
D
el

ft
U

ni
ve

rs
it

y
of

Te
ch

no
lo

gy

Simulating Ice Layer Development In
Turbulent Channel Flow Using A
GPU-Accelerated Filter-Matrix Lattice
Boltzmann Method
Master Thesis

Jordi Reitsma

Simulating Ice Layer Development In
Turbulent Channel Flow Using A

GPU-Accelerated Filter-Matrix Lattice
Boltzmann Method

Master Thesis

JORDI REITSMA
4691245

A thesis submitted in partial fulfillment of
the requirements for the degree of

Master of Science in Applied Physics

To be defended on Thurdsday 17th of July 2025

Supervisors: Dr. Ir. M. Rohde

Examining commitee: Dr. Ir. M. Rohde Reactor Physics and Nuclear Materials, Applied Sciences, TU Delft
Prof. Dr. Ir. J.L. Kloosterman Reactor Physics and Nuclear Materials, Applied Sciences, TU Delft
Dr. Ir. R.M. Hartkamp Complex Fluid Processing, Mechanical Engineering, TU Delft

Reactor Physics and Nuclear Materials
Applied Physics
Delft University of Technology

Highlights

The most significant contributions of this thesis are:

1. This work successfully implemented further GPU-acceleration by allocating the collision vector of the
collision kernel into shared memory and using an optimized matrix mutliplication strategy.

2. This work created a DDF-FMLBM model that is able to simulate the ice growth behavior for a spatially
developing ice layer.

3. This work compared freezing results from simulations with experimental data.

A B S T R A C T

The urgent need to combat climate change has focused research into low-emission energy technologies, with
nuclear energy expected to play a pivotal role due to its reliability and minimal carbon footprint. Among the
next-generation reactor designs, the Molten Salt Fast Reactor (MSFR) offers significant advantages in safety and
efficiency. However, the high melting points of molten salts introduce a risk of freezing in the heat exchanger,
which can severely impact reactor performance. To better understand possible freezing scenarios in the heat
exchanger, this study develops a numerical model capable of simulating ice layer formation under turbulent
flow conditions within channel flow.

The numerical model is based on a double-distribution function Filter-Matrix Lattice Boltzmann Method (DDF-
FMLBM), enabling the accurate simulation of both turbulent flow and thermal phase change. The model in-
cludes enthalpy-based phase tracking and the immersed boundary method (IBM) imposes a no-slip condition
within the ice. GPU acceleration is achieved via Julia’s CUDA.jl, which enables the use of shared memory allo-
cations which significantly improves the algorithm’s efficiency.

The DDF-FMLBM implementation was validated against direct numerical simulation (DNS) literature studies,
showing good agreement with benchmark turbulence statistics. Applying uniform grid refinement yielded only
marginal accuracy improvements, whereas increasing the domain length enhanced large-scale eddy resolution
in the streamwise direction, particularly improving the prediction of RMS velocity fluctuations (u′

r ms). A strong
recycling method was used to generate realistic turbulent inflow profiles in combination with a zero-gradient
Neumann boundary as the outflow. It was found that the Neumann condition introduced non-physical ef-
fects near the outlet. GPU performance was evaluated in terms of MLUPS, and substantial speed-ups were
achieved over previous implementations of DDF LBM models by making use of shared memory allocation for
the FMLBM solution vector and optimized matrix multiplication strategy.

The developed DDF-FMLBM model was shown to accurately resolve key aspects of turbulent heat transport
and phase change behavior in water. This validated model was used to simulate spatially developing ice layers
under varying cold-wall temperatures, capturing ice thickness growth over a physical time of 10 minutes. Most
cases did not reach steady-state freezing within this period. Comparison with a single experimental reference
curve revealed similar freezing trends, though the simulation consistently over predicted the freezing rate. Due
to mismatched experimental conditions, this discrepancy could not be quantitatively assessed. Residual veloci-
ties observed within the ice layer suggest that the realistic turbulent inflow condition using the strong recycling
method introduces non-physical artifacts, as the immersed boundary method (IBM) performs correctly in pe-
riodic setups.

Based on the findings, several recommendations are proposed to enhance future modeling efforts. To enable
validation at relevant conditions, the model should be extended to higher Reynolds numbers using Large Eddy
Simulation (LES) to reduce computational cost. It is also advised to replace the zero-gradient Neumann outlet
with more physical boundary conditions, such as convective outflow. Additionally, extending the model to sup-
port higher Prandtl numbers and adiabatic wall conditions would allow better comparison with experimental
studies.

iii

N O M E N C L AT U R E

abbreviations

Abbreviation Definition
MSFR Molten Salt Fast Reactor
LBM Lattice Boltzmann Method
FMLBM Filter-matrix lattice Boltzmann method
DNS Direct Numerical Simulation
DDF Double-distribution function
GPU Graphical Processing Unit
LBGK Lattice Bathnagar-Gross-Krook
MRT Multi-relaxation time
IBM Immersed boundary method
ETT Eddy turnover time
MLUPS Million lattice updates per second
RMS Root mean square

C O N T E N T S

1 Introduction 1
1.1 Molten Salt Fast Reactor . 2

1.1.1 Risk of freezing . 3
1.2 Previous Research . 3
1.3 Research Questions . 4
1.4 Thesis Outline . 4

2 Theoretical background 5
2.1 Fluid dynamics . 5

2.1.1 Mass equation . 5
2.1.2 Momentum equation . 5

2.2 Thermodynamics . 6
2.2.1 Thermal energy equation . 6
2.2.2 Phase change . 7

2.3 Kinetic Theory . 8
2.3.1 Boltzmann equation . 8

2.4 Turbulence . 8
2.4.1 What is turbulence? . 8
2.4.2 Turbulence Statistics . 10
2.4.3 Channel flow . 11
2.4.4 Turbulence Simulation Techniques . 13

2.5 Parallel Programming on A Graphical Processing Units . 13
2.5.1 GPU hardware architecture . 13
2.5.2 Parallel programming and CUDA . 14
2.5.3 GPU memory hierarchy . 14

3 Numerical Methods 15
3.1 Filter-Matrix Lattice Boltzmann Method . 15

3.1.1 Lattice Boltzmann Method . 15
3.1.2 Filter-Matrix Lattice Boltzmann Method . 16
3.1.3 D3Q19 velocity Scheme . 17
3.1.4 Conversion Parameters . 18

3.2 Filter-matrix Thermal Lattice Boltzmann Method . 19
3.2.1 Double-distribution function . 19
3.2.2 Enthalpy-distribution . 19
3.2.3 Enthalpy scaling . 20
3.2.4 Phase interface treatment . 21

3.3 Boundary conditions . 23
3.3.1 Wall conditions . 23
3.3.2 Inlet- and outlet conditions . 24

3.4 GPU implementation . 26
3.4.1 Julia . 26
3.4.2 Computational workflow and Kernel Design . 26
3.4.3 Race conditions . 27
3.4.4 Memory coalescence . 27
3.4.5 Shared memory and matrix multiplication . 27

3.5 Simulation Requirements . 28
3.5.1 Direct Numerical Simulation . 28
3.5.2 Initialization . 29
3.5.3 Convergence . 29
3.5.4 Averaging window and sampling rate . 29

4 Validation of Turbulence model 31

v

vi contents

4.1 Computational setup . 31
4.2 Benchmark studies and Simulation overview . 32
4.3 Periodic simulations . 33
4.4 Realistic inflow simulation . 36
4.5 GPU-performance . 38

4.5.1 GPU performance indicator . 38
4.5.2 Simulation efficiency results . 38

4.6 Conclusion . 40

5 Validation of Freezing model 41
5.1 Computational setup . 41
5.2 Validation of the Freezing model . 43

5.2.1 Benchmarking of Thermal statistics . 43
5.2.2 Analytical expression for steady-state freezing . 45
5.2.3 Validation of Phase Change Implementation . 46

5.3 Simulations of a Spatially Developing Ice Layer . 48
5.4 Conclusion . 52

6 Conclusions & Recommendations 53
6.1 Effects of Grid resolution and Domain Length on Turbulent statistics 53
6.2 Implementation of Realistic streamwise boundary conditions . 53
6.3 Achieved Computational speed-ups . 54
6.4 Validation of Freezing model . 54
6.5 Spatially developing ice layer model . 54
6.6 Recommendations . 55

a Appendix - Thermal instabilities for high initial temperature gradient 60

contents vii

1 I N T R O D U C T I O N

In December 2015 the United Nations Framework Convention on Climate Change (UNFCCC) organized a con-
ference on climate change attended by representatives of 196 nation states [1]. Here, a global agreement has
been formulated to tackle the global temperature rise due to climate change. The main goal of the Paris Agree-
ment is that the increase in global average temperature should be kept well below 2.0 ◦C above pre-industrial
levels, while pursuing efforts to limit the temperature increase to 1.5 ◦C above pre-industrial levels.
In 2025 there are signs that global temperature is rising faster than predicted leading to 2023 and 2024 being
the hottest years on record [2] [3]. The Aeronautics and Space Administration (NASA) reported that the global
temperature rise in 2024 even surpassed the 1.5 ◦C threshold agreed upon in the Paris Agreements. Evidently,
drastic measure need to be taken in order to uphold the Paris Agreements.

Carbon emissions represent the most significant factor contributing to climate change. Specifically, the current
global energy consumption roughly emits 75% of the total fossil fuel emissions worldwide[4]. Therefore, the en-
ergy sector has received enormous research attention as innovation in this sector plays a pivotal role in tackling
climate change. According to the International Energy Outlook 2023 formulated by the U.S. Energy Informa-
tion Administration (EIA), the CO2-emissions are expected to rise until 2050 due to growing global population
and growing incomes. The most straightforward way to offset these rising emissions is by focusing innovation
on creating fossil fuel free energy technologies.

Currently, nuclear energy created in a nuclear reactors produces electricity with the lowest amount of green-
house emissions. To achieve a world where carbon emissions should be net zero, nuclear reactors are therefore
crucial. Besides being a very clean energy source, it is also a very reliable way to produce energy. In a world with
growing uncertainty, nuclear energy can help countries to move to become self sufficient in their own energy
needs.

In a report published in 2023, the International Atomic Energy Agency (IAEA) estimated the share of nuclear
energy to the total electricity mix could further grow from 9.8% to 14% [5]. Despite being a sustainable and
reliable way of producing electricity, governments and institutions around the world have been reluctant to
commission the construction of new reactors. Fear of major accidents and accumulation of nuclear waste are
the main culprits that negatively impact public opinion on nuclear energy. To unlock the potential that nuclear
energy holds to fight climate change, the Generation IV Forum (GIF) was established as an international coop-
eration on nuclear research between 13 countries as well as the European Union. The main goal of GIF is to
develop the research necessary to commercialize six new prospective reactor types by 2030 [6]. Testing safety
risks and performance are the main obstacles that have to be overcome to make the new reactors commercially
attractive. One promising reactor type is the Molten Salt Reactor (MSR), which relies on molten salts serving as
the reactor fuel, coolant and/or moderator.
This introductory chapter will first discuss the main principles of the MSR and discuss its advantages and dis-
advantages compared to conventional PWR’s in section 1.1. Furthermore, section 1.2 presents the relevant
studies from literature used as basis in this thesis. Section1.3 presents the research questions that this work
aims to answer. To conclude the introduction, an outline for the rest of this thesis is given Section 1.4.

1

2 introduction

1.1 molten salt fast reactor
The nuclear reactor type that is most widely used today is the pressurized water reactor (PWR), which consti-
tutes roughly 70% of the current nuclear fleet and generates 79% of all nuclear produced electric energy [7]. In
a PWR, the fissile material is usually 3% enriched UO2 rods , both the moderator and coolant are water. Two
water loops are generally used within the nuclear reactor system. The primary water loop circulates through
the reactor core and indirectly transfers its heat to the secondary water loop creating steam. Consequently, this
steam drives a turbine that converts the steam heat into electrical energy. [8]

Even though PWRs have been the staple of nuclear energy generation for decades, the reactor type has inher-
ent limitations concerning safety, fuel utilization and nuclear waste production. The moderator and coolant
needs to be in the liquid phase to ensure proper reactor operation. As a result, water needs to be pressurized
increasing the explosion risk during meltdown. Another consequence is that the reactor core can only operate
effectively for temperatures up to the fairly low boiling point of 340 ◦C at operating pressures. This in turns
leads to a limit on thermal efficiency of 34%. Other drawbacks include low fuel utilization, long-lived nuclear
waste and the need for active safety mechanisms.

The molten salt reactor (MSR) type reactors aim to improve on the major drawbacks of the PWR, while still be-
ing capable of producing a viable amount of (electrical) energy. The defining feature, is the use of molten salt as
a coolant and/or moderator and in many designs, also as the medium in which fissile material is dissolved. Of
particular interest to this study is the molten salt fast reactor (MSFR) concept envisioned by the SAMOSAFER
(Severe Accident Modeling and Safety Assessment for Fluid-fuel Energy Reactor) project, since Delft University
of Technology is a member of the projects consortium [9]. A simplified design of the MSFR can be seen in figure
1.1.

Figure 1.1: Schematic of the working principle of the MSFR envisioned by the SAMOSAFER project. The reactor core is
represented by the green area. The location of heat exchanger and pumps is also specified. [9]

The reactor core (in green) is contained within a cylindrical vessel of height and diameter of 2.25m and is filled
with nuclear fuel dissolved in a salt. Within the vessel, a breeding blanket (in red) is present, which envelops the
reactor core. The blanket contains thorium, which enables the breeding of more fissile material[9, 10]. Fuel salt
from the core is circulated in a downward direction through the heat exchangers via pumps. Consequently, the
flow of the fuel salt within the reactor core is upwards. No moderator is present, meaning that fission reactions
are driven by fast neutrons, enabling the reactor to operate in the range of a breeder or burner reactor.

Using fuel salts comes with multiple advantages over PWR’s. First of all, the thermal expansion of the fuel
salt, due fission reactions, has a negative impact on the fission rate serving as a natural feedback system when
the reactor gets overheated. Furthermore, a higher thermal efficiency can be achieved which is attributed to
the high boiling point (at 740C ◦) of the molten salt. Other advantages include the possibility of fuel adjustment
during operation, better resource utilization, fuel homogeneity and passive safety features like a freeze plug [7].

1.2 previous research 3

1.1.1 Risk of freezing

A major complication in the current state of MSFR research is the fact that molten salts are prone to freezing,
because of their high melting points. This is specifically a concern in the heat exchanger, where heat from
the reactor core is extracted from the molten salt mixture. Solidification within the heat exchanger can have
catastrophic effects on the operation of a MSFR [11]. These effects are twofold: (1) the material of the heat
exchanger may be damaged due to volumetric expansions of the molten salt mixture and (2) the ice layer can
partially or completely block the flow from the reactor, reducing the system’s potential for efficient heat transfer.

To better understand scenarios where freezing takes place, it is essential to model the effects of the phase
change behavior of these molten salts. Current MSFR designs estimate that the core flow can operate at Reynolds
numbers between the orders of magnitude 103 and 105, thus placing the flow in a turbulent state [12]. It is
therefore important to investigate the effects of turbulence on the development of an ice layer within the heat
exchanger. The present numerical study focuses on the phase change behavior under turbulent flow condi-
tions.

1.2 previous research
This thesis aims to create a numerical model that is able to model ice layer development in a heat exchanger.
The specific numerical technique of interest is the lattice Boltzmann method (LBM) which is able to solve the
governing equations for the flow- and thermal physics. One of the attractive features of the LBM is that it is suit-
able for implementation on a Graphical Processing Unit (GPU), which can dramatically increase computational
speed. An increase in computational speed is particularly advantageous for simulating turbulent flows, which
often require stringent requirements on spatial resolution and domain size to capture flow physics [13]. The
Lattice Boltzmann method originates from the lattice gas automata (LGA) method and is based on kinetic the-
ories [14]. LBM modeling revolves around finding a suitable way to model the collision operator. The earliest
successful collision model is the Bhatnagar-Gross-Krook (LBGK) model, which relaxes particle distributions
to equilibrium using a single-relaxation-time(SRT) [15, 16]. A major drawback of this model is that it suffers
from numerical instability, especially at low viscosity [17], which is a significant concern when modeling tur-
bulence. An improvement over the SRT-model is the multiple-relaxation-time (MRT) approach, which assigns
distinct relaxation times to different moments of the distribution function [18]. This increases the numerical
stability and accuracy of the LB model [19]. However, finding the right relaxation parameters in MRT is difficult,
which are needed to achieve stable and accurate results[20]. Somers et al. [21] introduced a novel lattice Boltz-
mann scheme in which the nonlinear collision operator is modeled with the assistance of filter matrices. This
Filter-Matrix Lattice Boltzmann (FMLBM) approach retains the advantages of multiple relaxation times, while
eliminating the need to specify individual relaxation parameters. In both studies from literature [19, 22, 23]and
studies conducted within the research group involved in this thesis [24–26], the FMLBM is proven to be an ac-
curate LB model for simulating both turbulent thermal and flow dynamics.

A successful implementation of thermal effects within the FMLBM framework was demonstrated by Zhuo et al.
[19]. A double-distribution function (DDF) approach was used, that simulates the flow field and temperature
field using separate distribution functions. This DDF strategy offers improved numerical stability and allows
for consistent thermal boundary treatment, compared to other thermal LBM formulations. To implement a
transition from liquid to ice in the thermal model, Huang et al. [27] proposed replacing the temperature based
thermal distribution function with a distribution function that evolves total enthalpy. This formulations allows
modeling the effects of the extraction or absorption of latent heat associated with phase transitions. To keep
track of the moving phase interface, the immersed boundary method (IBM) was used developed by Noble et al.
[28]. The implementation of phase change effects within the FMLBM framework was shown to be successful
by Bus [26] and Spek [25]. Specifically, the latter study focused on simulating turbulent freezing using a D3Q19-
D3Q19 DDF-FMLBM approach. It was demonstrated that instabilities in the thermal field attributed to large
enthalpy values, could be overcome by implementing suitable enthalpy transformation rules.

4 introduction

Modeling realistic turbulent freezing requires a suitable turbulent inflow condition. Chung et al. [29] showed
that using a temporal strong recycling method reliably reproduces all relevant turbulent characteristics of the
target flow, making it suitable for generating realistic inflow conditions. Within the associated research group,
Collenteur [30] conducted an experimental investigation on convective freezing in turbulent and laminar chan-
nel flow using PIV measurements to identify ice layer growth. The findings from this study serve as a reference
for validating the freezing model in the current work.

1.3 research questions
The focus of this thesis is put on developing a computationally efficient FMLBM model that can simulate real-
istic freezing within a channel flow, that mimics the geometry of the heat exchanger of the MSFR. To this end,
the following research questions are formulated for this thesis.

1. Methodology: How can transient salt freezing under turbulent flow conditions in cooled 3D channel be
modeled using a GPU-accelerated direct numerical simulations (DNS) in the filter-matrix lattice Boltz-
mann (FMLB) framework in order to best resemble experimental results?

a) Which boundary-, inlet- and outlet conditions should be implemented to achieve stable and accurate
simulations?

b)) What is the appropriate grid configuration to realistically capture all relevant turbulent scales in
DNS?

c) To what extent can computational efficiency be improved while maintaining accurate results?

2. Ice layer development: How and to what extend is the thickness and profile of a solidified ice layer in a
turbulent flow through a cooled 3D channel affected by imposed thermal boundary conditions and cold
wall temperature?

