature isolines at t = 1000 s

Figure 5.2: Results of modelling the freeze plug without natural convection at t = 1000 s

At t = 2500 the benchmark solution has been reached. The temperature heatmap still looks good
compared to the qualitative benchmark. The benchmark 3 temperature measurements performed over
the entire y coordinate. One at x = 0 m, one at x = 0.075 m and one at x = 0.09 m. The comparison
between the results and the benchmarks can be viewed in figure 5.4. These results compare good to
the benchmark. Especially compared to OpenFOAM. The difference between the methods is that the
three codes adopt different modelling strategies for the conjugate heat transfer. OpenFOAM and Star
CCM solve the heat equation in the salt and metal domains sequentially (i.e. first the heat equation
in the salt is solved, then the heat equation in the metal), whereas in DGFlows the heat equation is
solved for the full domain and no distinction is made between the wall and the PCM regions. [47] The
melting front compares quite well with all benchmarks, as can be seen in figure 5.5.

5.2. Natural convection model
For this part natural convection is applied by setting g to 9.81 ms−2. To keep the Courant number low
enough the grid size was increased and kinematic viscosity was decreased. The latter change results in
smaller relative time steps.

These changes put a significant strain on the computational power needed. Simulating 2.5 seconds
took the laptop used 500 seconds. The laptop used used a 13th generation Intel(R) Core(TM) i9-13900
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(a) Temperature heat map from Pater at t=2500 s,using an
880x440 mesh with a timestep of ∆t = 0.5 in OpenFOAM[47]

(b) Temperature heat map from the current FMLBM
method at t=2500 s,using a 200x100 mesh with a kinematic

viscosity of ν = 1/40

Lattice parameter unit Value
ν [ls2/lt] 1/150
NX [ls] 250
NY [ls] 500

Table 5.3: Lattice parameters chosen for freeze plug model with natural convection.

with a clock speed of 2.6GHz. Simulating the total 2500 seconds would have taken approximately 139
hours. The computation speed can better be illustrated using LUPS (Lattice Updates Per Second) or
for higher calculation speeds, MLUPS (Million Lattie Updates per Second). Using the above mentioned
processing speeds this statistic can be calculated using [65]

MLUPS =
Ngrid NT

T
× 10−6 (5.7)

Where Ngrid = 250 · 500, NT = 4000 and T = 522.1. This all comes together to about 1.2 MLUPS.
In this work, computation speed was not the main constraint. Somewhere after the aforementioned

2.5 seconds simulations became unstable. Figure 5.6 shows the liquid fraction at 125 seconds. One
can directly see that results are nonphysical. This is further backed up by temperatures that went to
−2 ·10290K near the wall. This shows clear signs of instability. Creating an even larger grid size showed
inconclusive results since the simulations took to long to gather any significant results.

The reference benchmark paper shows that with natural convection implemented the melting would
be accelerated [47], but only at the top side. The natural convection slows the melting at the side of
the freeze plug adjacent to the metal wall. This makes sense since the heated fluid would rise causing
the temperatures at lower depths to decrease. This causes opening times to be slower than without
natural convection being implemented.
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(a) x = 0 m

(b) x = 0.075 m

(c) x = 0.09 m

Figure 5.4: Temperature thermometers displaying temperature at a specific x coordinate over the y position.
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Figure 5.5: Meltfront results compared to benchmark results for the freeze plug without natural convection at t =
2500 s

Figure 5.6: Liquid fraction freeze plug at approximately 2.5 seconds



6
Stability and Performance FMLBM

6.1. Corner influence
The filter matrix boundary method is still quite new. Previous work done by Borstlap did some research
on the influence of order of extrapolation on the boundaries. Still a relevant question is: what is the
influence of different corner methods on the filter matrix boundary method. That is the subject of this
chapter. For all simulations a small grid size was chosen as to give the corner nodes more influence.
Since it is assumed that changes in the corner method will only show tiny effects.