1.4 thesis outline
The current chapter has given the motivation for developing MSFR’s, the advantages and disadvantages of
these novel reactor types, provided literature relevant to this specific study and set the goal for the rest of this
work. Chapter 2 will provide the theoretical background that is needed to understand the relevant physics
and concepts involved in developing the DDF FMLBM model. Furthermore, the specific implementation steps
needed to arrive at an accurate and efficient thermal freezing model are outlined in Chapter 3. Subsequently,
the usefulness of simulating flow field specifics of the model is tested in Chapter 4. In Chapter 5 heat transfer
and phase change functionalities are validated and simulations on a developing ice layer are performed. The
final chapter of this thesis summarizes the conclusions found from the results and gives recommendations on
interesting future research paths.

2 T H E O R E T I C A L B A C KG R O U N D

This chapter will provide the necessary background information that can be used to understand the concepts
described in later sections. The first section 2.1 of this chapter discusses the governing equations associated
with the field of fluid dynamics. After that section 2.2.2 presents relevant theory needed to understand phase
change phenomena. Furthermore, kinetic theory related to the Lattice Boltzmann method is provided in sec-
tion 2.3.1. Section 2.4 provides the relevant information on turbulence in fluid dynamics. Lastly, theory on
parallel computing is presented in section 2.5

2.1 fluid dynamics
Fluid dynamics is the domain that is concerned with retrieving a correct description of the behavior of fluids.
Correctly simulating the hydrodynamical behavior of a fluid in a channel begins with finding the governing
equations of fluids. These equations can be found by considering the mass- and momentum conservation for
a fluid element.

2.1.1 Mass equation

To be able to derive the governing equations, the continuum hypothesis for fluid dynamics is being employed.
This hypothesis states that fluids can be treated as continuous matter rather than a constituency of microscopic
particles. As result, continuous macroscopic variables can be defined at every point in time and space. [31]

Consider a three-dimensional macroscopic fluid element that moves through space with a three-dimensional
velocity u, which is defined by u = (u, v , z). Here u, v , and z correspond to the velocity components in the x-,
y- and z-directions respectively. When there is no source or sink within the element, the mass balance or the
continuity equation will read [31]:

∂ρ

∂t
+∇· (ρu) = 0 (2.1)

Here ρ is the density of the fluid element in kg /m3. The first term in the equation is the local change of density,
while the second term corresponds to the transport of mass. When considering an incompressible flow, the
continuity equation reduces to:

∇· (ρu) = 0 (2.2)

The incompressibility assumption dictates that the density of the fluid is a constant. This assumption is valid
when the fluid velocity is sufficiently small compared to the speed of sound, u

cs

2.1.2 Momentum equation

Another important characteristic of fluid is how it evolves into space. To derive an expression for the momen-
tum behavior, once again consider a control volume. Newton’s second law states that the change in linear mo-
mentum is equal to the forces acting on the fluid element. On a fluid element specifically, only surface forces
and volume forces apply. Using momentum conservation and the result from equation 2.2, the incompressible
momentum conservation equation can be written as

µ∇2u−∇p +ρf = ρ(
∂u

∂t
+ (u ·∇)u)) (2.3)

5

6 theoretical background

Here µ is called the dynamic viscosity in Pa · s, p is the pressure in Pa and f is an acceleration in m/s2 . In the
current study it is also assumed that the fluid is Newtonian. This means that viscosity has a constant value [32].
The combination of equations 2.1 an 2.3 is also called the Newtonian Navier-Stokes equations for incompress-
ible flows.

The left hand side of the momentum equation represents the effect of forces on the fluid. The term µ∇u rep-
resents diffusion of momentum and is also called the viscous term. Viscosity tends to resist sharp gradients
and acts as an inhibitor to momentum diffusion within the fluid. The second term in equation 2.3 represents a
pressure force in the form of a gradient. Besides that, fluid motion can also influenced by body forces, which is
embodied by ρf.

On the other hand, the right-hand side of equation 2.3 represents the inertial terms. What makes the Navier-
Stokes equation notoriously hard to solve is the non-linear advection term (u ·∇)u. The main characteristic of
this term is that small velocity fluctuations are amplified rapidly.

Solutions to the Navier-Stokes equations can be characterized by its Reynolds number

Re = U L

ν
(2.4)

which is a non-dimensional number which represents the ratio between the inertial forces and the viscous
forces. Here U is the characteristic velocity of the flow, L the characteristic length scale and ν the kinematic
viscosity, which is defined as ν= µ

ρ . At a certain Reynolds number a flow will start to transition from laminar to
a turbulent situation. For a typical pipe flow, this transition will begin around Re = 2300, where fully turbulent
flow is observed for Re > 2700.[31, 33]. The nature of the transition of laminar to turbulence will be discussed
in section 2.4.

2.2 thermodynamics
The subject of freezing fluids involves the process of heat transfer between different fluid phases. To arrive at a
useful formulation of phase change, it is necessary to first derive the governing equation of heat transfer based
on the concept of energy conservation. Subsequently, phase change behavior can then be quantified.

2.2.1 Thermal energy equation

Similarly to the derivation of the Navier-Stokes equation, a finite volume element is considered alongside an
energy balance equation. In this energy balance the effects of viscous dissipation are neglected,the fluid is still
considered incompressible and the specific heat for a particular phase is assumed to be constant. The thermal
energy equation then looks like:

ρCp
∂T

∂t
+ρCp∇· (uT) =∇· (λ∇T)+q (2.5)

Here Cp , λ, T are the specific heat, thermal conductivity, fluid temperature and heat sink/source respectively
[27]. As can be seen Eq. 2.5 takes a similar shape as the momentum equation Eq. 2.3. On the left hand-side the
first term represents the transient term again, while the second term expresses the change in thermal energy
as a result of convection. The first term on the right-hand side is the diffusion of thermal heat. The final term
represents a heat source or sink that corresponds to the energy that is being absorbed or released due to phase
change.

Equation 2.5 can also be cast into an enthalpy form, when considering that dh = cp dT [34]

ρ
∂h

∂t
+ρu ·∇h =∇· (α∇h)+q (2.6)

A useful non-dimensional number that relates the momentum diffusivity ν to thermal diffusivity α is the
Prandtl number Pr:

Pr = ν

α
(2.7)

2.2 thermodynamics 7

The Prandtl number is a material specific number. When Pr » 1 then momentum diffusivity dominates over
thermal diffusivity. This means that in order for heat to be transported efficiently, convection is needed. On the
other hand when Pr « 1, heat is transported primarily through diffusion. [32]

2.2.2 Phase change

In the framework of phase change it is more convenient to track the total enthalpy H within the system. Fortu-
nately, the sensible enthalpy can be directly related to the total enthalpy via: [34]

Hφ = hφ+ f φl L (2.8)

The first term represents sensible enthalpy and the second term is the latent heat contribution. Essentially, la-
tent heat reflects the amount of energy that is needed to change the molecular structure during phase change.
Three distinct phases can be identified during the solidification process, namely the liquid, solid, and mushy
phase. These phases are indicated in the formula using φ = {l , s,m}. Furthermore, fl is the liquid fraction,
which can take values 0 ≤ fl ≤ 1. When the substance is fully liquid, its liquid fraction will be 1. Conversely, a
solid phase will have a value of 0. Within the mushy zone the solid and liquid phase coexist. To account for the
effects of both phases, a liquid fraction between 0 % 1 is allowed.

During the phase change the incompressibility assumption fails physically, since the solidification process in-
volves volumetric expansion. To circumvent this problem, the source term q can be modeled to account for the
phase change effects without the need to correct for density variations. For a pure material like water, q can be
described as the change in total enthalpy [27]

q =−∂(ρ∆H)

∂t
=−∂(ρL fl)

∂t
. (2.9)

For a pure material the latent heat is a constant [32]. As a result the advection term can be approximated
byu ·∇Hφ ≈ u ·∇hφ. Using this and putting equation 2.8 into the enthalpy equation 2.6, the expression for total
enthalpy of phase change is expressed as

∂Hφ

∂t
+u ·∇hφ =∇· (αφ∇hφ). (2.10)

The material being studied is considered to be eutectic. This means that the transition from one phase to
the other happens at constant temperature. What differs in distinct phases, is the value for the specific heat.
This results in a less straightforward way to calculate solution variables. Values for the liquid fraction and
temperature can be retrieved via

fL =


0 H < Hs
H−Hs
Hl−Hs

Hs ≤ H ≤ Hl

1 H > Hl

T =


H/Cp,s H < Hs

Ts + H−Hs
Hl−Hs

(Tl −Ts) Hs ≤ H ≤ Hl

Tl + (H −Hl)/Cp,l H > Hl ,

where Cp,s and Cp,l are the specific heats for the liquid and solid phase. The solidus temperature Ts can be
described as the highest temperature at which a solid phase can exist. Equivalently, the liquids temperature
is the lowest temperature at which the liquid phase can exist. The same rationale applies to the total solidus
enthalpy Hs and the total liquidus enthalpy Hl . For eutectic fluids Ts = Tl , but Hs ̸= Hl . In the mushy layer the
temperature will be constant, but the total enthalpy changes as a result of the addition or removal of latent heat.

Since the mushy zone is a mixture between the solid and the liquid phase, the specific heat of the fluid should

also be adjusted. The specific heat in the mushy layer is defined to be Cp,m = 2Cp,l Cp,s

Cp,l+Cp,s
. Using this result enables

to formulate the following expression for the sensible enthalpy

h =


Cp,s T , T < Ts

hs +Cp,mT , Ts ≤ T ≤ Tl

hl +Cp,l T , T > Tl

(2.11)

8 theoretical background

where hs and hl are the solidus- and liquidus sensible enthalpy respectively.

2.3 kinetic theory

2.3.1 Boltzmann equation

The governing principles of the lattice Boltzmann method is rooted in kinetic theory, which gives a description
on a mesocopic scale of dillute gasses. The most important parameter in kinetic theory is the particle distribu-
tion function f (x,ζ, t), which represents a distribution of particles at position x , velocity ζ and time t. In this
mesoscopic approach, collection of particles is tracked rather than individual particles. Macroscopic variables
can be retrieved from the particle distribution function, by taking its moments[35]:

ρ(x, t) =
∫

f (x,ζ, t)d 3ζ (2.12)

ρ(x, t)u(x, t) =
∫
ξ f (x,ξ, t)d3ξ. (2.13)

The evolution equation of the particle distribution function is retrieved by considering its derivative with re-
spect to time and expanding its partial derivative terms:

∂ f

∂t
+ξβ

∂ f

∂xβ
+ Fβ
ρ

∂ f

∂ξβ
=Ω(f). (2.14)

The above equation is referred to as the continuous Boltzmann equation. Here Fβ is a force term. The collision
operator on the right-hand side represents a source term, which describes the redistribution of f towards local
equilibrium:

Ω(f) =−1

τ
(f − f eq) (2.15)

Here feq represents the equilibrium distribution function. This particular collision operator was invented by
[15] and it represents the relaxation towards equilibrium governed by the relaxation time τ.

2.4 turbulence

2.4.1 What is turbulence?

Solutions to the Navier-Stokes equation can either give a laminar, flow profile or a turbulent profile. A laminar
profile is characterized by an orderly and smooth arrangement of fluid layers as shown in the top of figure 2.1 .
In such a flow the viscous term µ∇2u dominates. The viscosity is large enough to suppress any effect of pertur-
bations in the flow field, stabilizing the flow such that the fluid layers stays orderly.

Turbulent flow on the other hand looks chaotic and disordered as can be seen in the bottom picture. The orderly
fluid layers seem to have broken down and started to mix, creating circular structures called eddies. In three-
dimensional space, the eddies possess a vortex shape. In the case of turbulent flows, the non-linear inertial
term (u · ∇)u has a bigger effect than the viscous term on overall flow. As a result perturbations no longer get
damped out, but rather get enhanced. In turn this creates eddies. Even though turbulent flow looks random, it
is still fully deterministic [31]
.
Within a turbulent flow, a whole range of different eddy sizes and shapes are present. In turn, all these differ-
ent eddies interact and influence each other to create a variety of turbulent structures. The largest scales are
associated with the macro-structure, which is characterized by large swirling motions within the flow field. By
means of these large eddies, quantities like temperature are effectively mixed. Therefore, turbulence can be an
effective mechanism for heat transfer.

2.4 turbulence 9

Figure 2.1: Comparison between laminar flow and turbulent flow [36]

Another important characteristic of turbulent flow is the existence of the energy cascade, which is depicted in
figure 2.2. Energy is injected into the flow at large scales by external forces, generating large eddies that eventu-
ally become unstable. These unstable eddies break down into smaller vortices in a process that continues down
to the smallest eddy scales, known as the microstructure. At these small length scales, viscous effects become
dominant due to the increasing velocity gradients. As a result, the energy originating from the large eddies is
dissipated by the fluid’s viscosity. The microstructure is directly associated with the kinetic energy dissipation
rate ϵ. Important parameters to quantify the microstructure are the Kolmogorov scales [31]

Figure 2.2: Schematic depiction of the energy casade within a turbulent flow [37].

η=
(
ν3

ϵ

)1/4

, τ=
(ν
ϵ

)1/2
, v = (νϵ)1/4. (2.16)

Here η is called the Kolmogorov length scale and is associated with the smallest eddy size. Furthermore, τ and
v are the characteristic timescale and velocity scale associated with the Kolmogorov length scale. The range
which the eddy scales can take, is related to Reynolds number via

L

η
∼ Re3/4. (2.17)

Here L is the characteristic length scale associated with the macro-structure. When the Reynolds number
grows, ratio between the biggest scales and the smallest scales increase.

10 theoretical background

2.4.2 Turbulence Statistics

As discussed, turbulent flows are characterized by a highly chaotic and fluctuating flow field. Small deviations
in boundary conditions or initial conditions can yield different instantaneous flow profiles. Retrieving useful
information , thus requires a statistical analysis for both the solutions to the Navier-Stokes equations as well as
the ones for the heat equation.

In turbulent statistical theory it is common to define an instantaneous quantity as the sum of an average and a
fluctuation

ui = ui +u′
i , (2.18)

Here the overhead bar denotes the mean of a quantity, while the apostrophe represents a fluctuation. These ve-
locity This decomposition is called the Reynold decomposition and forms the basis for calculating turbulence
statistics.

The mean velocity u is defined as the ensemble average

u = lim
N→∞

1

N

N∑
α=1

u(α), (2.19)

where the same simulation is performed N times. Index α represents one realization of the experiment. Turbu-
lent channel flow is considered to be statistically stationary and homogeneous, because the solutions are both
invariant to translations in both space and time [31]. As a consequence, the spatial- and temporal averages are
both equal to the ensemble average. Thus, the mean quantity in this study is averaged over both space and
time,

u(y) = 1

Nx Nz NT

Nx∑
i=1

Nz∑
j=1

NT∑
n=1

u(xi , y , z j , tn),

(2.20)

T (y) = 1

Nx Nz NT

Nx∑
i=1

Nz∑
j=1

NT∑
n=1

T (xi , y , z j , tn),

(2.21)

Here the resulting mean quantity is a function of y and thus no averaging takes place over the wall-normal di-
rection.

A way to quantify the intensity of turbulence within a flow is given by the root mean square (RMS) velocity
fluctuation defined as ur ms . In statistical terms tis RMS values are defined by

ur ms =
√

u′u′, Tr ms =
√

T ′T ′. (2.22)

Here Tr ms is the temperature equivalent to the RMS velocity fluctuations and it quantifies thermal mixing
within a fluid. ur ms is directly related to the turbulent kinetic energy via

k = 1

2
(u′

i u′
i) (2.23)

An important feature of turbulent flow is the effective transport of momentum and heat transport due to tur-
bulent eddies. This transport primarily occurs due to shearing effects , where velocity gradients generate fluc-
tuations that enhance mixing. Statistically, this mixing effect can be captured by

τi j =−ρu′
i u′

j , qi = ρcp u′
i T ′, (2.24)

where τi j is referred to as the Reynolds stress tensor and qi as the turbulent heat flux.

2.4 turbulence 11

The presented quantities are also referred to as the low-order statistics. Higher-order statistics involve higher
order moments of the velocity and temperature values. However, heat transfer mechanisms resulting from tur-
bulence are confined solely to the presented lower-order statistics. Therefore it is not necessary to consider
these higher-orders statistics.

2.4.3 Channel flow

Turbulent flows within a channel like the one shown in figure2.3 are characterized by the shearing effect of the
both walls. The no-slip condition imposed on the walls create a region where viscous and turbulent effects
interact, leading to distinct near-wall behavior. This type of flow is also referred to as a turbulent boundary
layer flow. The channel half-height is denoted by the symbol H. Fully developed turbulent profiles within a
channel are stationary in time and horizontally homogeneous, which implies zero time gradients and zero
spatial gradients in the x- and z-directions [31].

Figure 2.3: Two-dimensional representation of the geometry in turbulent channel flow. Here the parallel plates are seper-
ated by a distance 2H. u corresponds the characteristic mean velocity of this flow type [31].

The characteristic Reynolds number for channel flow is defined by

Rem = 2HUm

ν
. (2.25)

Here Um is the velocity mean taken over the wall-nomal distance of the channel.
Using Prandtl’s mixing length closure hypothesis, an analytical expression can be derived for the mean velocity
profile. This hypothesis depends on defining the so-called mixing length L , that can be used to find an analyti-
cal expression for the shear stress. The mixing length can be interpreted as the characteristic length scale of an
eddy. Because of the presence of the walls, the eddy size is a function of the distance to the wall. Based on this
observation, three distinct region can be identified with each their unique solution profiles and mixing lengths.

These regions are the core region, wall region and the viscous sublayer. Characteristic of the core region is that
the characteristic eddy size scales with the channel height and that the contribution of "small" eddies is negligi-
ble. The Reynold stress tensor dominates over the viscous stress, meaning the flow is considered fully turbulent
here.

Getting closer to the wall from the core region means that the characteristic eddy sizes shrink and that the rela-
tive contribution of the viscous stress tensor grows. The core regions transitions into the logarithmic wall layer.
As the name suggest the solution to the velocity profile here is logarithmic. Furthermore, the turbulent stress is
constant, while the viscous stress is still negligble.

12 theoretical background

In the region closest to the wall eddies are small enough for the viscous stress to become dominant over Reynold
stress. The flow in this region is effectively laminar, but turbulent effects are induced because of the presence of
the other two regions. Since viscous forces are relatively strong here, this part of the channel has been named
the viscous sublayer.

Analytical solutions for each region can be obtained by matching solutions of different zones at appropriate
locations. The mean velocity profile near the wall is defined as

u+ =
{

y+ 0 < y+ < 5,
1
k

[
ln

(
y+)+Π]

y+ > 30.
(2.26)

Here the constant k ≈ 0.4 is the van Karman’s constant. Π= 2.0 is an offset constant following from the matching
of solution of the viscous sublayer and logarithmic layer at y+ = 11. Here y+ is the wall-distance in wall-units,
which will be explained shortly. The region y+ < 5 corresponds to the viscous sublayer and from y+ > 30 this
layer transitioned into the logarithmic wall layer. Between 5 ≥ y+ ≤ 30 a buffer layer is present where both the
viscous stress and turbulent stress are important[31]. Furthermore the logarithmic wall region ends at around
y+ = 100, from where the core region begins

Wall units
A convenient way to quantify the near-wall behavior in channel flows is to cast the relevant variables into non-
dimensional wall-units. An universal scaling system enables comparison between different channel flow se-
tups exhibiting the same turbulent behavior.