In figure 6.1 the possible orientations of the corner normal are shown. These orientations determine
the extrapolation nodes that are considered when determining the temperature that the corner node
should have.

Because of the nature of the Dirichlet and adiabatic boundary conditions and how the extrapolation
from the corner is taken, it could make sense to not treat the corners separately at all. The main
concern of treating corners differently is how 2 different boundary conditions are satisfied at one place.
When looking at how the temperature at the boundary is calculated from extrapolation in the filter
matrix method, one sees that equation 3.33 must be satisfied as well as equation 3.35. Even though
it might feel instinctual to do so this can not be true when a diagonal extrapolation is applied. The
diagonal method will still be tested, but one can see where the choice might already go wrong as having
to freely choose between applying equation 3.33 or 3.35, which give different results for TBC , starts to
feel wrong.

For the enthalpy boundary condition this works exactly the same, as the boundary condition for
enthalpy is translated into a temperature boundary condition anyways. For the density boundary
condition it does not much matter as the boundary condition is always the same: no-slip; ux = 0,
uy = 0.

6.1.1. No corners
For the no corners method, corners are not treated special. Each corner is part of each adjacent
boundary. This does mean that corners are subjected to the boundary condition step twice. Once for
each boundary. In all simulations, the Dirichlet BC were applied last.

Figure 6.3 shows that the no special corner method remains stable and seems to produce physical
results similar to the benchmark results.

6.1.2. Orthogonal corners
Vertically directed corners that include the Dirichlet boundary when possible, show instability in figure
6.4 for high θ i.e. θ > 0.9. The interesting thing is that the instability seems to come from the right
bottom corner. In this corner there should not

Horizontally oriented corners that only include an adiabatic boundary condition show quick instabil-
ity in figure 6.5. It did however, not become entirely unstable, unlike some other corner configurations.

6.1.3. Diagonal corners
Figure 6.6 shows the results for Diagonal corners that include only adiabatic boundary conditions.

45
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Figure 6.1: A zoomed in representation of the boundary workings near the corner. The corner normal orientation
possibilities are shown in different colors. Pink shows vertical orientation towards a Dirichlet BC, orange shows diagonal

orientation, both Dirichlet BC and adiabatic BC possible, green shows horizontal orientation towards adiabatic BC.

Figure 6.2: An example of the no corner method. Both boundary conditions are executed on the same corner node.
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(a) θ = 0.5 (b) θ = 1

Figure 6.3: Liquid fraction for enthalpy melting with Ra = 1.7 · 105 for corners that were not treated special.

(a) θ = 0.5 (b) θ = 0.91

Figure 6.4: Liquid fraction for enthalpy melting with Ra = 1.7 · 105 for vertically oriented corners that follow dirichlet
BC over adiabatic BC
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(a) θ = 0.34 (b) θ = 0.5

Figure 6.5: Quantitative results for enthalpy melting benchmark with Ra = 5 · 104 for horizontally oriented corners
that always follow adiabatic BC

(a) θ = 0.5 (b) θ = 0.82

Figure 6.6: Quantitative results for enthalpy melting benchmark with Ra = 5 · 104 for diagonally oriented corners that
follow adiabatic BC over Dirichlet BC
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Figure 6.7 shows the results for diagonal corners that include Dirichlet boundary condition on the
left side.

(a) θ = 0.5 (b) θ = 0.82

Figure 6.7: Qualitative results for enthalpy melting benchmark with Ra = 5 · 104 for diagonally oriented corners that
follow Dirichlet BC over adiabatic BC

Both versions of the diagonally oriented corners become unstable at the exact same time. This
seems to point at a problem with diagonal orientation, regardless of how it is implemented. Early
experimental use of diagonal orientation was performed on the first benchmark as well since it seemed
to be the logical option. In the first benchmark the diagonal corner orientation method produced more
unstable results as well.

6.1.4. Quantitative results

(a) The results for the average melting front over
dimensionless time θ.

(b) The results for the Nusselt number at the left wall over
dimensionless time θ.

Figure 6.8: Quantitative results for enthalpy corner method differences with Ra = 1.7 · 105

In figure 6.8 a the instabilities and their point of incursion can be seen quickly. Both diagonal
methods and the vertical method become completely unstable, but only for high θ. The reason for
diagonal and horizontal failing seems logical since theses corner methods are not able to account for
both BC correctly. The reason why the vertically oriented method fails is more peculiar. The only
difference the vertical method has with the no corner method is only the order in which the boundaries
are computed. If this is enough difference, perhaps the experiment was too volatile for concrete results.

The quantitative Nusselt results show not much difference in results, except for the horizontal
method which became unstable quickly enough to show up as unstable in figure 6.8 b as well. All other
simulations were run using no special corner implementation, since it was deemed the most stable.
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Figure 6.9: The Nusselt number reached for different grid sizes and viscosity values for a heated square cavity
following the temperature natural convection benchmark with Ra = 105. The x-axis is on a logarithmic scale.

6.2. Free parameters
In section 3.1.2 some background regarding important numerical stability numbers is given. These
numbers can be influenced with 2 settings. The grid size N and the lattice kinematic viscosity ν. For
testing the limits of the FMLBM stability, the temperature NC benchmark was used with a Rayleigh
number of 105. The results showed little error with the benchmark results and showed no read sources
of instability in the qualitative results.

To test the stability and performance of choosing the free parameters, the first benchmark is revisited
from section 4.1 The following table shows grid sizes and viscosity values used to test stability, accuracy
and performance of the FMLBM.

Variable name Lattice parameter Possible values
Kinemati viscosity ν 1/10, 1/25, 1/50, 1/100, 1/150
Grid size N 45, 60, 150

Table 6.1: Lattice parameters chosen for stability and accuracy measurements.

Data that was omitted from figure 6.9 was unstable and produced very nonphysical results. This
was the case for N=60 and N=45 for viscosity ν ≥ 0.04. When looking at the figure it clearly shows that
a higher grid size performs better. Coming closer to the goal Nusselt number set by the benchmark. It
does seem that there is not a clear correlation in viscosity and accuracy. Although for higher viscosity
the simulation does become unstable. A parameter that is influenced by both the kinematic viscosity
and the grid size is the time conversion constant. This constant is defined as

Ctime =

(
LX

NX

)2

νphys

ν

=
L2
X · ν

N2
X · νphys

(6.1)

Where LX is the length of the cavity, NX is the grid size and ν and νphys are the lattice viscosity
and real viscosity respectively. In figure 6.10 the results are plotted against Ctime to see if there is any
clear correlation there.

Even though there is not a clear correlation that can be found between the error and Ctime, there
is a clear cutoff from where the simulation starts to become unstable. This occurs first for N = 60
and ν = 0.04 with a Ctime = 1.30 · 10−5. This can be seen as the minimum ∆t time step before the
Courant number would get too high. The Courant number from equation 3.4 depends on the timestep,
the maximum velocity v and the cell size ∆x. All unstable results obtained a Courant number higher
than 41.2. The Courant numbers were calculated using a maximum velocity of 68.1 as this was the
maximum velocity obtained by Vahl Davis for Ra = 10−5 [48]. Most results that obtained a stable
solution had a Courant number higher than 1. Only a grid size 150 × 150 with a kinematic viscosity
lower than 1/100 had a Courant number lower than 1. This shows that one can reach stable solutions
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Figure 6.10: The Nusselt number reached for different grid sizes and Ctime for a heated square cavity following the
temperature natural convection benchmark with Ra = 105. The x-axis is on a logarithmic scale. Unstable solutions are

represented by red dots just below the benchmark Nusselt line.

while having a Courant higher than 1. It can be seen that the simulations using a Courant number
lower than 1 scored significantly better.