Relevant wall units can be formulated for different variables involved. The general procedure is to find suitable
characteristic near-wall value for the quantity and subsequently scale the original value with it. In the near-wall
region, the viscous stress dominates and determines the characteristic wall velocity:

τw = ρν
(

du

d y

)
y=0

, uτ =
√
τw

ρ
. (2.27)

Here τw represent the wall shear stress. Wall length is expressed by the viscous length scale

δν = ν

uτ
(2.28)

which is the fundamental scale over which momentum diffusion happens near the wall. Plugging the viscous
length scale and the friction velocity into the formula for the Reynolds number yields:

Reτ ≡ uτH

ν
(2.29)

Here Reτ is called the friction Reynolds number and describes how near-wall inertial effects behaves compared
to the viscous effects.

Wall units for position, velocity and time are then given by

y+ ≡ y

δν
, u+ ≡ u

uτ
, t+ = uτ

H
t ,

(2.30)

where the plus sign signifies that the variable is in wall units.

A suitable wall unit for temperature can also be defined based on the friction temperature T f , which in turns
leads to wall temperature T +

T f ≡− α

uτ

(
dT

d y

)
y=0

, T + = T

T f
. (2.31)

2.5 parallel programming on a graphical processing units 13

2.4.4 Turbulence Simulation Techniques

A direct numerical simulation (DNS) of turbulent flow aims to resolve all the turbulent scales that are present
within the flow problem, both in space and time. In other words, DNS solves the full Navier-Stokes equations
without any turbulence modeling. As a result, DNS retrieves a unique and highly-accurate solution that fully
represents the unsteady dynamics of turbulence.[38] To achieve a high-fidelity DNS, the computational domain
should be large enough to accommodate the movement of the largest eddies in all directions. Furthermore,
the information of smallest spatial scales corresponding to the Kolmogorov length should be captured by the
computational grid. Analogous requirements should be met considering to accurately capture the timescales
[13]. Specifics for the simulations performed in this thesis are discussed in Section 3.5
As mentioned the main advantage of DNS is that it can represent the solutions of the NSE with very high accu-
racy. Besides that no modifications of the NSE or modeling is needed to capture relevant physical effects. Its
biggest advantage accuracy wise also leads to its drawbacks on the computational level. Equation 2.17 shows
that the Kolmogorov size decreases for flows with higher Reynolds number using the same channel configu-
ration. Consequently, the grid size needs to be refined leading to more computational nodes in the domain.
Simulating very high Reynolds number flows is therefore a big challenge for DNS. Besides the computational
costs, memory costs also significantly increase when more grid points are used.

2.5 parallel programming on a graphical processing units
Simulating turbulent channel flow at high Reynolds numbers is computationally demanding, because resolv-
ing the full-range of turbulent scales requires increasingly finer grids. Reducing computational costs is thus
critical in turbulent models. Traditionally these calculations run on the central processing unit (CPU), which
updates grid nodes sequentially. However, LBM operations are inherently local, since updating a computa-
tional cell requires only adjacent grid nodes. A graphics processing unit (GPU) can handle these type of local
operations far more efficiently than a CPU, paving the way for faster simulation times [35]. The aim of this
section is to introduce key theoretical concepts that are needed to understand the GPU-implementation of the
current FMLBM model.

2.5.1 GPU hardware architecture

A schematic depiction of the most important hardware components of an NVIDIA GPU is shown in Figure 2.4. A
GPU contains multiple streaming multiprocessors (SMs) and on device global memory. The SMs are individual
processing units, which are responsible for managing resources across CUDA cores and executing parallel tasks.
Additionally, SMs contain a block of shared memory that allows operations on the same processing unit to
share resources. A warp scheduler is also present in the SM, which manages the coordination of the parallel
instructions. Lastly, the SM contains thousands of CUDA cores that are responsible for performing calculations.
Each CUDA core has a small amount of on-core register memory.

Figure 2.4: Schematic depiction of the standard architecture of an NVIDIA GPU. The picture shows the hierarcal structure
of the most important hardware components of the GPU. The GPU contains multiple SMs and global device
memory (RAM). Each SM contains its own shared memory cache, a warp scheduler and thousands of CUDA
cores. These CUDA cores serve as the main arithmetic units in the GPU and have access to on-core register
memory.

14 theoretical background

2.5.2 Parallel programming and CUDA

In this research, the Compute Unified Device Architecture (CUDA) programming language is used to leverage
the parallel computing power of NVIDIA GPUs. In CUDA, kernels serve as the GPU equivalent to functions in
CPU-programming and are designed to perform the same operation across many grid points. When a kernel is
launched, threads are created. These threads are software abstractions that carry the kernel’s instruction for a
specific grid point. The information of the thread is executed by the CUDA cores. Due to the GPU’s hardware
structure, threads are bundled together in groups of 32 threads, called a warp. A collection of warps is again
grouped into a block. The SMs are capable of scheduling and assigning blocks, which can contain millions of
threads, to be executed by the CUDA cores. To launch CUDA kernels, the amount of blocks and threads per
block needs to be specified. Achieving high computation performance relies on choosing an optimum values
for the kernel configurations.

The CPU and the GPU are distinct hardware components within a computer and in programming are treated
as such. Functions and input data need to be defined so as to be compatible for use on the GPU. To achieve
this, the standard workflow for parallel programming with CUDA is as follows:

1. Allocate GPU memory

2. Transfer input memory from CPU to GPU

3. Run parallel simulation using GPU

4. Transfer data back from GPU to CPU

Parallel CUDA-programming introduces several programming difficulties that are not present in CPU program-
ming. One such difference is that an individual CUDA core is not as powerful as an individual CPU core. Kernels
should therefore not contain expensive computations. The GPU relies on a high throughput of tasks in order
to outperform a CPU. As result of this, high level functionality is not directly supported within GPU kernels.
For example, a matrix multiplication is not supported in the CUDA framework, requiring for loops to calculate
this operation. Consequently, code within a kernel is fairly low-level and limited in functionality as compared
to CPU code. As a result, parallel efficiency depends heavily on the ability to design kernels that optimize the
effective use of the GPU’s hardware.

Another common phenomena encountered in parallel-programming are race conditions. When multiple threads
access and modify the same memory location,the the final outcome of the kernel depends on the order of ex-
ecution. Now, each time the kernel is launched a different thread can be the last one to access the memory
location, leading to unpredictable simulation results. To achieve accurate simulation results, race conditions
should therefore be avoided.

2.5.3 GPU memory hierarchy

Understanding the memory hierarchy inherent to the GPU hardware is crucial in optimizing the performance
of GPU workloads. An overview is provided of the most relevant memory types used in parallel programming:

1. Global memory: Main GPU storage pool which is accessible by all threads in a GPU. Access to global
memory is slow compared to other memory levels.

2. Constant memory Small amount of memory that is read only. Located in global memory and relatively
slow.

3. Local memory Memory that is specific to each thread. Local memory stores temporary variables or spill
from overfull registers. Local memory accesses is slower than accessing registers.

4. Shared memory High speed memory shared among threads in blocks. Primarily used for inter-thread
communication.

5. Register memory Smallest amount of memory and is assigned to single CUDA core. Registers are the
fastest memory spaces within the hierarchy

3 N U M E R I C A L M E T H O D S

The Filter Matrix Lattice Boltzmann method will to model the governing equations of fluid dynamics and ther-
modynamics. First, the Lattice Boltzmann method and the Filter-Matrix approach for fluid flow simulations
will be presented in section 3.1 . The model will then be extended in section 3.2 to include phase change
functionality using a double-distribution function (DDF) approach. Next, boundary conditions of interest are
discussed in section 3.3. Furthermore, the parallel programming implementation on the GPU will be presented
in section 3.4. Finally, the specifics of the Direct Numerical Simulation approach is presented in section 3.5.

3.1 filter-matrix lattice boltzmann method

3.1.1 Lattice Boltzmann Method

The discrete-velocity distribution function fi (x, t) is the main quantity of interest when considering LBM schemes.
It represents the density distribution function that was discussed in Section 2.3.1, but then projected on a dis-
cretized lattice with uniform grid spacing ∆x . The discrete function fi also evolves over time with a timestep
of ∆t .The most convenient choice for the lattice step size and lattice timestep are ∆x = 1ls and ∆t = 1lt, where
ls stands for lattice spacing and lt lattice time.

Different velocity sets are allowed when discretizing the velocity space. Figure 3.1 shows two different schemes,
which are denoted by DdQq. Here d is the number of spatial dimensions, while q represents the number of
velocities considered. Discrete velocities are depicted as arrows pointing to neighboring lattice points, with
each velocity having a distinct direction. For simplicity the D2Q9 is shown, alongside the more complicated
D3Q19 velocity set which will be used in this research.

Figure 3.1: Visualisation of the D2Q9 (left) and the D3Q19 (right) velocity sets [35]

Discretizing the Boltzmann evolution equation from Eq. 2.14 will lead to the following expression:

fi (x+ci∆t , t +∆t) = fi (x, t)+∆tΩi (x, t). (3.1)

This equation is called the lattice Boltzmann equation and represents the effects of two fundamental processes
within the LBM. The first one is the collision process, which is characterized by the collision operatorΩ. Funda-
mentally, the collision operator models how fluid particles interact and relax towards an equilibrium solution.
After collision, the distributions will move to neighboring sites based on their discrete velocities. This process
is called the propagation step and is incorporated into Eq. 3.1 by the left hand-side. The post-collision distri-
bution function is streamed to the location x+ci∆t and to next timestep t +∆t . A schematic depiction of the
general procedure of an LBM algorithm is shown in figure 3.2.

15

16 numerical methods

Figure 3.2: Schematic representation of the two fundamental processes of an LBM algorithm. Each node contains all dis-
tinct distribution functions. In the collision step these distributions get redistributed locally, to be propagated
to neighboring nodes in the propagation step [39]

Besides streaming and collision, imposing boundary conditions on the system is also a crucial step in the LBM
algorithm. Section 3.3 will delve deeper into specific boundary conditions that have been used. Relevant sim-
ulation variables can be obtained from the simulation by considering the different moments of the particle
distribution function

ρ(x, t) =∑
i

fi (x, t) (3.2)

ρu(x, t) =∑
i

ci fi (x, t) (3.3)

where the zeroth-order moment corresponds to the retrieval of the fluid density ρ and the first-order moment
retrieves the momentum. Higher order moment also have a physical meaning, but are not relevant in the cur-
rent study.

Right now it is not trivial that equation that 3.1 can represent the solutions to the Navier-Stokes equations given
a suitable collision operator and distribution function. A Chapmans-Enskog analysis [40] is needed to relate
both equations to each other. This derivation shows that the Navier-Stokes Equations can be retrieved from
the lattice Boltzmann equation when the distribution function solution has the following form [41]:

fi = f eq
i −ρωi

(
(ci ·∇) (ci ·u)

c4
s

−
(
1+ 2

D
−B

) ∇·u

c2
s

)
(3.4)

Here D represents the spatial dimension of the simulation, B is the ratio between bulk viscosity and kinematic
molecular viscosity B = ζ

ν and cs is the speed of sound. Furthermore, feq is the equilibrium distribution func-
tion and to retrieve the Navier-Stokes equation is defined as follows:

f eq
i =ωiρ

(
1+ ci ·u

c2
s

+ (ci ·u)2

2c4
s

− u ·u

2c2
s

)
. (3.5)

3.1.2 Filter-Matrix Lattice Boltzmann Method

As discussed in the introduction, the Filter-Matrix Lattice Boltzmann Method (FMLBM) offers excellent stabil-
ity for simulating high Reynolds number flows. Essentially, the need for a relaxation parameter to model the
collision operator is removed by making use of filter matrices and corresponding solution vectors. Following
the derivation described in [42], the LBM-equation is first recast into a staggered form

fi

(
x + ci

∆t

2
, t + ∆t

2

)
− fi

(
x − ci

∆t

2
, t − ∆t

2

)
=∆tΩi . (3.6)

This staggering ensures that both the numerical accuracy in time- and space is second-order without needing
to apply extra numerical treatments. The staggered formulation can be used alongside equations 3.4 and 3.5 to
find an expression for the non-linear collision operator

Ωi = ρωi

c2
s

[
(ci ·∇)(ci ·u)− c2

s ∇·u
]+ ωi

c2
s

ci · f. (3.7)

where f is the body force vector. Employing a first-order Taylor expansion around staggered distribution func-
tion fi

(
x ± ci

∆t
2 , t ± ∆t

2

)
and using equations 3.1 gives the following relation

3.1 filter-matrix lattice boltzmann method 17

fi

(
x⃗ ± c⃗i∆t

2
, t ± ∆t

2

)
= fi (⃗x, t)± 1

2
∆tΩi (3.8)

It turns out that the right hand side of the equation can be formulated as a matrix multiplication like

fi

(
x ± ci

∆t

2
, t ± ∆t

2

)
=∑

k
wi Ekiα

±
k (x, t), (3.9)

where Eki is a reversible filter matrix and α±
k (x, t) represents the solution vector. The minus sign represent

the pre-collision solution vector and the plus sign denotes the post-collision solution vector. Since Eki is a
reversible matrix, equation 3.9 can also be rewritten in the following form:

α±
k (x, t) =∑

k
Eki fi

(
x ± ci

∆t

2
, t ± ∆t

2

)
. (3.10)

Here Eki = (ωi Ei k)−1 represent the inverse of the filter-matrix.
The appropriate filter matrix and solution vector for simulating the Navier-Stokes Equation is uniquely deter-
mined by the velocity set used.

3.1.3 D3Q19 velocity Scheme

In this study the D3Q19 velocity scheme as depicted on the right-hand side of figure 3.1 will be used. This
velocity scheme has already shown its ability to successfully retrieve reliable turbulence statistics in several
studies [42] [25]. Another velocity set that bears great potential of simulating turbulence flow is the D3Q27
scheme [43], however it has not been considered in this work since it aso requires more computational costs.
The appropriate filter matrix and solution vector for simulating the Navier-Stokes Equation using a D3Q19
velocity scheme are given by

Eki =
[

1,ci x ,ci y ,ci z ,3c2
i x −1,3c2

i y −1,3c2
i z −1,

3ci y ci z ,3ci x ci z ,3ci x ci y ,3ci x (c2
i y − c2

i z),3ci y (c2
i z − c2

i x),3ci z (c2
i x − c2

i y),

ci x (|ci |2 −2),ci y (|ci |2 −2),ci z (|ci |2 −2),

3(|ci |2 − 3

2
),3|ci |2(|ci |2 −2)+1

]T

.

(3.11)

α±
k =



ρ

ρux ± δt Fx
2

ρuy ± δt Fy

2

ρuz ± δt Fz
2

3ρu2
x +ρ (−6ν+δt)∂x ux + (2−3B)ρ∇⃗ · u⃗

3ρu2
y +ρ (−6ν+δt)∂y uy + (2−3B)ρ∇⃗ · u⃗

3ρu2
z +ρ (−6ν+δt)∂z uz + (2−3B)ρ∇⃗ · u⃗

3ρuy uz +ρ (−3ν+0.5δt)
(
∂y uz +∂z uy

)
3ρux uz +ρ (−3ν+0.5δt) (∂x uz +∂z ux)

3ρux uy +ρ (−3ν+0.5δt)
(
∂x uy +∂y ux

)
−0.8, k = 11, . . . ,16

−0.95, k = 17,18,19



, k = 1,2, . . . ,19. (3.12)

where cs = 1/
p

3 is the speed of sound, ωi are the weight factors for each velocity direction corresponding to
ω1 = 1/3, ω2−7 = 1/18 and ω7−19 = 1/36. Furthermore, B is a parameter that relates the bulk viscosity and the
local kinematic viscosity. The values −0.8 and −0.95 are parameters used to increase stability in turbulent sim-
ulations.

18 numerical methods

3.1.4 Conversion Parameters

In LB simulations it is common to define the simulation step size and timestep to be ∆x = 1 and ∆t = 1 respec-
tively . Therefore unit conversion is needed to map the physical input variables to the discretized lattice. A
good knowledge of LB unit conversion is needed, especially to maintain stability and accuracy within the LB
simulation. An important restriction on the stability of the simulation is that the density distribution function
should not become too big. Concretely, the maximum LB velocity ULB generally should not exceed the value
0.1 during the simulations [35].

Expressing physical units in lattice units or LB-units can be done by formulate the right conversion parameter
C . A physical quantity like length l can be denoted in different units, like meters or feet. The key here is to
find the right conversion parameter between the two length scales. Similarly, conversion from physical units
to lattice-units comes down to find the correct conversion parameter. Converting length, time and density to
LB-units comes down to

∆xLB = ∆x

Cl
, ∆tLB = ∆t

Ct
, ρLB = ρ

Cρ
, TLB = T

CT
.

(3.13)

Here the subscript LB denotes a variable is represented in lattice units. In addition to that Cl , Ct , Cρ , and CT

are the conversion parameters for length, time, density, and temperature respectively. The conversion factors
for any other relevant quantity α can be found by matching its unit via

Cα =C a
l C b

t C c
ρC d

T . (3.14)

The letters a, b, c , d can take any integer value. In this study ∆xLB = 1, ∆tLB = 1 and ρLB = 1.0, which means
that the conversion parameters for these variables correspond to the physical value.Since there are no stability
restrictions on the thermal distribution function g , CT is taken to be unity. Enthalpy values however still need
conversion, because its dimensions are related to velocity

hLB = C 2
l

C 2
t

h (3.15)

3.2 filter-matrix thermal lattice boltzmann method 19

3.2 filter-matrix thermal lattice boltzmann method

3.2.1 Double-distribution function

Besides being a reliable method to solve the Navier-Stokes equation, Huang et al. [27] also showed that the Lat-
tice Boltzmann method is suitable for solving the heat equation. Simultaneously simulating the flow field and
the thermal field can be done through multiple methods by employing a double-distribution function (DDF)
method [27]. This approach relies on simulating an additional, separate distribution function—specifically for
heat transfer—denoted by the thermal distribution functiongi which governs the evolution of the temperature
field. Similarly to equation 3.1 , the thermal LBM is captured by

gi (x+ci∆t , t +∆t) = gi (x, t)+Ωi (x, t). (3.16)

which will be referred to as the thermal lattice Boltzmann equation. Similar to equation 3.1, this equation
captures the collision and the propagation inherent to the LBM algorithm in as single statement. The thermal
equilibrium distribution function reads

g eq
i =ωi T

[
1+ ci ·u

c2
s

+
(
ci ·u

)2

2c4
s

− u2

2c2
s

]
. (3.17)

Now the zeroth order moment gives the macroscopic temperature

T (x, t) =
N∑

i=0
gi (x, t). (3.18)

From the definition of the equilibrium function it is clear that the temperature field depends on the velocity
field. Within the DDF-approach it is therefore important to first update the density distribution function fi

and subsequently update the thermal distribution function gi using the flow field information.

3.2.2 Enthalpy-distribution

As established in section 2.2.2 phase change phenomena are associated with a change in latent heat and can
best be described by total enthalpy. Consequently, the current description of the thermal LBE is not suitable for
solidification purposes. Following [27], an LB algorithm can be devised that simulates total enthalpy by making
an adjustment to the equilibrium distribution function

g eq
i =

L fl +w0h(1− u2

2c2
s

) i = 0

wi h[1+ ci ·u
c2

s
] i ̸= 0

Here it can be observed that the equilibrium distribution function has been changed such that i = 0 includes
the latent heat term L fl . The benefit of splitting the total enthalpy into such a way is avoiding to use iterative
schemes to calculate the liquid fraction [27]. Such iterative schemes are computationally expensive. During
the collision step the latent heat term is subtracted. Adding the non-equilibrium part to this equation yields
the total thermal distribution function

gi =
L fl +w0h(1− u2

2c2
s

) i = 0

wi [h +h ci ·u
c2

s
−α ci ·∇h

c2
s

] i ̸= 0

Because of the adjustments, the total enthalpy H can now be retrieved from the zeroth order moment of the
thermal distribution function

H(x, t) =∑
i

gi (x, t) (3.19)

To find suitable expression for the thermal collision vectors, the density distribution function fi in the deriva-
tion shown in section 3.1.2 is replaced by gi . This leads to the following formulations

gi

(
x± ci∆t

2
, t ± ∆t

2

)
=∑

k
wi Ei kβ

±
k (x), (3.20)

β±
k (x, t) =∑

k
Eki gi

(
x± ci∆t

2
, t ± ∆t

2

)
. (3.21)

20 numerical methods

for the staggered thermal distribution function and the thermal collision vectors β±

Several heat transfer studies have been performed using LBM with a D3Q7 velocity scheme. However, it was
found in [25] and also in this study that for turbulent heat transfer simulations the D3Q7 is not sufficient in
suppressing higher-order errors. Therefore an D3Q19 thermal scheme was also adopted in the current study.
The matrix Eki takes the same values as equation 3.11 . However, the collision vector β± in this case looks like

β±
k =



h

hu + −8α±∆t
8 ∂x h

hv + −8α±∆t
8 ∂y h

hw + −8α±∆t
8 ∂z h

0, k = 5, . . . ,19


.

where the first term represents sensible enthalpy and the terms 3 till 5 correspond to heat advection and heat
diffusion in space. Furthermore, the non-physical terms corresponding to element 5 till 19 are all set to zero.
The benefit of using a D3Q19 scheme instead of D3Q7 is the effect of these higher order elements, which ensure
the Galilean Invariance is preserved. They surpress any higher-order oscillations leading to higher stability
within the thermal field [35].

3.2.3 Enthalpy scaling

Several studies that use an enthalpy-based DDF-LBM approach to simulate thermal fields, observed non-physical
enthalpy fluctuations when using the physical temperature as an input parameter. [25], [44]. These fluctuations
are inherent to the streaming algorithm, which induces a fluctuation on the order of the temperature. In the
current approach, an initial temperature is converted into an enthalpy value. It turns out that this conversion
leads to big fluctuations in simulated variables, impacting the accuracy of the model severely.

It was found by Spek [25] that scaling and stretching the initial enthalpy values lead to a significant decrease of
the impact of the fluctuations on the thermal field simulations. Firstly, scaling influences both the size of the
enthalpy values and enthalpy fluctuations. Subsequently stretching the enthalpy spectrum reduces the relative
contribution of the fluctuations on the overall field. Figure 3.3 shows how stretching and scaling impact the
original enthalpy fluctuation.

To ensure accurate results, two requirements on enthalpy values have to be met. First of all it was observed
that the the maximum enthalpy in the simulation should not exceed O (102). Higher values resulted in the ap-
pearance of fluctuations. Secondly, the maximum relative enthalpy difference must be large enough for the
fluctuations to be insignificant. This is achieved by obeying the relation (hmax−hmi n)

hmax
≈ 1.

Concretely, these two statements lead to a set of transformation rules for the sensible enthalpy, temperature
and latent heat. These rules can be formulated as follows for the enthalpy and temperature

ĥ = (h −hmi n)
ĥmax − ĥmi n

hmax −hmi n
+ ĥmi n (3.22)

T̂ = (T −Tmi n)
ĥmax − ĥmi n

hmax −hmi n
+ T̂mi n (3.23)

where a hat represents the transform. In this study ĥmax and ĥmi n are chosen to be 1 and 0 respectively, but
any choice that satisfies the aforementioned requirements would suffice. All enthalpy and temperature values
within the simulations should be scaled according to equation 3.22 and equation 3.23.
The scaled minimum temperature T̂mi n is also 0 for the current value of ĥmi n .
The transformed solidus temperature T̂s and liquidus temperature T̂l are defined as follows,

T̂s = hs

Cp,s
(3.24)

T̂l = T̂s + ĥl − ĥs

Cp,m
(3.25)

3.2 filter-matrix thermal lattice boltzmann method 21

Figure 3.3: Depiction of the effect of scaling and stretching sensible enthalpy values on the enthalpy fluctuations. Here
hmax and hmi n correspond to the maximum and minimum enthalpy value within the simulation. Scaling the
enthalpy reduces the absolute enthalpy fluctuation, while stretching reduces the relative impact it has on the
simulation variable [25].

Lastly, the latent heat should also be transformed since it also represents an enthalpy contribution. Since the
latent heat is defined as the difference between total enthalpy and sensible enthalpy, no offset value has to be
used. Thus the latent heat can be formulated as

L̂ = L
ĥmax − ĥmi n

hmax −hmi n
(3.26)

Before initialization takes place, all input values for enthalpy, temperature and the latent heat should be con-
verted according to the aforementioned transformation rules. This ensures that the scaling and stretching
procedure is effectively applied to the thermal distribution function, so that ensuring thermal fluctuations will
not degrade the accuracy of the solutions.

3.2.4 Phase interface treatment

Within the freezing process, liquid fluid is transformed steadily into ice. As result the newly formed ice layer
acts a solid wall, preventing liquid phase to flow into the solid phase. Consequently, at the phase interface a
no-slip condition has to be imposed for the fluid behavior to be physically accurate. Within the mushy phase,
fluid motion should be slowed down to account for the presence of the solid phase.

Noble and Torczynski [28] proposed the immersed boundary method (IBM) as a suitable approach to enforce
the relevant physical effects at the phase interface. IBM relies on modifying the collision step, which implicitly
keeps track of the solid-liquid interface. Within the FM-LBM each post-collision distribution is modified with
a special collision operator

f s
i

(
x+ ci∆t

2
, t + ∆t

2

)
= fi

(
x− ci∆t

2
, t − ∆t

2

)
+ (1−B)Ωi +BΩs

i ; (3.27)

where B is a collision constant that controls how dominant the special collision operator is over the regular
collision operator. Within the ice (fl = 0), B should have the value 1 to impose the no-slip condition via Ωs .
When the material is fully liquid on the other hand, normal collision should be applied and hence B should
take the value 0 . Taking these considerations into account, B is defined as follows

B = (1− fl)ϵ

(fl +ϵ)
(3.28)

where ϵ is a small parameter that prevents B from division by zero. The collision termΩi is

Ωs
i = f j

(
x− ci∆t

2
, t − ∆t

2

)
− fi

(
x− ci∆t

2
, t − ∆t

2

)
+ f eq

i (ρ,us)− f eq
j (ρ,u), (3.29)

where us is the solids velocity. In principal, collision operator Ωs
i "bounces back" the non-equilibrium part of

the distribution function. However, when us = 0 the above equation reduces to

22 numerical methods

Ωs
i = f j

(
x− ci∆t

2
, t − ∆t

2

)
− fi

(
x− ci∆t

2
, t − ∆t

2

)
, (3.30)

which corresponds to a regular zero-slip velocity condition. At the end of the FM-LBM collision step, collision
operator Ωs

i is determined and subsequently f s
i is calculated. Now the distribution function f s

i is the one that
gets streamed to neighboring lattice sites instead of the regular post-collision function fi .

The IBM has been successfully implemented in LBM simulations in multiple studies [27] [25] [26]. It was found
that ϵ= 0.05 gives satisfactory results and this value will be used in the rest of this research.

3.3 boundary conditions 23

Figure 3.4: Schematic depiction of the channel being considered in this study. A body force f is applied along the stream-
wise direction. α is a variable scaling parameter.

3.3 boundary conditions
In order for a simulation to represent a realistic physical system, imposing boundary conditions at the edges
of the simulation domain is crucial. Normally this boils down to prescribing a treatment for the simulation
variables at the boundaries. However, in the LBM applying boundary conditions is more abstract since parti-
cle distributions are simulated rather than physical variables. The question of boundary conditions within the
LBM is thus a question of prescribing a treatment for the missing distributions at the boundaries that realisti-
cally impose the desired values of the physical variables. The following sections will present all the boundary
conditions that have been used in this study. A depiction of the channel setup considered in this study is shown
in figure ?? so it is clear which situation applies to which boundary.

3.3.1 Wall conditions

All LBM boundary conditions being considered in this study are link-wise boundary conditions, since they are
better suited at treating solid-liquid interfaces and are easy to implement [35]. As a consequence, the first
node from the physical boundary needs to be placed at half a grid spacing. In this way, the boundary lies at
the halfway mark of the lattice link between the boundary node (which is the first node in the computational
domain) and the first solid node (which corresponds the first node in the solid region). Figure 3.5 shows a visual
representation of this lattice links. Here the grey-shaded area corresponds to the solid region and the white area
corresponds to the inner domain. To incorporate link-wise boundary conditions within the LB framework, an
extra layer of nodes is added to the domain on all sides. These nodes are called ghost nodes and are used to
keep values used for boundary treatment. The node at xN+1 is considered a ghost node in the current work.

Figure 3.5: Schematic depiction of the halfway bounce-back (hbb) boundary condition a solid wal. [35]. Here the grey
region corresponds to solid region and the white region to the interior. The line connection the two nodes is
called a lattice-link.

24 numerical methods

At a solid boundary there can be no transport of momentum. As a result a no-slip velocity condition has to be
enforced at the wall, which ensures zero velocity. To achieve this in LBM simulations ,the halfway bounce-back
(hbb) method can be employed. Figure3.5 gives a visual explanation of the hbb boundary method and can be
understood in terms of a traveling particle. Here a particles velocity at boundary node xN points towards the
solid node at position xN+1. During the streaming step, this particle travels towards xN+1, but is bounced back
at the position of the solid boundary. Consequently, the particle travels back to the original position, but now
posses the inverse velocity. To translate the effect of the solid wall to the case of particle distribution functions,
the populations should be inversed at the boundary node during the collision step. As a result the half-way
bounce back method can be imposed by

fi (xb , t + ∆t

2
) = f ∗(xb , t − ∆t

2
)−2wiρw

ci uw

c2
s

(3.31)

where xb represent the position of the boundary node, f ∗ is the inverse value of f , ρw is the density of the fluid
near the wall and uw is the velocity of the wall. For a non-moving solid wall, uw = 0 simplifying the equation.

Imposing a boundary value that is non-zero creates another challenge. In the current grid, boundary nodes do
not coincide with the boundary itself. As result, it is not possible to directly enforce a temperature value here.
To be able to prescribe the right temperature value to the wall, the boundary has to communicate the value to
the boundary node, A suitable way to do this is via an anti-bounce back scheme [45]

g (xb , t + ∆t

2
) =−g∗(xb , t)+2wi hw (3.32)

where the wall temperature can be imposed via the sensible enthalpy hw . Here the asterisk once again denotes
the inverse of the distribution function.

3.3.2 Inlet- and outlet conditions

In channel flow applications it is needed to prescribe suitable boundary conditions for the fluid at the inlet and
outlet. The easiest and least computationally expensive way to do this is by using periodic boundary conditions
(PBC). In this condition it is assumed that the outflow re-enters the domain at the inflow, essentially simulating
an infinitely long dimension. Periodic boundary conditions for channel flows are suitable for open boundaries
in the x- and z-directions. In order to implement periodic boundary conditions in the LB algorithm, the domain
needs a layer of ghost nodes For a channel with length L along the periodic dimensions, periodic boundary
conditions are defined as

fi

(
∆x

2
, t − ∆t

t

)
= fi

(
L− 3∆x

2
, t + ∆t

2

)
, (3.33)

fi

(
L− ∆x

2
, t − ∆t

t

)
= fi

(
3∆x

2
, t + ∆t

2

)
. (3.34)

The first equation copies the pre-collision distribution function values at the outlet to the first ghost node.
During the propagation step, the distributions pointing into the domain are streamed to the first node in the
domain. Similarly, the second equation stores the values from the inlet at the ghost node at the outlet.

Even though the PBC is a useful tool to simulate fully developed channel flow, it does not represent a finite
system. Non-physical correlations in turbulence structures can arise due to eddies being artificially repeated
instead of evolving naturally [13]. To realistically simulate a developing ice layer, the flow within the channel
should develop a natural turbulent flow profile. This can be done by extracting real-time turbulence flow data
from a concurrent simulation [29]. Figure 3.6 shows how the two domains should be setup. The concurrent
domain is shown on the left, where periodic boundary conditions are applied in the streamwise direction. The
shaded plane corresponds to the sampling plane from which turbulent flow data is extracted. In turn this
data is used as an inflow profile for the main simulation. For both domains it is crucial that grid spacings and
Reynolds number should match to arrive at accurate results [46]. Besides that, it is convenient to use the same
dimensions for the inlet plane of the main simulation and the extraction plane. This method of generating a
turbulent inflow profile is also referred to as the temporal strong recycling method.
The procedure of implementing the inflow condition in the LBM is straightforward. After streaming, the dis-
tribution functions associated with the extraction plane are copied to first layer of nodes in the simulation
domain associated with x = 1.

3.3 boundary conditions 25

Figure 3.6: Visual representation of the concurrent domain and the main simulation domain [29]

Imposing a realistic thermal inflow can be easily implemented by applying the anti-bounce back method de-
scribed in equation 3.32 on the inlet plane. A suitable inflow temperature can be set by declaring a desired
enthalpy value hw .

At the end of the channel the thermal fluid should flow out of the domain smoothly, without causing numerical
errors. To this end, a zero gradient Neumann condition is conidered, which enforces a zero-gradient at the
boundary [47]. To implement this boundary condition in the LBM simulations, the distribution functions for
the plane N −1 at the boundary node near the outlet is copied to the plane layer N at the neighboring ghost
node:

fi

(
N , t − ∆t

2

)
= fi

(
N −1, t − ∆t

2

)
(3.35)

gi

(
N , t − ∆t

2

)
= gi

(
N −1, t − ∆t

2

)
(3.36)

This effectively sets the velocities and temperatures near the outlet to u(N − 1, t) ≈ u(N , t) and T (N − 1, t) ≈
T (N , t).

26 numerical methods

3.4 gpu implementation
In this thesis, the DDF FMLBM model is implemented to be compatible with parallel programming using the
CUDA framework. The LBM method contains inherently local and simple operations, making the perfect
match for parallelization using a GPU implementation. The main reason for parallelization is the potential
speed-ups gained from switching from a CPU-based model to a GPU-based one. This section will discuss the
specific numerical implementation of the of the freezing model within the CUDA.jl framework.

3.4.1 Julia

The FM-LBM code in this thesis is implemented using the programming language Julia. Julia is a relatively new
programming language, which is designed for high-performance numerical and scientific computing [48]. It
offers the convenience of a high-level languages like Python and Matlab, but with the speed and efficiency of
compiled languages like C. This performance is achieved through Julia’s unique just-in-time(JIT) compilation
via the LLVM framework. Of particular interest to this study is the fac that Julia offers more support for paral-
lelism than Python does. For example, Julia allows programmers to explicitly manage GPU memory, including
the allocation of shared memory resources.

Julia supports the use of different GPU backends through packages as CUDA.jl for NVIDIA GPU’s and AMD.jl
for AMD-powered GPU’s. In this study, an GPU application is made that can run on multiple backends. This
versatility is achieved through the Julia package KernelAbstractions.jl, which allows kernel code to be written
in a generic and backend-independent way. For instance, if an NVIDIA GPU is detected, the kernel is executed
using the CUDA.jl backend.

The specifics of the GPU-implementations in this study closely resembles the methodology described by Entes
[49]. A brief summary of the key implementation steps, which are also applied in this thesis, is provided below.
For more specifics, the reader is referred to the thesis of Entes.

3.4.2 Computational workflow and Kernel Design

Kernel functions are defined for the collision step, the propagation step, and the boundary treatment. When
constructing these kernels, it is important to keep in mind that a maximum of three dimensions can be indexed
in CUDA. This limits the amount of velocity directions and spatial domains that can be parallelized. The col-
lision kernels are only parallelized along the spatial dimensions, due to the fact that the matrix multiplication
uses information from all the different velocities at one location of the distribution function. The propagation
kernel is parallelized however across both the velocity and spatial dimensions, due to streaming step calcula-
tions being symmetrical along different velocity directions.

In contrast to the study of Entes [49], this study uses multiple kernel functions for the boundary treatment.
Kernels involving open boundaries are parallelized along the velocity direction and the spatial plane dimen-
sions perpendicular to the direction they are applied to. Furthermore, wall conditions involve only one spatial
dimension and is thus easily parallelized.
In addition to the aforementioned kernels, a functionality involving saving running simulation statistics on the
GPU was implemented in this study. This kernel only involves all the three spatial dimensions. Furthermore,
the saving is not called in every iteration of the LBM algorithm. These kernels only involve all the three spatial
dimensions. Lastly an extra kernel is present in this study to update the liquid fraction, which is parallelized
over three-dimensional space.

Before the start of the simulation, input data and arrays are initialized into Julia structs. These structs and its
data are then transferred from CPU memory to GPU memory, ready to be used by GPU kernels. After that,
the distribution functions are initialized on the GPU. When the necessary structs are fully initialized, the main
LBM simulation can start. In the code, this corresponds to a for loop that runs NT amount of iterations of the
following sequence of kernels:

1. Liquid-fraction kernel

2. Wall-boundary condition kernel

3.4 gpu implementation 27

3. Collision kernels

4. Propagation kernel

5. Open-boundary conditions kernel

6. Save kernel (when needed)

The above procedure is stopped when the iteration number t exceeds the total number of time steps specified.
The last steps involve GPU data being transferred back to the host for saving.

3.4.3 Race conditions

Similar to Entes, care is taken to prevent race conditions using the propagation kernel. When a single distribu-
tion function is used for both reading and writing within a kernel, it is possible that threads read from a memory
location that is already updated, consequently writing the wrong value to a lattice node. To prevent this race
condition from occurring, two distribution functions are used per physical field. Specifically in the case of flow
field simulations these distribution functions are denoted by fpr e and fpost . Now threads read from fpr e and
write to the fpost . Furthermore, synchronization of threads is performed by using CUDA.@synchronize upon
completion of a kernel.

3.4.4 Memory coalescence

To achieve high parallel efficiency, it is important for threads executed in the same block to access data locations
that are close to each other, reducing the amount of time threads need on average to read memory locations.
Two important steps are taken to achieve this memory coalescence. Firstly, 4D arrays corresponding to the
distribution functions and the 3D arrays corresponding to macroscopic variables are converted to 1D arrays.
On top of that, it is important that in the 1D arrays neighboring grid points have the same discrete velocity.
Concretely, 1D arrays are indexed in the following way [49]

3D to 1D conversion: i d x = x + y Nx + zNx Ny , (3.37)

4D to 1D conversion: i d x = x + y Nx + zNx Ny +qNx Ny Nz . (3.38)

Here (x, y , z) corresponds to spatial coordinates, while q represents the index of the discrete velocity. This lay-
out ensures improved computational efficiency, especially during the matrix multiplication performed in the
collision kernel.

3.4.5 Shared memory and matrix multiplication

Julia enables the assignment of variables to different levels of the GPU memory hierarchy, discussed in Section
2.5. This enables usage of the resource of shared memory, which is a fast memory type close to the CUDA core.
In the current model, shared memory is only useful in the collision kernel, due to threads within a block being
able to read and write to the same memory locations. This fact makes it hard to use in a kernel which also
uses memory locations from neighboring grid nodes. Within the kernel, two nested q ×q for loop are present
to perform the filter-matrix multiplication that retrieves either the solution vector αk or the post-collision dis-
tribution function. Arrays in these for loops are frequently accessed, so the effect of faster memory accesses
is most heavily felt here. Therefore the solution vector is put into shared memory. Building on this, further
performance gains are achieved by choosing a smart way of indexing arrays within the for loops. The inner
loop index is iterated q2 times, while the outer loop is iterated just q times. Therefore, the loop indexing is
chosen in such a that the solution vector stored in shared memory is accessed q2 times in each loop, while the
distribution function stored in global memory is only accessed q times.By doing this, global memory accesses
are minimized, while shared memory accesses are maximized.
Further minor improvements
Another measure taken to improve computational speed on the GPU is by using 32-bits integer and float values.
Furthermore, number of threads per block are always chosen to be a multiple of 32 threads, so all threads in a
warp are fully utilized.