All of these grid sizes and viscosity values also have a calculation speed associated with them. Instead
of LUMPS which calculate the lattice updates per second, a better statistic would be Simulation Time
Per Real Time or (STPRT).

STPRT =
Tsim

treal
Ctime = ΛCtime (6.2)

Here Tsim is the amount of time steps the simulation has taken in an allotted time treal which is
simplified as the factor Λ. Λ is dependent on the grid size and is hardware dependent.

Table 6.2 shows the Λ factor per grid size.

Grid size Λ

45× 45 210.5
60× 60 123.5
150× 150 32.3

Table 6.2: The associated Λ factor for different grid sizes for the natural convection benchmark.

Figure 6.11 shows the STPRT compared to the Nusselt number obtained. Once again, there is no
clear relation.
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Figure 6.11: The Nusselt number for different grid sizes and STPRT for a heated square cavity following the
temperature natural convection benchmark with Ra = 105. The x-axis is on a logarithmic scale.Unstable solutions are

represented by red dots just below the benchmark Nusselt line.



7
Conclusions

The two original research questions were:

• Which physical parameters influence the melting time of a freeze plug, and how can these be
adjusted to minimize melting duration?

• How can the boundary treatment and overall stability of the filter-matrix lattice Boltzmann
method be improved or optimized?

The first question could sadly not be answered properly. Most used benchmarks gave results that
were not completely valid. The first benchmark produced good results except for low Rayleigh numbers
with little convective driving forces. The conjugated heat benchmark showed a well working conjugated
heat boundary condition, since it showed good corresponding results with the benchmark except for
again, the low Rayleigh numbers.

The results for the third benchmark for melting with natural convection showed no issues in lower
Rayleigh domains. This suggest that the issue lies somewhere in the function for the collision/propoga-
tion/boundary with the temperature distribution function. Slight deviations in Nusselt number with
the benchmark results occur, even though results for melting front were accurate. A slightly higher
Nusselt number was also found by L. Borstlap, she commented on this phenomenom by suggesting that
there exists a heat sink at the boundary due to the phase change. The LBM method spreads this sink
to neighbouring cells resulting in a higher temperature difference, more flow and thus a higher Nusselt
number.

The FMLBM freeze plug model without natural convection showed good qualitative results in the
temperature isolines which compared well to those of the benchmark. The more precise temperature
thermometers also gave good results. However, when the natural convection was implemented. The
compilation times became extremely long. In the end the model did not achieve stable solutions.

The results for using different corner methods showed corners behaved generally unstable when
enforced with explicit rules. The worst results came from the corners with diagonal normals (both
cases) and the corners that behaved only as adiabatic extensions. This is backed up by mostly by the
mathematical way the boundary temperature is decided at the boundary. It is advised to not set special
rules for corners, but include them in the boundaries just as is. Since it is not necessary for accuracy
and when applied otherwise instability is quickly found.

Different grid resolutions and kinematic viscosity values were tested to investigate their impact on
performance, accuracy, and numerical stability. It was observed that the simulation consistently became
unstable when the time conversion parameter Ctime dropped below 1.3 ·10−5. Although stable solutions
could still be obtained for Courant numbers greater than 1, these cases generally exhibited significantly
larger errors.
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8
Recommendations

The following is a list of reccomendations for future research regarding both the Freeze Plug, and the
FMLBM method. First some reccomendations that could be considered when researching the freeze
plug for use in a molten salt reactor.