28 numerical methods

3.5 simulation requirements

3.5.1 Direct Numerical Simulation

For a turbulent simulation to be called a DNS, strict requirements have to be met so as to capture all relevant
information contained in the flow. As discussed in Section 2.4.4, the grid size should be small enough to capture
the smallest turbulent scales, while the domain should be able to accommodate the largest eddies within the
flow. The small-scale dynamics in the flow system is determined by the Kolmogorov length scale. To faithfully
reproduce the effects of the small-scales, it is sufficient to have a step size on the order of the Kolmogorov
length [13]. In turbulent channel flow simulations, the Kolmogorov length is a function of the distance to the
boundary i.e. η= η(y), where the smaller values are expected closer to the wall. [This needs a reference] It can
be derived that the smallest eddy is the size of roughly two wall units η+ ≈ 2 [50, 51]. The grid cell within the
LBM simulation is uniform in all directions, thus the all-resolving step size should be set at ∆x+.
The adequacy of the extend of the spatial domain depends on the type of boundary that is applied along a
certain dimension. In the wall-normal direction a non-homogeneous no-slip condition is used to enforce the
presence of a solid wall. As a result, the boundary inhibits the growth of an eddy that is larger than the channels
diameter. Consequently, the extend of the y-direction will always be sufficient to capture the large eddy behav-
ior [13]. The stream- and spanwise directions are defined to be infinite in length in channel flows. To mimic
this behavior for a finite computational box, periodic boundary conditions are imposed along these directions.
Now fluid flowing out is reintroduced at the beginning of the channel. When the size of the periodic directions
is not sufficient to accommodate the largest eddies, the turbulent structure will overlap with its own image.
Consequently, information of these large-scale eddies is lost. Accurate simulation of the largest scale struc-
tures, thus relies on the spatial correlation to drop to zero within half the length of the channel [13]. From the
DNS of turbulent channel flow performed in the study of Kim et al. [51] , spatial correlation in the streamwise-
and spanwise direction drops to zero at roughly 4H and 2H , respectively. A strict DNS should therefore have a
minimum spatial extend of Lx ×Ly ×Lz = 8H ×2H ×4H .

When interested in lower-order statistics, like the mean velocity and Reynolds stress terms, a smaller compu-
tational box can be sufficient to capture the essential physics [52]. Flores et al. suggest that the minimal box
Lx ×Ly ×Lz = 6H ×2H ×3H for Reτ = 180 is sufficient.

Unlike periodic boundary conditions, realistic turbulent inflow- and outflow conditions allow turbulent struc-
tures to evolve naturally in the streamwise direction without artificially constraining the large-scale eddies. As a
result, no minimum domain length is required to accurately capture eddy evolution along this direction. How-
ever, care must be taken that the inlet turbulent profile is consistent with flow developing within the domain.
To achieve this, both the auxiliary- and main domain are run simultaneously for several channel flow-through
times t f before collecting information from the model. In this way a physical consistent inflow profile is estab-
lished for the main simulation. Furthermore, the same grid resolution, cross-sectional dimensions (Ny ×Nz),
Reynolds number, and physical parameters are chosen for the auxiliary domain to ensure consistent turbulent
profiles are generated in both domains.

In LBM simulations that aim to numerically reproduce the solutions of the the incompressible Navier-Stokes
equations, the step size and the timestep are intricately related through the Mach number requirement M a <<
1. Specifically, an increase in timestep results increasing the LB velocity and thus its Mach number. There-
fore, choosing a step size equivalent to the Kolmogorov length automatically determines the maximum stable
timestep. Resolving all relevant temporal scales is thus automatically satisfied when the Kolmogorov length is
chosen as the grid resolution.

To retrieve reliable flow statistics from a turbulent thermal flow, the simulation goes through three different
simulation phases. The first phase consists of initializing the correct physical fields, after which the simulation
is started. Initialization of numerical data typically induces a transient phase during which turbulent flow is
not yet stationary. The second phase thus consists of running the simulation until its statistical properties are
converged. After convergence, statistical data can safely be retrieved, which comprises the third phase.

3.5 simulation requirements 29

3.5.2 Initialization

In turbulent flow simulation, the accuracy of the simulation depends strongly on the initial condition, because
of the presence of the non-linear term in the Navier-Stokes equations. Small errors in the initial state can
propagate over time and can seriously affect the accuracy of the simulation [35]. Consequently, care must be
taken in choosing a suitable initial flow field that accurately represents the target turbulence characteristics of
the flow field. Initial turbulent flow field data from numerical experiments of [24] is used in this thesis. Table
3.1 lists the numerical settings for flow fields that were used in this study.

Table 3.1: Numerical settings of initial flow datasets used in this study [24].

Name Reτ Rem Nx ×Ny ×Nz u+ ∆y+ ν g

Short domain 180 5590 256 × 128 × 128 6.67e-3 2.8 2.37e-3 6.94e-7

Long domain 180 5590 512 × 128 × 128 6.67e-3 2.8 2.37e-3 6.94e-7

[Check if body force g is a term that is used more often] The initial flow profiles were generated using a DNS of
perturbed laminar fields, which evolved into sustained turbulence. From the table it is clear that the spatial re-
quirements discussed in Section 3.5.1 are not met. However, the low-order turbulence statistics of this dataset
show satisfactory correspondence to benchmark studies [24]. Only the RMS velocity flu-cations and vorticity
fluctuations are reported to be overestimated by this configuration.

Translating the flow variables of density and velocity to distribution function values is straightforward within
the FMLBM-method. The flow variables can be inserted into the pre-collision solution vector α− defined in
Eq.3.12, and subsequently be translated into the distribution function f using Eq. 3.9.

In this study the grid will be refined in order to concur with the resolution requirement of ∆y+ = η+. Conse-
quently, variables from the initial dataset have to be interpolated onto the new, refined grid. In Julia, three-
dimensional interpolation can be straightforwardly implemented using the Interpolations.jl package. Cubic
B-Spline interpolation is performed on the initial density and velocity arrays to create smooth interpolated val-
ues at the new grid locations.

3.5.3 Convergence

Retrieving meaningful statistical data that the flow has reached a sufficiently stead-state situation. Without this
convergence, any computed statistics may be influenced by transient behavior, which leads to incorrect rep-
resentation of the flow dynamics. One common approach to quantify a simulations convergence is by quan-
tifying the change of a certain flow variable in time. convergence to steady-state is by employing the relative
L2 error norm. In this thesis, the spatially average velocity mean is tracked over time and its deviation from a
previous iteration is computed via:

Lconv
2 (t) =

√√√√√√
∑

x

[
u(x, t)−u

(
x, t −∆t

)]2

∑
x

u2(x, t −∆t
) . (3.39)

Here, the summation is performed over the entire three-dimensional domain. The Root Mean Square (RMS)
difference between successive realizations is normalized, providing a consistent metric to compare the relative
change of the solution over time. When the calculated Lconv

2 term falls below a chosen threshold, the simulation
is considered to be sufficiently converged for retrieving turbulence statistics. It is reported that the convergence
threshold is L2 ≤ 1×10−3 sufficiently acceptable for simulations that employ 32-bit floating-point precision.

3.5.4 Averaging window and sampling rate

Care needs to be taken when collecting statistical data. To produce accurate statistical results, enough non-
correlated data points should be included in the statistical analysis. Furthermore, the sample rate should be
chosen as to retrieve enough data points. The study by Vinuesa et al. [53] provides useful guidelines for se-
lecting the appropriate averaging windows and rate of sampling. To this end, the eddy turnover time(ETT) is
defined as

30 numerical methods

ET T = tuτ
H

, (3.40)

where t is the simulation time. In this formula time is normalized by the typical advection time of the biggest
scales defined by uτ/H . ETT is a non-dimensional parameter that quantifies how many times the large scales
have traveled distances equal to the channel’s half-height. This is a universal parameter which gives infor-
mation on have many times the flow in the channel is refreshed, independent of its flow configuration. It is
therefore a robust parameter to check whether enough cycles of advection are used in the averaging window,
to ensure uncorrelated data points. To also account for differences in computational domain sizes, a normal-
ized eddy turnover time is defined as follows.

ETT∗
channel = ETTchannel

Lx Lz

Lx,minLz,min
, (3.41)

where Lx,mi n = 6H and Lz,mi n = 3H are the minimal streamwise and spanwise lengths previously mentioned
in section 3.5.1. Furthermore, a sufficient sample rate is found to be equal to [53],

∆t+ = 17 (3.42)

4 VA L I DAT I O N O F T U R B U L E N C E M O D E L

The primary aim of this thesis is creating a realistic and computationally effective simulation tool that can
model freezing of salt flow under turbulent conditions within a cooled MSFR heat exchanger. To this end, a
GPU-accelerated FM-LBM turbulence model has been created, and its accuracy in simulating turbulent flow
behavior must therefore be validated. First of all, an overview of the physical turbulence model and the numer-
ical setup is provided in section 4.1. section 4.2 discusses the literature studies selected to assess the model’s
validity, alongside giving an overview of simulations performed. Furthermore, section 4.3 contains the results
of periodic simulations using different domain sizes and grid resolutions. In section 4.4, non-periodic inflow-
and outflow conditions are added mimicking a more physically accurate situation. Furthrmore, he effective-
ness of the GPU-implementation is discussed in section 4.5. section 4.6 gives a short conclusion of this chapter.

4.1 computational setup
The GPU-accelerated FM-LBM fluid dynamics model is developed to simulate correct turbulence solutions
from the Navier-Stokes equation in channel flow. A schematic depiction of the physical problem being inves-
tigated is given in Figure ??. In this picture the number of grid points in the streamwise, wall-normal and
spanwise directions are indicated with Nx , Ny and Nz respectively. The ratio parameter α can take either the
value 1 or 2. A body force f is applied along the streamwise direction, forcing the fluid through the channel. In
all simulations, a halfway bounce-back condition is applied in the wall-normal direction to impose a no-slip
condition. Furthermore, periodic boundary conditions are applied along the spanwise direction. Different
computational domain sizes, grid resolutions, and streamwise boundary conditions are used across the simu-
lations in this section. The specific configurations of each simulation are detailed in their respective sections.

To simplify comparison with literature studies, the fluids properties are chosen to match those of water. An
overview of all the relevant physical input parameters in this study, is given in Table 4.1

Table 4.1: Physical input parameters used in turbulent simulations in this section. The kinematic viscosity and density are
representative of water at room temperature.

Quantity Symbol Value (SI)

Channel dimensions L×2H ×W 0.10×0.05×0.05 m

Kinematic viscosity ν 1.7×10−6 m2 s−1

Body force fx 5.99×10−3 ms−2

Input density ρ0 1000 kgm−3

Wall shear velocity uτ 1.12×10−2 ms−1

31

32 validation of turbulence model

4.2 benchmark studies and simulation overview
An overview of all the simulations performed in this study is presented in Table 4.2. In total four simulations are
studied using periodic boundary conditions in the streamwise directions. These simulations are denoted in the
table by the abbreviation PBCx. The difference between these periodic simulations are the aspect ratioα of the
domain length and the applied grid resolutions. Specifically, the number of nodes in the x-direction can vary
between Nx = 4H and Nx = 8H . For both domain size, two different grid resolutions (∆+ = 2.8 and ∆+ = 2.0)
totaling four distinct periodic simulations. Furthermore, flow parameters from Table 4.1 are provided in LB
units. The three last columns detail the averaging period and the sampling interval needed to meet a sampling
resolution similar to the benchmark study of Kim et al. [50] [53]. This averaging period is normalized by the
eddy-turnover time (ETT). Furthermore, section 4.4 presents the results of the realistic inflow scenario, which is
called IBC in the table. The streamwise inflow condition is provided by the strong recycling method, while the
streamwise outflow condition is imposed by a zero-gradient Neumann condition. The strong recycling method
relies on running an auxiliary channel flow simulation in tandem with the main simulation. Numerical input
parameters for the IBC simulation are the same as in table 4.1.

Table 4.2: Overview of physical parameters in LB units and parameters used for averaging. The wall shear velocity and
body force were adjusted to ensure Reτ = 180. The sampling interval indicates the number of time steps be-
tween successive saves.

Simulation Nx ×Ny ×Nz ∆+ ρ ν fx uτ
Averaging

period (ETT)

Total

timesteps

Sampling

interval (timesteps)

PBC1 256×128×128 2.8 1.0 2.37×10−3 6.94×10−7 6.67×10−3 112.5 1.19×106 1100

PBC2 368×184×184 2.0 1.0 2.37×10−3 4.83×10−7 6.67×10−3 56.2 1.61×106 1500

PBC3 512×128×128 2.8 1.0 2.37×10−3 6.94×10−7 6.67×10−3 112.5 6.17×105 1100

PBC4 736×184×184 2.0 1.0 2.37×10−3 4.83×10−7 6.67×10−3 56.2 8.87×105 1500

IBC 512×128×128 2.8 1.0 2.37×10−3 6.94×10−7 6.67×10−3 112.5 6.17×105 1100

To validate the FM-LBM turbulence model, the results are compared against DNS data from two benchmark
studies. The first successful DNS of turbulent channel flow using at Reτ = 180 has been performed by Kim, Moin
and Moser (KMM) in 1987 [51]. Later, this DNS data was made open-source based on the paper published in
1999 [50]. Periodic boundary conditions are applied in streamwise- and spanwise directions, while a no-slip
is enforced near the wall. The kolmogorov length scales with distance to the wall, so to balance accuracy and
speed a non-uniform wall normal spacing was employed. This grid spacing in the wall-normal was defined by

y+
j = z

uτ
ν

= 180

(
1−cos

(
(j −1)π

Ny −1

))
, (4.1)

where was Ny = 129 . This resulted in a grid spacing of ∆y+ = 0.05 near the wall and a maximum spacing
of ∆y+ = 4.4 at center of the channel. Grid spacing in the streamwise- and spanwise directions were ∆x+ ≈
12.7 and ∆z+ ≈ 7 respectively. Furthermore, the spatial extent of the computational domain was taken to be
4πH×2H× 4

3πH , which meets the requirements discussed by Flores et al. [52]. Due to its reliable computational
setup and publicly available data, the DNS of turbulent channel flow conducted by KMM has become a widely
adopted benchmark in the literature for flows with Reτ = 180. [Add here citation to studies that use KMM as
benchmark]
Another useful benchmark study is the one conducted by Amati et al. [54](ASP). A turbulent channel flow at
Reτ = 180 has been simulated using a LBM numerical technique with a BGK collision operator. A uniform grid
spacing of∆+ = 2.8, which is similar to the spacing used in this study. This makes it interesting to use data from
ASP as a benchmark. Once again, periodic boundary conditions have been used in the stream- and span-wise
directions and a zero-slip in the wall-normal direction. Of these two benchmark studies, the one conducted by
Kim et al. is considered to be the primary reference due to its more than adequate spatial extent and very fine
wall-normal grid spacing.

4.3 periodic simulations 33

Table 4.3: Overview of benchmark studies and simulations on turbulent channel flows at Reτ = 180 used in this section.
Data from Kim et al.(KMM) [50] and Amati et al.(ASP) [54] are used to compare data from current simulations.

Simulation Numerical method Collision model Nx ×Ny ×Nz ∆y+ streamwise BC

KMM Spectral - 192 × 129 × 160 0.05 – 4.4 Periodic

ASP LBM BGK 256 × 128 × 128 2.8 Periodic

PBC1 (This study) LBM FMLBM 256 × 128 × 128 2.8 Periodic

PBC2 (This study) LBM FMLBM 368 × 184 × 184 2.0 Periodic

PBC3 (This study) LBM FMLBM 512 × 128 × 128 2.8 Periodic

PBC4 (This study) LBM FMLBM 736 × 184 × 184 2.0 Periodic

IBC (This study) LBM FMLBM 512 x 128 x 128 2.8 Strong recycling/Neumann

4.3 periodic simulations
Turbulence statistics obtained from the FMLBM turbulence model using periodic boundary conditions will
now be compared to aforementioned benchmark studies. Relevant quantities that are considered are the mean
stream-wise velocity, the RMS velocity fluctuations and the Reynolds stress. Data from PBC1 and PBC2, corre-
sponding to grids using streamwise length Lx = 4H are put into the same graphs. Similarly, simulations PBC3
and PBC4 using Lx = 8H are plotted together. For simulations employing the same uniform grid size ∆+ = 2.8
as the initial flow fields, convergence to a statistically steady-state was immediately observed. However, simu-
lations that used a refined grid as compared to the initial dataset needed at least 1 tc to converge. To stay on
the safe side, these simulations were first run for one full flow through time t f before obtaining statistics.

(a) Simulation using domain length Lx = 4H (b) Simulation using domain length Lx = 8H

Figure 4.1: Graphs showing the mean streamwise velocity profiles near the wall expressed in wall units for Reτ = 180 as
a function of wall distance expressed in wall units . In graph (a) streamwise length Lx = 4H and in (b) Lx =
8H . The data points represented by circles have a uniform grid spacing ∆+ = 2.8, while rectangles correspond
to ∆+ = 2.0. Additionally, analytical near-wall velocity profiles are included for comparison. The black lines
correspond to data obtained from Kim et al. (KMM) [50] and Amati et al. (ASP) [54].

34 validation of turbulence model

Mean Velocity
The mean-streamwise wall velocity profiles are shown in Figure 4.1 as function of wall distance expressed units.
In the plot on the left PBC1 and PBC2 are displayed, which corresponds to the grid setup with Lx = 4H . The
blue data points correspond to a uniform grid resolution of ∆+ = 2.8, while the orange data points originate
from a grid with ∆+ = 2.0. Analytical expressions for near-wall turbulent velocity profiles are plotted by a black
dash-dotted line. Additionally, the benchmark studies are distinguished by the solid black line (KMM) and the
black dashed line (ASP). The plot in Figure 4.1b contains the data points of simulations PBC3 and PBC4,which
correspond to a grid configuration using Lx = 8H . The different grid resolutions are represented by the same
colors as in the left graph. The first observation to be made is that PBC1 exactly follows the line correspond-
ing to data from ASP. Unsurprisingly, these two simulations used the exact same numerical configurations and
thus the FMLBM model can simulate the mean-velocity as accurate as LBM literature studies. Furthermore,
all the profiles follow the benchmark of KMM and the analytical solutions closely. Upon comparison, the blue
and orange scatter points in both plots show a marginal shift towards the data from KMM, indicating a slight
increase in accuracy when refining the grid. The impact of the grid length size can be derived by comparison
between graphs. Data points from PBC1 and PBC2 are on overall slightly closer to the benchmark lines than
scatter points from PBC3 and PBC4.

Reynolds Stress
The effectiveness of turbulent momentum transport in the wall-normal direction is the described by the Reynolds
stress profiles. For FM-LBM model to succesfully correspond to characteristic turbulent flow at Reτ = 180,
Reynolds Stress profiles should closely match benchmark studies. Figure 4.2 shows the retrieved Reynolds
Stress profiles in a similar format as the mean-streamwise velocity results. From the graphs it is evident that all
grid configurations capture the Reynolds stress almost perfectly. A slightly better correspondence is achieved
by refining the grid.

(a) Simulation using domain length Lx = 4H (b) Simulation using domain length Lx = 8H

Figure 4.2: Graph showing the results for retrieving the Reynolds Stress profiles. Figure (a) corresponds to grid configu-
ration using Lx = 4H while Figure (b) uses Lx = 8H . Furthermore, blue points indicate a grid size ∆+ = 2.8 is
used, while blue points represents ∆+ = 2.0. The solid and dashed lines represent results from Kim et al. [50]
and Amati et al. [54] respectively.

4.3 periodic simulations 35

Root-Mean Square Velocity Fluctuations
Figure 4.3 shows the root mean square (RMS) velocity fluctuations u′

r ms , v ′
r ms and w ′

r ms . . It is observed that
the the simulation reproduces the general shape of the characteristic profile. In the buffer layer (5 < y+ < 30)
and the lower part of the logarthimic sublayer, turbulence instensities typically reach their peak values. This
occurs because the shearing effect of the wall is still active, while the viscous damping is reduced. Within the
plots, aforementiond region is approximately located at 0.02 < y/H < 0.2. This coincides with the peaks of the
u′

r ms and w ′
r ms profiles. In general, the curves representing the fluctuations in the y- and z directions match

the benchmark data accurately. The only exception are the data points from the PBC2 simulation, which shows
a slight dip below the peak intensity of w ′

r ms . However, this dip is not observed for the curve from the PBC4
simulation.
Furthermore, all curves show an overshoot of the peak u′

r ms value. The dashed line shows the u′
r ms profile pro-

duced by ASP also suffers from a similar discrepancy. Throughout LBM literature similar results are published
[55], [22] Amati et al.[54] argues that the overshoot likely stems from the LBM being only second-order accurate
in time an space, while the study of Kim et al. uses a higher numerical technique [50]. When comparing the
simulations based on domain length, it is clear that in simulations PBC3 and PBC4 the overshoot is reduced.
This observation suggests that increasing the domain length more faithfully captures the turbulence effects
within the flow. Such a result is expected as Flores et al. [52] argues that the current domain size is too small to
capture all relevant large eddies. Using a larger domain length results in the capture of information that would
otherwise be lost when employing a shorter domain. The effects of using a finer grid are ambiguous. In Figure
4.3a results of the finer grid for u′

r ms deviate more from the benchmark than its coarser counterpart. Overesti-
mation is especially visible near the center channel. As mentioned earlier, w ′

r ms significantly deviates around
its peak value for the finer grid in PBC2. Inspecting the data points from PBC4 on the other hand, suggests that
a finer grid resolution slightly reproduces the peak u′

r ms better than its coarser counterpart. However, near the
center channel a slight overestimation is present as well. Thus, it can be concluded that the effect of increas-
ing the grid resolution beyond that of the initial dataset does not yield significant effects on accuracy. To save
unnecessary computational costs, a grid size of ∆+ = 2.8 will be assumed for further simulations.

(a) Simulation using domain length Lx = 4H (b) Simulation using domain length Lx = 8H

Figure 4.3: Figure showing the RMS velocity fluctations profile retrieved from FM-LBM model as function of the wall-
normal distance. Figure (a) shows simulations using domain length Lx = 4H , Figure (b) shows simulations
using domain length Lx = 8H .Furthermore, blue points indicate a grid size ∆+ = 2.8 is used, while blue points
represents ∆+ = 2.0. The black lines correspond to data obtained from Kim et al. (KMM) [50] and Amati et al.
(ASP) [54].

-

36 validation of turbulence model

4.4 realistic inflow simulation
The previous section has shown that benchmark turbulence statistics are reliably obtained from the current
GPU FM-LBM model. In this section the model is extended by replacing the periodic boundary conditions in
the streamwise direction by more realistic inflow and outflow conditions. More specifically, the inflow turbu-
lence profile is provided by running an auxiliary domain in tandem with the main simulation. To ensure reliable
solutions are obtained, the auxiliary domain is chosen such that the numerical configuration of both domains
is the same, except for the streamwise boundary conditions. In the auxiliary domain, a periodic boundary
condition will be employed along the x-direction. During simulations, a plane slice of data from the auxiliary
domain is directly used as an inflow condition in the main simulation. Lastly, a zero-gradient Neumann condi-
tion is prescribed at the outlet boundary of the main simulation to model the outflow of the turbulence. Before
collecting statistics, both domains are simulated for at least one flow-through time to ensure the flow in the
main domain is fully developed and consistent with inflow condition.

To validate the reliability of this new set of boundary conditions, the same low-order turbulence statistics as
the previous section are retrieved from the main simulation domain. Based on the findings in section 4.3, the
size of both the auxiliary domain and the main domain is chosen to be 512×128×128. Furthermore, the grid
resolution is set at ∆+ = 2.8. The auxiliary domain is therefore identical to simulation PBC3 from the previous
section. Turbulence statistics are once again evaluated against the benchmark studies listed in Table 4.3, as
well as to simulation PBC3.

(a) Mean streamwise velocity near the wall (b) Reynolds stress profile

(c) RMS velocity fluctuations

Figure 4.4: Graphs showing turbulence statistics retrieved from simulations using a strong recycling method at streamwise
location x = 4H . Figure (a) shows the mean streamwise wall velocity, (b) the Reynolds stress profile, and (c) the
root mean square velocity fluctuations. Dotted dashed line corresponds to analytical velocity profiles in the
viscous sublayer and the log layer.Furthermore, The solid and dashed lines represent results from Kim et al.
[50] and Amati et al. [54] respectively. The colored data points are retrieved from the current model.

4.4 realistic inflow simulation 37

The results are presented in Figure 4.4. Here the analytical functions and the benchmark functions are once
again depicted using dotted, dashed and solid lines. Furthermore, the data from PBC3 is displayed as the blue
scatter points, while IBC represents the data from the realistic inflow model. Results from IBC are collected at
streamwise location x = 4H , which equals half the domain length.

Mean streamwise velocity
Figure 4.4a shows the mean streamwise velocity in wall units, u+ , as a function of wall-normal distance in wall
units, y+. It is clear the mean velocity profiles are near-identical and just slightly deviate from KMM in the
near-wall region.
The Reynolds stress retrieved from the simulations is displayed in Figure 4.4b. The IBC curve follows the bench-
mark and PBC3 closely near the wall, but starts to display a slight deviation from the benchmark lines when
starting towards the center of the channel. There is also a slight discrepancy observed for u′

r ms in Figure 4.4c.
Near its peak value an overshoot of approximately 3%.
Reynolds stress
The Reynolds stress retrieved from the simulations is displayed in Figure 4.4b. The IBC curve follows the bench-
mark and PBC3 closely near the wall, but starts to display a slight deviation from the benchmark lines when
starting towards the center of the channel. There is also a slight discrepancy observed for u′

r ms in Figure 4.4c.
Near its peak value an overshoot of approximately 3% is observed.To investigate these findings further, the
Reynold stress and RMS velocity fluctuations profiles for a position at the outlet and one near the outlet are
displayed in Figure 4.5 and Figure 4.6a respectively.

(a) Reynolds stress at outlet position x = 8H (b) Reynolds stress at position x = (63/64) ·8H

Figure 4.5: Graph showing the results for retrieving the Reynolds Stress profiles as function of distance to the wall. Figure
(a) corresponds to a location at the outlet Figure (b) is a location a few grid points upstream. The solid and
dashed lines represent results from Kim et al. [50] and Amati et al. [54] respectively.

From the Reynolds stress graphs it becomes clear that a deviation of approximately 14% is present. Figure 4.5b
displays data that is positioned at few grid nodes upstream from the outlet. At this location, the peak value has
moved towards the benchmark points, but now a slight increase of the Reynolds stress values is observed at a
distance farther from the wall. Based on these graphs, it appears that the zero-gradient condition applied at
the outlet reflects non-physical turbulence structures back into the domain. This problem is also experienced
in other turbulent simulations employing outlet Neumann conditions [56]. A zero-gradient condition assumes
that flow exits the domain with a smooth velocity field. However, in the buffer layer and log-layers strong local
velocity gradients are present. In these regions, a zero-gradient does not reflect the natural evolution profile
of the velocity. Judging from the overshoot of the peak Reynold-stress at the outlet, the simulation responds
by creating artificial coherent turbulent structures. Because of the non-locality of turbulence flows, these new
turbulent structures are transported upstream into the domain as proven by Cziesla et al. [56] and as observed
from the discrepancy in Figure 4.5b.

RMS velocity fluctations The effect of the zero-gradient outlet condition on the RMS velocity fluctations at the
outlet and close to the outlet is shown in Figure 4.6. At both locations, u′

r ms is overestimated by the simulations.
According to Cziesla et al. [56] entrainment of flow structures into the domain causes overshoots in RMS ve-
locity fluctuations. This increase of turbulence intensity is further proof that non-physical turbulent structures
are creaed by the Neumann outlet condition.

38 validation of turbulence model

(a) RMS velocity fluctuations at outlet position x = 8H (b) RMS velocity fluctuations at x = (63/64) ·8H

Figure 4.6: Figure showing the results for RMS velocity fluctations value for a realistic inflow simulation. Figure (a) corre-
sponds to curves located at the outlet Figure (b) shows curves a few points upstream. The solid and dashed
lines represent results from Kim et al. [50] and Amati et al. [54] respectively.

4.5 gpu-performance

4.5.1 GPU performance indicator

The performance of the parallel programming on implementation is discussed in this section. To quantify the
computational efficiency of a parallel LBM algorithm, a performance indicate called million lattice updates per
second (MLUPS) is often used in literature [57]. The common definition is given by

MLUPS = N ×Nt

T
×10−6 (4.2)

Here, N denotes the number of grid points, Nt the total amount of LBM time steps simulated and T the simu-
lation time expressed in seconds. The factor of 10−6 is included so the value of MLUPS is given in mega LUPS.

A useful way to quantify the algorithms efficiency is by comparing the amount of MLUPS of an simulation to
the maximum theoretical value that the GPU hardware can achieve. To this end, the maximum theoretical
MLUPS of a GPU is defined by

MLUPSmax,theor y =
BW

4Nvar s
×10−6. (4.3)

Here, BW stands for the bandwidth of the GPU considered and Nvar s is the amount of global memory ac-
cesses of a thread per time step [57]. In this work an NVIDIA GPU-A100 was used to perform the simula-
tions.It is reported that its measured bandwidth amount to BW = 1640 GB [58]. In the flow simulation for
LBM, global memory is accessed approximately 134 times in one time step. In theory, maximum bandwidth
capacity is never reached in LBM applications. To create a more realistic efficiency parameter, it is recom-
mended to use a percentage of roughly 80% of the GPU bandwidth specified [59]. Using this information, leads
to MLUPSmax,theor y = 2485

4.5.2 Simulation efficiency results

This section reports the achieved MLUPS values for the different simulations performed in this chapter. An
overview of each simulation with its calculated amount of MLUPS is provided in Table 4.4. Additionally, a
reference value from a similar study done by Spek [25] is added to the table.
From the table it is clear that a significant speed-up has been achieved compared to the study of Spek. For some
simulations, the MLUPS count is almost three times as large. Furthermore, ratio of the MLUPS achieved to the
maximum possible GPU bandwidth has also increased significantly. This indicates that the higher MLUPS
count does not comes from the fact that a different GPU has been used compared to the reference study.

4.5 gpu-performance 39

Table 4.4: Overview of the MLUPS achieved for each simulation performed in this chapter. A simulation of Spek [25] is
included which is identical to PBC1.

Simulation NNumber of grid nodes MLUPS GPU bandwidth used

PBC1 4.4e6 1022 41%

PBC2 1.3e7 1181 48%

PBC3 8.4e6 1048 42%

PBC4 2.5e7 1079 43%

IBC 1.7e7 1205 48%

Spek 4.4e6 403 19%

The speed-ups observed in the current GPU implementation over the DDF-FMLBM model presented in the
reference study can be attributed to three key differences. First of all, the reference study was based in Pyton,
while the current model is written in Julia. As discussed in Section 3.4, Julia offers improved computational
performance compared to Python [48]. Moreover, Julia allows for the allocation of shared memory within GPU
kernels. In the current GPU model, the solution vector in the FMLBM collision kernel is placed into shared
memory, something which was not possible in the reference study. This significantly reduces the number of
global memory accesses during the matrix multiplication, which is the most memory-intensive part of FMLBM
model. Lastly, the current implementation includes an optimized way for iterating over either rows or columns
of the filter matrix during the matrix multiplication step. This optimization strategy further improved the algo-
rithm’s performance.

Considering the fact that the effective GPU efficiency across simulations is about 45%, there is still room to
improve the LBM algorithm. More efficient memory usage can for example be achieved when the collision and
propagation kernels are combined, as shown in [60].

40 validation of turbulence model

4.6 conclusion
In this chapter, the DDF FMLBM was compared to the canonical case of DNS of turbulent channel flow. Tur-
bulence statistics showed a good agreement with benchmark statistics. Furthermore, it was found that further
refinement of the grid resolution lead to only a marginal increase in accuracy. Furthermore, choosing an appro-
priate domain length to allow the large scale eddies to evolve lead to improved turbulence statistics, especially
in u′

r ms .

Besides that it was found that the realistic inflow method produced realistic turbulent profiles. However, it was
observed that the zero-gradient Neumann boundary conditions added non-physical at the outlet of the simu-
lation.

The GPU performance has been measured via the number MLUPS. By switching to a Julia based code, placing
the solution vector of the FMLBM method in shared memory and by optimizing the matrix multiplication
strategy, significant speed-ups were achieved compared to the previous study by Spek [25].

5 VA L I DAT I O N O F F R E E Z I N G M O D E L

This final chapter presents the results obtained from extending the FM-LBM model to include the simulation of
phase change in thermal flows. To this end, a second distribution function is added to the model that solves the
total enthalpy equation. The thermal model takes the turbulent flow fields as an input to calculate the effects of
thermal convection on enthalpy fields. This chapter consists of two parts. In the first part, the thermal model
is validated by running a benchmark case. The results are then compared to literature studies. The second part
of this chapter will be the simulation of a spatially developing ice layer.
Section 5.1 outlines the relevant input parameters and the computational setup for the validation simulations.
In addition, the benchmark studies are briefly reviewed. Following this, a canonical thermal flow case is used
as a validation of the model alongside a phase change validation simulation in Section 5.2. After validation
is performed, Section 5.3 presents the results of simulating spatially developing freezing in channel flow for
different cold-plate temperatures. A conclusion of this chapter is given in Section 5.4

5.1 computational setup
In this chapter, a thermal channel flow setup is considered, which is depicted in figure 5.1. The domain length
can be varied according to the scaling parameter α. The channel walls are located at 2H and the spanwise
direction has a widht of 2H . A constant temperature difference is imposed between the walls. The upper wall
temperature is denoted by TU and the lower wall temperature by TL . A body force f is applied along the stream-
wise direction. Furthermore, buoyancy effects are not considered. This specifically means the flow field is
independent from the thermal field. However, the thermal field needs input from the flow field to account for
thermal convection. The FMLBM model from the previous section is extended by including a thermal distri-
bution function in the DDF approach. The discrete velocity schemes used for both the flow field and thermal
field is the D3Q19-scheme.

Figure 5.1: Schematic depiction of the channel being considered in the simulations in this section. A body force f is
applied along the streamwise direction. α is a variable scaling parameter. Upper wall temperature TU an lower
wall temperature TL are applied at the walls.

41

42 validation of freezing model

Thermal- and flow boundary conditions are considered periodic in the streamwise direction. At the walls a no-
slip condition is imposed for the flow model, while a fixed temperature is set at the wall for the thermal model.
This means that a Dirichlet condition needs to be enforced, which is achieved in a cell-centered LBM model via
the anti-bounce back method. The imposed streamwise boundary conditions differ in this chapter. In Section
5.2 the streamwise direction is assumed to be periodic for both the flow- and thermal simulations. In Section
5.3 however, a spatially developing ice layer is investigated. To achieve this, the streamwise conditions for the
flow field are the same ones used as in the realistic inflow simulations from the previous section. This means
that the inflow uses a strong recycling method, while the outflow is modeled by a zero-gradient Neumann con-
dition. The thermal inlet condition is an uniform temperature profile, implemented similarly as the thermal
wall condition. The thermal outlet condition is taken to be a zero-gradient Neumann condition.

A complete overview of the flow and thermal input parameters is given in Table 5.1.The parameters are ex-
pressed in SI unit and LB units. Turbulent flow at Reτ is studied alongside a Prandlt number of Pr = 0.71,
which is the Prandtl number of air. This Prandtl number was chosen based on two reasons. The first one is that
in a lot of benchmark studies, the Prandtl number of air is used as reliable reference value. The second reason is
that in turbulent LBM simulations, a higher Prandtl number can quickly lead to numerical instability [25] [61].
Once again, properties of water at room temperature are implemented. This computational setup corresponds
to the canonical benchmark cases [62] [63].

Table 5.1: Input parameters used in the simulations in this section. Flow and thermal properties are representative of
water at room temperature. The freezing temperature, as well as the latent heat, are phase change properties at
the freezing point of water.The Prandtl number corresponds to air.

Quantity Symbol Value (SI) LB units

Friction Reynolds number Reτ 180 180

Prandtl number Pr 0.71 0.71

Grid spacing ∆+ 3.3×10−4 m 2.4

Density ρ 1000 kgm−3 1.0

Kinematic viscosity ν 1.7×10−6 m2 s−1 2.8×10−3

Body force fx 5.99×10−3 ms−2 5.8×10−7

Specific heat (solid/liquid) Cp,s/l 2.1/4.2×103 Jkg−1 K−1 6.2/12.5×102

Thermal diffusivity (solid/liquid) αs/l 9.58/2.39×10−6 m2 s−1 15.9/4.0×10−3

Latent heat L 3.34×105 Jkg−1 9.9×104

Freezing temperature Tfreeze 273.15 K 273.15

From the previous section, it is concluded that the grid resolution does not need further refinement. However,
instabilities in the flow field were observed at ∆+ = 2.8 when temperature differences in the flow became too
high. These instabilities did not lead to instable simulations, but are nevertheless undesirable.The smallest
scale for thermal fluctuations is defined by the Batchelor scale from equation ηB = ηPr−1/2 [62]. Assuming a
Kolmogorov length scale of η+ = 2.0, the minimal resolution to capture the thermal field at Pr = 0.71 is∆+ = 2.4.
In Figure A.1 in Appendix A two temperature snapshots taken at the same number of time steps are depicted.
In the left graph, numerical instability is observed when a grid spacing of ∆+ = 2.8 is implemented. Refining
the grid to∆+ = 2.4 creates a stable field as can be seen from the right graph. In the remainder of this thesis, the
grid spacing for both the flow field and thermal field will be set at ∆+ = 2.4.

5.2 validation of the freezing model 43

5.2 validation of the freezing model

5.2.1 Benchmarking of Thermal statistics

The accuracy of heat transfer by the DDF FMLBM thermal model using a D3Q19 scheme for both the momen-
tum distribution and thermal distribution is discussed in this section. The channel flow setup from figure 5.1 is
considered with α= 8 and periodic boundary conditions in the streamwise- and spanwise directions for both
the flow field and thermal field. Furthermore, a no-slip and a Dirichlet are applied at the walls for the flow
field and thermal field, respectively. To retrieve steady-state thermal statistics, the temperature difference be-
tween the upper wall and lower wall ∆T is fixed. Upper wall temperature is set at TU = 280 K and lower wall
temperature at TL = 275 K . The initial temperature field of the fluid is uniformly chosen to be T0 = 277.5 K ,
corresponding to half the temperature difference. These temperature values are transformed into enthalpy val-
ues that serve as the input for the thermal distribution function. In order to obtain stable, physical thermal
fields from the simulations, temperature and enthalpy values need to be scaled and stretched according to the
transformation rules discussed in Section 3.2.3. Maximum and minimum sensible enthalpies are chosen to
be 1 and 0 respectively in transformed units. Table 5.2 gives an overview of the necessary input values of the
simulation expressed in SI units and in transformed units.