• The boundary conditions applied to model the freeze plug are adequate for modelling but could be
made more realistic. For example, currently all boundaries are considered to be no-slip. However,
the upper boundary that is currently a no-slip transient dirichlet boundary is not actually no-slip
in practice. The point where the boundary is should contain more heated salt. Currently a small
layer of salt is already molten at t = 0, however, this layer may be too small and the no-slip
boundaries might induce a velocity dead-point in the corner where there should be none. So it
could be researched if this layer is big enough / should be bigger. Or if the upper boundary
should not be made no-slip. This change was also made by Pater and Kaaks in their final stage
of modelling the freeze plug. [47]

• The freeze plug model still lacks many attributes before becoming entirely realistic. Currently the
PCM is assumed to not change volume and thermal conductivity with a change in temperature.
Generally the thermal conductivity can either increase or decrease with temperature depending
on the composition. [66] The PCM salt currently has the same density when liquid as when
solid, but the salt it is modeled after has a solid density of 4502 kgm−3 and a fluid density of
4390 kgm−3.[63] Furthermore, lack of turbulence modelling makes the model less realistic as well.
Methods for simulating turbulent flow with the FMLBM do already exist. [67] [68]

• Still, physical freeze plug parameters need to be researched. Possible physical parameters include:
angle of incidence, choice of grated design, size of the freeze plug, material choice and many more
options are still available.

Second, there are some reccomendations for use of the filter-matrix lattice boltzmann method for
use in fluid dynamics simulations.

• When building a code base that is based on the one from this thesis, one should consider revis-
iting the early numerical benchmark to figure out issues with convective heat transport in low
Rayleigh numbers while using the temperature distribution function. The discrepency between
the benchmark cases and obtained results indicates possible further issues. This should first be
solved.

• The performance, stability and accuracy indicators of chapter 6 can be used to compare the
FMLBM with other lattice Boltzmann methods such as the SRT or MRT methods. This would
allow for a good numerical comparison between these different collision schemes to see which
scheme operates better and by how much.

• GPU parallelization. When dealing with larger grid sizes like the one used for the freeze plug
natural convection case, it would be a lot faster to use GPU parallelization. GPU parallelization
causes the computations to be done on all cells at once instead of one by one. This is especially
helpful when running larger grids. When running the first natural convection benchmark GPU
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parallelization allowed for 100 MLUPS to be reached with a grid of 300x300 [65]. This study only
reached 1.4 MLUPS on the same grid and benchmark.

• To further speed up the process another scheme could be considered, such as D2Q5. Besides
being faster due to less directions needing to be computated, it also shows better accuracy and
convergence when the convection term is small. [69]
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A
Appendix

A.1. Algorithm benchmarks
A.1.1. Natural convection benchmark

• Initialize the distribution functions in the PCM domain for density fi(x, t) and enthalpy mi(x, t)
using chosen macroscopic quantities.

• Initialize the distribution functions in the wall domain for density fi(x, t) and temperature gi(x, t)
using chosen macroscopic quantities.

• Initialize enthalpy properties such as the liquid fraction fL and the total enthalpy of all cells using
mi(x, t).

• For each time step t from 0 to T, do:

1. Collision step PCM domain
– Determine solution vector β−

i (x, t) using equation 3.19 and gi(x, t)
– Translate β−

i (x, t) into β+
i (x, t) 3.23

– Get the post collision enthalpy distributions from β+
i (x, t) 3.22

2. Propogate gi(x, t)
3. Apply temperature Neumann boundary condition edges PCM domain (See steps

from section 3.4.2
4. Apply temperature Dirichlet boundary condition edge PCM domain
5. Apply temperature boundary conditions to corners on the PCM domain
6. Collision step PCM domain for density distributions

– Determine solution vector α−
i (x, t) using equation 3.19 and mi(x, t)

– Determine acting body forces due to natural convection 2.7
– Determine velocities 3.57
– Translate α−

i (x, t) into α+
i (x, t) 3.56

7. Apply density boundary conditions to edges on the PCM domain
8. Apply density boundary conditions to corners on the PCM domain
9. For each nth time step t

(a) retrieve all relevant macroscopic values for data and intermediary plots

• End simulation when past maximum time steps OR when a converging solution is found OR when
the part of the freeze plug has melted completely through in freeze plug simulations.
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