Table 5.2: Overview of thermal parameters and their transformed values used in the simulation.

Quantity Symbol Value (SI) LB units Transformed units

Upper wall temperature TU 280 K 280 8.03×10−4

Lower wall temperature TL 275 K 275 0

Initial temperature T0 277.5 K 277.5 4.01×10−4

Freezing temperature Tfreeze 273.15 K 273.15 −2.97×10−4

Minimum sensible enthalpy hmin 1.16×106 3.43×105 0

Maximum sensible enthalpy hmax 1.18×106 3.49×105 1

Latent heat L 3.34×105 9.91×104 15.19

The simulation in this study is first run for approximately 125 ETT to ensure a converged and developed ther-
mal field. Statistics are obtained using an averaging time of TA = 56.3 ETT and samples were taken every 1300
time steps. In total, the simulation needed NT = 2.1×106 time steps to finish. This corresponds to total simula-
tion time of approximately 14 hours.

Two benchmark studies, which simulate the canonical case, are used to validate the thermal statistics. A DNS
study on heat transfer in turbulent channel flow has been performed by Kawamura et al.[63] using a second-
order finite difference method. In this study the grid resolution in the wall-normal direction ∆y+ was varied
between very fine near the wall(0.40) to coarser near the centerline(11.5). The computational box that was used
had dimensions 6.4H ×2H ×3.2H . Based on these settings, it is assumed that this benchmark study is capable
of capturing all the information within the flow, thus being a highly reliable benchmark. An MRT-LBM study
by Ren et al. [62] uses a Large Eddy Simulation (LES) to model the turbulence behavior of the flow. This LBM
study adopted a D3Q19 momentum scheme and a D3Q7 thermal scheme. A DDF-approach was used where
the thermal distribution function retrieves flow temperature. A uniform grid spacing ∆+ = 3.0 is used through-
out the domain. The domain size is not adequate enough to capture all turbulence scales, which is similar to
the current model. All the specifics of the studies used, are summarized in Table 5.3.

Table 5.3: Overview of simulations used to validate the DDF-FMLBM thermal model. KAM and RSH refer to the bench-
mark studies on heat transfer in channel flow from Kawamura et al[63] and Ren et [62], respectively. The amount
of grid nodes in the y-direction in KAM is not known.

Simulation Numerical technique Collision model Nx ×Ny ×Nz Computational volume ∆y+

KAM 2nd order FDM – 128 × ? × 128 6.4H ×2H ×3.2H 0.40 – 11.5

RSH LES-LBM MRT 256 × 122 × 96 4.3H ×2H ×1.6H 3.0

DNS Thermal [This study] LBM FMLBM 608 × 152 × 152 8H ×2H ×2H 2.4

44 validation of freezing model

Thermal statistics of interest in this study are the mean temperature profile T , streamwise turbulent heat flux

u′T ′ and the temperature fluctuations
√

T ′T ′. Figure 5.2 shows all these variables as a function of the wall-
normal distancey normalized by the half-channel height H .

Mean Temperature
Figure 5.2a shows the mean temperature profile profile normalized by the temperature difference between the
walls∆T . From the graph, it is observed that the mean temperature profile accurately follows the curves of KAM
and RSH. Near the walls, conductive heat transport is more dominate than convective heat transfer. Therefore,
mixing through convection is limited and a steep temperature gradient is observed in this region. In the buffer
layer and log layer eddies are created, which in turn transport the heat from the wall via convection. As a result
of this transport, the slope of the curve becomes more smooth towards the center channel, which is readily
observed from the graph.

(a) Normalized mean temperature (b) Normalized streamwise turbulent heat flux

(c) Normalized RMS temperature fluctations

Figure 5.2: Graphs showing thermal statistics obtained from a benchmark simulation of the DDF-FMLBM model plotted
as functions of distance to the wall. Figure (a) shows the normalized mean temperature profile scaled by ∆T =
TU −TL , (b) the normalized streamwise turbulent heat flux u′T ′

uτTτ
, and (c) the normalized root mean square

temperature fluctuations.Solid and dashed lines represent reference data from Kawamura et al. [63] and Ren
et al. [62] respectively. Orange markers display data from the current study.

Turbulent heat flux
The turbulent heat flux is a characteristic measure of the effect of turbulence on mixing. The results for this
turbulence term are displayed in Figure 5.2b. As seen in the plot, the overall shape of the data points is similar
to the benchmark lines. Turbulent mixing effects are strongest in the buffer layer, where anisotropic turbulence
structures are created. At the center of the channel, turbulence becomes more isotropic meaning there is less
directional preference of the fluid to transport the heat to. Therefore, the streamwise turbulent heat flux tends
to zero towards the center of the channel. It is observed that the peaks at x ≈ 0.15H and x ≈ 1.85H are approx-
imately 4% underestimated compared to KAM. The RSH line however shows a small overshoot at this peak,
which rules out that the LBM technique is the cause of the undershoot. Further discussion of this deviation is
conducted using the results from the RMS temperature fluctuations.

5.2 validation of the freezing model 45

RMS temperature fluctuations
The orange scatter points in Figure 5.2c shows result corresponding to the RMS temperature fluctuations. The
shape of the curve looks similar to both KAM and RSM. In the viscous sublayer near the walls, the temperature
variance drops to zero as a result of reduced turbulent effects and the increased role of thermal diffusion in heat
transfer. A total of three maxima can be observed in the plot. Two of them are situated in the buffer layers and
are attributed to efficient turbulent mixing and steep thermal gradients in this region. The second and biggest
maximum however, is present in the center of the channel and has a different cause. Fluid from near-wall is
transported towards the center of the channel by turbulent eddies. Since both walls are fixed at different tem-
peratures, a mix of hot of cold fluid is present in the core region. These thermal structures are then convected
along the mean flow in the center channel, continually interacting and mixing with one another. As a result,
high temperature variance is observed in the core region [64].
Furthermore RMS values of this study show a slight asymmetry around the centerline. This is noticed from
the fact that the value at y/H ≈ 0.15 is slightly bigger than the value observed at its symmetric location around
y/H ≈= 1.85. This indicates that thermal field was not fully statistically stationary before collecting statisti-
cal data. It is not surprising that this asymmetry appears only in the temperature variance results, since the
curve is more sensitive to variations in temperature than previously discussed statistics. Furthermore, the data
points exhibit an undershoot across the whole height of the channel by 4% as compared to KAM. Interestingly
enough, RSM curves shows a very well alignment with the KAM curve, again indicating that the LBM is reliable
in capturing thermal behavior. Lluesma-Rodríguez et al.[65] mention that the minimal domain size needed to
retrieve accurate low-order thermal statistics should be 2πH ×2H ×πH . The current width of the domain does
not meet the requirement, leading to truncation of large turbulent structures. These structures play a key role
in mixing, so truncating these can lead to a lower temperature variance across the domain. Finally, reduced
temperature fluctuations inherently lead to lower correlation values between velocity components, which will
be especially apparent in regions with a high correlation. This is reflected in the streamwise turbulent heat flux
shown in Figure 5.2b, where an under-prediction is observed near maxima.

5.2.2 Analytical expression for steady-state freezing

An analytical expression for a final ice layer thickness under convection influences can be derived by consider-
ing the a steady-state freezing scenario in a channel depicted in Figure 5.3. A similar reasoning will be followed
to derive the expression as in the thesis of Spek [25]. In this picture a thermal fluid flows is present between flat
plates. Two distinct regions can be identified, namely the pink region where the fluid is in a liquid state and the
blue region where the fluid has turned solid. Furthermore, the channels height is represented by parameter L
and the thicknness of the ice by d . In this particular case the walls are kept at constant temperatures, the upper
wall at Tu and the lower wall at TL . Also the walls are separated by a distance L and an ice layer has developed
with thickness d. Furthermore, Ti and TB are the interface- and bulk flow temperature, respectively.

Figure 5.3: Steady state freezing within channel flow. [25]

A constant heat-flux is imposed in the y-direction as a result of a fixed temperature difference between the wall
and by symmetry of the channel. This is captured in the statement

φ
′′
1 =φ

′′
2 =φ

′′
3, (5.1)

where φ1,φ2 and φ3 correspond to the heat fluxes at the upper wall, the interface of the ice and the lower wall
respectively. Fourier’s law relates the heat flux to the temperature gradient [32]

46 validation of freezing model

φ′′ =−λ∂T

∂y
, (5.2)

where λ represents the heat conductivity in the material. In the ice, no fluid is moving so heat transfer is solely
determined by conduction. Thus, the heat flux out of the lower wall can be defined according to Newton’s
cooling law [32]

φ′′
3 = h3 A(Ti −TL) (5.3)

where h = λ
d is the heat transfer coefficient. One of the main characteristics of turbulent flow is its effectiveness

in thermal mixing. As a result, the temperature profile between the interface of the ice and the upper wall is
constant at bulk temperature Tb . Heat fluxes φ1 and φ2 are solely determined by the temperature difference
with respect to the bulk flow

φ′′
1 = h1(TU −Tb), φ′′

2 = h2(Tb −TU) (5.4)

where h1 and h2 are once again heat transfer coefficient. An universal expression for h is given by [32]

h = λ

L
Nu. (5.5)

Here L symbolizes the characteristic length and Nu is Nusselt number, which is a non-dimensional number
that indicates the relative importance of convection on the heat transfer within a system. It is defined as the
ratio between convective heat transfer and the total heat transfer. When only conduction is considered, the
Nusselt number is equal to 1. Consequently, the relevant heat transfer coefficients can be defined by

h1 = λ1

L−d
Nu1, h2 = λ2

L−d
Nu2, h3 = λ3

d
(5.6)

where Nu1 and Nu2 correspond to the Nusselt numbers of φ′′
1 and φ′′

2 . Now, following the mathematical proce-
dure outlined by Spek [25], the expression for the steady-state ice thickness is obtained:

d = A

1+ A
L (5.7)

Here A is a non-dimensional geometric parameter which reflects the effects of convection, material properties
and the temperature differences on the steady-state ice thickness. When constant density is assumed, parame-
ter A is expressed by

A = (
1

Nu1
+ 1

Nu2
)
Cp,1α1

Cp,2α2

Ti −TL

TU −Ti
. (5.8)

Now, the combination of Eq. 5.7 and 5.8 enables the calculation of an analytical value for the ice thickness in
channel flow with a constant temperature difference across the channel.

5.2.3 Validation of Phase Change Implementation

To asses the ability of the DDF FMLBM model to accurately simulate solidification phenomena, a steady-state
freezing simulation with zero velocity is performed. The physical setup corresponds to the analytical steady-
state freezing problem described in section 5.2.2 for channel flow setup similar to figure 5.1. For the analytical
expression, equations 5.7 and 5.8 are used to calculate the analytical ice thickness. The characteristic length
of the channel is L = 2H . Nusselt numbers are equal to unity when no convection is present, reducing the

expression for geometric parameter to A = Cp,sαs
Cp,lαl

Ti−TL
TU−Ti

. During the simulations, the liquid fraction is used to

track the local phase state of the fluid. As solidification set in, latent heat associated with melting is numerically
subtracted from the local total enthalpy. Furthermore, a no-slip condition is enforced for locations within ice
(fl = 0) by employing the immersed boundary method. Since there is no turbulent velocity field initialized in
the channel, and conduction is effectively one-dimensional in the y-direction due symmetry, the grid size is
chosen to be 2×96×2 to reduce computational cost. Input thermal- and flow properties are taken from Table
5.1.

5.2 validation of the freezing model 47

Table 5.4: Different lower temperatures applied in freezing simulations. Upper wall value is fixed at TU = 300 K and the
interface temperature corresponds to that of freezing water Ti = 273.15 K . (Ti −TL)/(TU −Ti) represents the
temperature fraction. Transformed temperature values are also shown, using h̃min = 0 and h̃max = 1 as the
limiting enthalpy values.

Simulation no. TL (K)
Ti −TL

TU −Ti
T̃L (IK) T̃i (10−6 IK) T̃U (10−6 IK)

1 272.83 0.0118 0 2.82 240

2 271.90 0.0464 0 10.8 244

3 270.78 0.0882 0 20.1 248

4 268.68 0.167 0 36.6 256

5 265.92 0.269 0 56.5 266

6 262.17 0.409 0 80.8 279

7 259.73 0.500 0 95.2 286

In this validation simulation, the temperature of the cold wall is varied to test the effects of different freezing
intensities. An overview of the lower wall temperatures used in this study, alongside the corresponding temper-
ature fractions, is given in Table 5.4. The top wall temperature and the bulk temperature are set at Tu = 300 K
and T0 = 285 K , respectively. The temperature at the interface is Ti = 273.15 K , which is the freezing tempera-
ture of water. Corresponding transformed temperature values are also reported in the table.

Figure 5.4a shows the result of the freezing simulation using 96 grid points in the wall normal direction. The plot
shows the steady-state ice thickness normalized by the channels half height as a function of the temperature
fraction. From the graph, deviations from the analytical expression on the order 1 grid point are discerned.
All the data points are below the analytical line, a similar discrepancy was also observed in the DDF FMLBM
model by Spek [25]. To check whether this discrepancy is an inherent problem to the DDF model or just a
resolution issue, an additional simulation is run using Ny = 200 grid points in the y-direction. From Figure 5.4b
it is observed that the scatter points have moved significantly closer to the analytical line, but still a slight error
is discerned. This indicates that by choosing a finer grid, the current model is able to reproduce the analytic
steady-state ice thickness for a system relying solely on diffusive heat transfer.

(a) Zero-velocity with Ny = 96 (b) Zero-velocity with Ny = 200

Figure 5.4: Graphs showing results for a zero-velocity steady-state freezing simulation for different cold-plate tempera-
tures, expressed on the x-axis by a temperature fraction TF r eeze−TL

TU−T f r eeze
. On the y-axis the steady-state ice thickness

normalized by the channels height is displayed.Figure (a) shows the simulation using Ny = 96 and (b) show the
simulation using Ny = 200.

48 validation of freezing model

5.3 simulations of a spatially developing ice layer
This section presents the results of simulations of a spatially developing ice layer in a turbulent channel flow. To
this end, two simulation domains are considered. The main simulation domain corresponds to the one where
the ice layer is developing. In this domain, both the flow field and the thermal field are solved for using the
DDF-FMLBM model. The situation in the main domain corresponds to the one depicted in figure 5.1 using
α = 4. Boundary conditions in the wall-normal and spanwise directions are the same as in the simulations of
the previous section. The inflow condition for the flow field is provided via the strong recycling method using
flow information from an auxiliary domain. An equithermal temperature profile is imposed at the inlet for the
thermal field. Furthermore, both the flow and thermal outlets are modeled using a zero gradient Neumann
condition. Lastly, the immersed boundary method is used to impose a no-slip condition in the ice.

The auxiliary domain is setup as depicted in figure 3.4 with α= 8. In this domain, only the flow field is solved.
Periodic boundary conditions are imposed in the streamwise- and spanwise directions and a no-slip in the
wall-normal direction . The length of the main simulation domain is chosen to be twice as small as the aux-
iliary simulation, in order to simulate more time steps. Shortening the domain length is justified, as realistic
inflow and outflow conditions allow for the natural evolution of the streamwise eddies.

Within the main simulation domain, a fixed wall temperature difference is applied. Multiple simulations are
performed with varying cold wall temperatures to investigate the effect on the developing ice layer. The same
cold wall temperature values are used as in the zero-velocity freezing experiment, these are listed in Table 5.4.
Additionally, the input parameters from Table 5.1 are used for the thermal and flow properties. This means that
the fluid being simulated has the properties of water at room temperature, but the Prandtl number of air. The
limitation in simulating higher Prandtl numbers, such as that of water, is due to inherent instability issues in
the thermal FMLBM. The simulations are run for 25 hours for a total of 3.5 million time steps. This amounts to
a total of 10 minutes of total time.

Figure 5.5 shows the spanwise-averaged ice thickness sampled at mid-length location x = 2H as a function of
time. The legend indicates which curve corresponds to each cold wall temperature. For comparison, experi-
mental data from the thesis of Collenteur [30] is included in Figure 5.5a represented by the orange markers. In
that study, ice layer growth in channel flow was experimentally investigated using different Reynolds numbers
and cold wall temperatures.

The experimental setup differs from the present numerical configuration in several important ways. For both
studies, relevant numerical input parameters and the dimensions of the domains are summarized in Table 5.5.
In the study of Collenteur, the upper wall is considered adiabatic, taking on the temperature values of the near-
wall bulk flow. Further caution should be taken when comparing the results, since the turbulent velocity field
was reported to be not sufficiently developed. Due to all the discrepancies in configuration and flow properties,
only qualitative comparisons should be made between the two studies.

Table 5.5: Comparison between numerical parameters adopted in this study and those reported in the experimental study
performed by Collenteur [30].

Quantity Symbol This study Experimental study

Domain size Nx×Ny×Nz 0.10×0.05×0.05 m 1.45×0.05×0.05 m

Reynolds number Re 5530 6181

Prandtl number Pr 0.71 13.4

Upper-wall temperature TU 300 K Adiabatic

Lower-wall temperature TL 262.2 K 263.15 K

Inlet temperature Tin 285 K 276 K

Kinematic viscosity ν 1.79×10−6 ms−2 1.70×10−6 ms−2

Specific heat (solid/liquid) cp 2.10/4.20×103 Jkg−1 K−1 2.10/4.22×103 Jkg−1 K−1

Thermal diffusivity (solid/liquid) α 9.58/2.39×10−6 m2 s−1 11.2/1.34×10−7 m2 s−1

Latent heat L 3.34×105 Jkg−1 3.33×105 Jkg−1

Velocity profile u Fully developed Not fully developed

Centerline velocity uc 0.22 ms−1 0.28 ms−1

Sampling location xs 0.05 m 0.75 m

5.3 simulations of a spatially developing ice layer 49

(a) All cold wall temperatures (b) All cold wall temperatures, smoothed ice thickness

Figure 5.5: Graphs displaying spanwise averaged ice thickness in millimeters sampled at half the channel’s length Lx = 2H
as function of freezing time in minutes. Figure (a) shows data from all temperature simulations including
results from Collenteur [30] depicted as marker points, figure (b) shows the ice thicknesses averaged over 17
grid points in the streamwise direction. The standard deviation of each measurement point of the data from
Collenteur is ±0.2mm and is depicted with error bars.

Observing the curve in Figure 5.5a, ice grows rapidly in a matter of seconds. This rapid initial growth is at-
tributed to the fact that no ice has formed yet. An ice layer acts as a thermal resistance, which inhibits heat
extraction from the fluid. When the ice layer begins to form, the freezing process slows down. After this
initial startup phase, the slope decreases and becomes somewhat constant for the cold-plate temperatures
ranging from TL = 259.7 K to TL = 268.68 till the end of the simulation. The higher lower wall temperatures
TL = 272.83 K and TL = 271.90 K flatten out, indicating that a steady-state situation is reached. The other
curves however, still show transient behavior judging by the increasing ice thickness. Furthermore, curves dis-
play a wiggling behavior when entering the constant growth phase. These oscillating effects most likely stem
from local turbulence mixing effects. This observation is further corroborated by performing a slight averaging
in the x-directions over an interval of 17 grid points to smooth the effects of local turbulent fluctuations. Figure
5.5b shows that the oscillations are reduced, indicating turbulent heat transport is responsible for the oscillat-
ing curves. Furthermore, a colder lower wall temperature leads to faster ice growth as is expected.

In the figure, the marker points represent measurements of the experimental study. The error on each mea-
surement point is ±0.2 mm, which is included in the plot with error bars [30]. As can be seen from the graphs,
measurements took place every 5 minutes, leading to a total of 3 data points between 0 to 10 minutes. As
discussed, the modeled curves show a steep increase in ice growth in the first few seconds of the freezing simu-
lations. It is hard to directly determine whether the experimental trend at the start of the freezing experiment is
similar to that of the model, since there are not enough data points to capture the behavior in this time interval.
Considering data point two and three, a linear trend can be observed especially when also taking into account
data points four and five from the work of Collenteur [30]. When drawing a line between the two points and
extrapolating this line backwards, it is observed that this extrapolated line crosses the d-axis somewhere for
d > 0 mm. This indicates that also in the freezing experiment there is a small interval where a steep ice growth
gradient is present. After this initial interval, a linear trend is observed in the experimental data. Therefore,
the behavior of freezing in the model is qualitatively similar to the experimental data. Also, no steady-state ice
thickness is observed within 10 minutes of the experiment. Because of this, no conclusions can be drawn on
whether the model correctly predicts the final ice thickness. To validate the steady-state ice thickness with the
experimental data under consideration, roughly 180 minutes of freezing time must be simulated based on the
final ice thickness achieved in Collenteur[30].

The curve that matches the temperature value of the experimental data best, is the orange curve with TL =
262.17 K which is one degree colder. From Figure 5.5a it can be observed that the orange data points display a
growth rate of around 0.32 mm/s, while the modeled curve grows at roughly 1.4 mm/s. This indicates that the
simulation predicts an ice growth rate roughly four and a half times higher than the one observed experimen-
tally.

50 validation of freezing model

To determine whether or not this increased ice growth rate is realistic considering the discrepancies in the setup
of the simulation and the freezing experiment, is discussed now. The temperature setup of the experimental
study would indicate that freezing should be stronger than the modeled case. The initial bulk temperature is
10 degrees celsius lower than the one used in simulations, which means that ice is more readily formed. Addi-
tionally, the upper wall temperature of the numerical simulation is fixed at 300 K continuously supplying heat
to the fluid, further inhibiting ice growth. Another observation is that the sampling location in the study of
Collenteur was taken 7.5 times further downstream than this study. As a result, the sampling location of this
study is much closer to the warm inlet, which results in less ice growth as when a similar sampling location as
the experimental study was chosen. Based on these observations, the actual ice growth rate should be bigger
in the experimental case.

When considering the effects of the initial flow profile on ice growth, two observations can be made. First of all,
the fluid’s velocity is faster in the experiment as compared to the model. A higher velocity means that the fluid
spends less time near the ice interface, de-accelerating ice growth in the experiment as compared to the model.
Furthermore, it was reported that the velocity profile was not yet fully developed at the sampling location in the
study of Collenteur. Therefore it is assumed that in the the model, where a fully developed profile was present,
extra velocity and heat is provided to the region near the ice’s interface, as compared to the experiment. From
this, the ice growth in the model is inhibited.

Lastly, the Prandtl number used in the model is significantly lower than in the experimental study by Collen-
teur. For a fixed kinematic viscosity, this implies that the model exhibits a higher thermal diffusivity in both
the solid and liquid phases compared to the experimental case. The primary means by which ice layer grows is
through heat conduction. Thermal conductivity is defined as λ=αρCp , thus at the same density and specific
heat, an increase in thermal diffusivity leads to an increase in ice growth rate of the model compared to the
experiment. Still, it is difficult to draw a definitive conclusion, primarily because neither the extent to which
the higher thermal diffusivity affects the simulation nor the effects of discrepancies in the experimental setup
can be quantitatively determined given the current information. It is therefore recommended to perform nu-
merical simulations that precisely models the experimental setup to better compare the model to experimental
findings. This involves for example finding a way to simulate higher Prandtl numbers and implementation of
an adiabatic boundary condition applied to the top wall.

To assess the influence of turbulence on the shape of the ice layer, two three-dimensional plots are shown in
figure 5.6. Here ice thickness, normalized by the channel’s half-height, is displayed as function of the spatial
coordinates x and z. The left corresponds to a snapshot from the simulation using TL = 270.8 K , while the
right plot shows data from simulation with TL = 262.1 K . Both snapshots are taken at t = 5 mi n. Both ice
layers show a spatially developing freezing front, whereas the ice layer is much ticker for the curve using a
lower wall temperature. Furthermore, it is evident that the graph with the lower wall temperature shows a
more uniform freezing interface. This suggest that at TL = 262.1 K , the solidification process is primarily driven
by conduction. At higher wall temperatures, however, the ice front exhibits more irregularities, which are likely
caused by variations in local heat transfer due to turbulent fluctuations.

(a) 3D ice thickness for TL = 270.8 K (b) 3D ice thickness for TL = 262.1 K

Figure 5.6: 3D surface plots of the layer thickness as a function of x and z normalized by the half channels height. Figure
(a) shows an ice layer corresponding to TL = 270.8 K and (b) displays an ice layer for a simulation with TL =
262.1 K . Snapshots are taken at t = 5 minutes.

5.3 simulations of a spatially developing ice layer 51

A peculiar effect is observed in Figure 5.7, where the magnitude of the velocity is displayed in a two-dimensional
plot in the x- and y direction. The left graph shows a velocity profile snapshot taken from the simulation with
TL = 262.1 K . As can be seen, the fluid’s velocity within the ice is non-zero. This is a non-physical result, imply-
ing that the no-slip condition is not properly enforced. The right graph in the figure shows a velocity snapshot
of the same simulation, but here periodic boundary conditions are applied. The snapshots are taken at the
same amount of time steps. Interestingly, the velocity within the ice is zero in the periodic simulations. Besides
that, it is observed that for all simulations with realistic inflow conditions, the velocity within the ice becomes
non-zero at some point during runtime. From this it can be concluded that either the turbulent inflow condi-
tion or the zero-gradient Neumann condition influences the velocity within the ice. Based on observations of
the two-dimensional velocity profiles across all wall temperatures using realistic inflow conditions, it is evident
that the velocity in the ice becomes largest near the bottom-left of the domain. This observation strongly sug-
gests that the non-zero velocity in the ice is caused by the realistic inflow condition. During the simulation, the
turbulent inflow, provided by an auxiliary simulation, does not feel the presence of the solid nodes developing
in the main domain. Since these solid nodes do not exist in the auxiliary domain, the velocity field imposed at
the inlet of the main domain remains unaffected by the growing ice layer. Therefore at the inlet, the turbulent
velocity profile is not entirely synchronized with the no-slip condition that the immersed boundary method
enforces in the main domain. This discrepancy is particularly pronounced at the first few solid nodes near
the inlet at the wall, where the imposed turbulent profile introduces more momentum than the IBM expects
and is able to suppress. As a result, velocity residuals build-up at the first solid nodes in the domain which
are streamed into the ice. Furthermore, it is observed that the velocity at the left bottom corner of the domain
grows over time, indicating that the IBM becomes less effective at imposing the no-slip condition here in the
presence of residual build-up. As a result, non-zero velocity also becomes more present over time in the ice.
All-in all, IBM is limited in its ability to enforce the no-slip condition in the presence of an inflow condition
that is not corrected for the effect of the developing ice layer. To resolve this issue, the inflow profile should be
imposed in such a way that it takes into account this evolving ice layer.

Based on the discrepancies in the turbulence statistics found near the outlet in Section 4.4, the Neumann out-
flow condition could also potentially be a source of error. It is therefore recommended to extend this research
to include outlet conditions that are more suitable for handling the wide varieties of eddies leaving the fluid
domain. For example, convective boundary conditions [26] could be used to model the outlet.

Furthermore, it should be noted that a non-zero velocity in the ice enhances heat transfer allowing more heat
flux through the ice. As a result, the ice growth rate in the simulation is increased.

(a) Realistic inflow domain (b) Periodic domain

Figure 5.7: Two-dimensional plots of the velocity magnitude plotted along the x- and y- direction. Figure (a) shows the
velocity magnitude for a realistic turbulent inflow scenario [30] at TL = 262.1 K and (b) shows the velocity
magnitude for a periodic simulation at TL = 262.1 K . Snapshot are taken at the same number of time steps.

52 validation of freezing model

5.4 conclusion
In this chapter, it has been shown that the DDF FMLBM model developed in this thesis is able resolve key
features of turbulent heat transport and phase change behavior of water. Furthermore, this validated model
was used to simulate spatially developing ice layers for different cold wall temperatures over time. From the
model, ice thickness as function of time was retrieved. The physical total time simulated corresponded to 10
minutes. Most ice layers did not show a convergence to a steady-state during this 10 minutes. The results could
only be compared to a single reference curve. The overall freezing trend between the experimental curve and
the corresponding showed similarity. However, the simulation predicts faster freezing than its experimental
counterpart. This discrepancy could not be meaningfully quantified, as many of the experimental conditions
did not match those of the simulation. It is therefore recommended to extend the model to run a numerical
simulation that mimics the experimental one.

Furthermore, it was observed that a residual velocity was present in the ice layer. Since the IBM works perfectly
fine in periodic simulation, the realistic inflow profile is suspected to introduce velocity artifacts in the ice. It
is therefore recommended to implement a mechanism so the inflow profile takes the effects of the developing
ice layer on flow field evolution into account.

6 C O N C L U S I O N S & R E C O M M E N DAT I O N S

In this thesis an a GPU-accelerated DDF FMLBM model has been created, that is able to simulate key character-
istics of turbulent flow and heat transfer phenomena using a direct numerical simulation approach. Further-
more, realistic streamwise boundary conditions have been implemented with the goal of modeling a spatially
developing ice layer under turbulent flow conditions. This final chapter will present the conclusions drawn
from this study and will provide recommendations regarding future research.

6.1 effects of grid resolution and domain length on turbu-
lent statistics

In this research, a direct numerical simulation (DNS) approach was applied to solve turbulent channel flow at
Reτ = 180 using periodic streamwise boundary conditions. To achieve a fully resolved DNS, the grid resolution
of the simulation should be fine enough to capture the effects of the smallest scales in the flow, while the grid
size should be large enough to accommodate the largest turbulent structures. Guidelines on the resolution
and minimal channel required to accurately reproduce turbulent flow effects are given by Moin et al. [13] and
Flores et al. [52]. This study was however restricted to just two datasets that could provide fully developed initial
velocity fields. The effect of grid refinement down to the Kolmogorov scale was investigated. Furthermore, the
effect of the extent of the domain length on the accuracy of the turbulence simulations was also investigated. It
was found that refining the grid size from∆+ = 2.8 to∆+ = 2.0 did not yield significantly better results, especially
considering the increased computational costs. Furthermore, it was found that increasing the extent of the
domain in the streamwise direction from Lx = 4H to Lx = 8H , yielded visibly better results when compared to
the benchmark statistics. This conclusion was in line with the minimal channel requirements set by Flores et al.
[52]. Unfortunately, the spanwise extent of the domain was still too narrow for the simulation to be considered
a fully resolved DNS.

6.2 implementation of realistic streamwise boundary condi-
tions

To simulate a spatially a developing ice layer, realistic streamwise boundary conditions are required instead
of periodic boundary conditions. It is important that the inflow condition contains all the relevant turbulent
scales in order for flow field to stay developed. To this end the temporal strong recycling method was used, in
which an auxiliary periodic simulation is run in tandem with the main simulation. A plane slice of the flow field
was taken from the auxiliary domain as an inlet condition to the main simulation. Furthermore, the stream-
wise outlet condition was modeled using a zero-gradient Neumann condition. For this model, the conclusions
on the grid resolution and spatial extent from the previous section were applied. While turbulence statistics
agreed well with benchmark data away from the outlet, notable deviations were observed at and near the outlet,
characterized by an overshoot in both the peak Reynolds shear stress and the streamwise velocity fluctuations,
which also affected nearby upstream regions. The location of the reported overshoot coincided with the buffer
layer and inner logarithmic sublayer, which are regions that contain a lot of small-scale velocity fluctuations
due to high turbulence intensity. A zero-gradient does not model these fluctuations correctly, resulting in the
formation of non-physical eddies that propagate back into the domain, affecting the simulations accuracy.

53

54 conclusions & recommendations

6.3 achieved computational speed-ups
The GPU performance has been measured via the number of MLUPS. By switching to a Julia based code, plac-
ing the solution vector of the FMLBM method in shared memory and by optimizing the matrix multiplication
strategy, significant speed-ups were achieved compared to the previous study by Spek [25].

6.4 validation of freezing model
In this chapter, the FMLBM model was extended to include a thermal distribution function employing a total
enthalpy formulation. This DDF FMLBM was then validated against a DNS benchmark study. It was reported
that heat transfer characteristics were reproduced with satisfactory accuracy, aside from a 4% under prediction
in temperature variance and a minor discrepancy in the maximum streamwise turbulent heat flux. This under-
shoot is attributed to the inadequate spanwise extent of the simulation domain. Furthermore, it was noticed
that for thermal simulations with a grid size of∆+ = 2.8 temporary thermal instabilities could arise, when initial
temperature gradients were set too high. Refining the grid to∆+ = 2.4 resolved the issue. The final validation in-
volved simulating a steady-state freezing under zero-velocity condition using the Immersed Boundary Method
(IBM). The ice layer thickness was tracked by updating the liquid fraction on each lattice node. When the wall-
normal grid resolution was sufficiently fine to make the relative impact of the inherent one-grid-node error
in the liquid fraction variable negligible, the analytical steady-state ice thickness was accurately reproduced,
indicating the effectiveness of the IBM.

6.5 spatially developing ice layer model
The main goal of this thesis was to develop a model that can simulate freezing under realistic streamwise bound-
ary conditions for varying cold wall temperatures under turbulent flow conditions. To this end, seven different
lower wall temperatures were selected to investigate the effects on the ice layer thickness and shape. In the
end, the simulation was run for 25 hours totaling 10 minutes of physical freezing time. The numerical results
were quantitatively compared to a single experimental realization from Collenteur [30]. On overall, the global
trends seen in the ice layer thickness growth over time was similar to the experimental results. However, it was
reported that the ice growth rate of the model at an almost identical Reynolds number and cold wall temper-
ature was four and a half times as fast as expected based on the reference study. Based on observations made
in this study, it is likely that this discrepancy arises due to failure of the model to capture physically sound
freezing effects rather than this discrepancy arising from the fact that an unrealistically low Prandtl number
was used. Definite conclusions are nevertheless hard to make, since no similar numerical experiment has been
performed. It was further reported that the ice shape fronts corresponding to higher cold wall temperatures
showed an increased presence of irregularities on the developing ice interface as compared to lower cold wall
temperatures. Furthermore, it was observed that a residual velocity was present in the ice layer. Since the IBM
works perfectly fine in periodic simulation, the realistic inflow condition is suspected to introduce velocity ar-
tifacts in the ice, due to its inability to capture the effects of the developing ice layer on the flow field. It is
therefore recommended to either implement a correction of the inflow profile in the main domain, or add the
effect of the developing ice layer in the auxiliary domain.

6.6 recommendations 55

6.6 recommendations
Based on the findings in this theses, suggestions are given for future research. These recommendations can be
grouped in turbulence modeling, boundary condition treatment, GPU implementation and realistic thermal
modeling.

Turbulence Modeling

1. As discussed in the introduction, Reynolds numbers within the heat exchanger can reach Reynolds num-
bers up to the order of 105 [12]. In this thesis, only a fairly low turbulent Reynolds number of 5530 was
investigated. Therefore it would be interesting to extent this model to be able to simulate higher Reynolds
numbers. In this way, more data from Collenteur [30] can be used to validate the model. However, com-
putational costs grow fast if one want to solve turbulent flows using DNS, due to the need of grid re-
finement to capture the effects of the Kolmogorov scales. An alternative way to model turbulence is by
making use of a Large Eddy Simulation (LES), which resolves only the large scales within the turbulent
flow, while modeling the effects of the small scales [31]. In this way, the the resolution requirement at
higher Reynolds numbers is relaxed.

GPU-Implementation

1. In this study a significant speed-up was reported compared to previous studies. The average parallel ef-
ficiency rate was reported to be around %45 for the flow simulations. This means there is still room for
improving the GPU-implementation. For example, it is possible to combine the collision and propaga-
tion kernels as to reduce the amount of memory overhead [60].

Boundary Conditions

1. It is recommended to implement more suitable outflow boundary conditions that allow for the natu-
ral exit of turbulence through the outlet. The zero-gradient Neumann condition does not facilitate this.
One example of a potentially suitable boundary condition is the convective boundary condition, that
retrieved accurate results in the FMLBM laminar freezing study of Bus [26] .

2. To accurately enforce the no-slip condition within the ice layer using the immersed boundary method,
the turbulent inflow condition should be corrected to account for the influence of the developing ice
layer on the flow field.

3. In this study a suitable way of providing realistic turbulent inflow to the main simulation was found by
using the strong recycling method. However, this methods involves running a tandem simulation that
has to meet same the spatial and flow requirements of the main simulation in order to be accurate. At
low Reynolds number with an efficient GPU-implementation, computation costs are feasible. However,
computational costs will skyrocket for higher Reynolds numbers. More computationally scalable meth-
ods can be used, like weak recycling methods [66].

Realistic Freezing Modeling

1. Fluid mixtures in Molten Salt Fast Reactor’s typically operate at Prandtl numbers between 7.5 ≤ Pr ≤ 20
[67], which is a lot larger than the model’s current maximum stable Prandtl number’s value at ≤ 1 [61]. A
way that the Prandtl numbers stability can be improved in LB model is proposed by Du et al [68]. Here
a scaling factor is applied to both the Prandtl number definition and the thermal equilibrium function,
leading to stable Prandtl number of up to Pr = 56.2. To the author’s knowledge, such a treatment has not
been applied yet.

2. In the experimental study of Collenteur [30] an adiabatic upper wall was used. To make better compar-
isons with the experimental reference study, it is recommended to implement an adiabatic wall condition
into the FMLBM model.

B I B L I O G R A P H Y

[1] United Nations Framework Convention on Climate Change. The paris agreement, 2024. URL https:

//unfccc.int/process-and-meetings/the-paris-agreement. Accessed July 9, 2025.

[2] NASA. Nasa analysis confirms 2023 as warmest year on record, 2024. URL https://www.nasa.gov/

news-release/nasa-analysis-confirms-2023-as-warmest-year-on-record/. Accessed: 2025-05-
03.

[3] NASA Earth Observatory. 2024 was the warmest year on record, 2025. URL https://earthobservatory.

nasa.gov/images/153806/2024-was-the-warmest-year-on-record. Accessed: 2025-05-03.

[4] World Resources Institute. World greenhouse gas emissions by sector 2021 (sunburst chart), 2021. URL
https://climatewatchdata.org/key-visualizations?visualization=4. Accessed: 2025-05-03.

[5] U.S. Energy Information Administration. International energy outlook 2023: Narrative, 2023. URL https:

//www.eia.gov/outlooks/ieo/narrative/index.php. Accessed: 2025-05-03.

[6] Generation IV International Forum. Welcome to the generation iv international forum, 2025. URL https:

//www.gen-4.org. Accessed: 2025-05-04.

[7] International Atomic Energy Agency. Nuclear Power Reactors in the World:
2024 Edition, 2024. URL https://www.iaea.org/publications/15488/

nuclear-power-reactors-in-the-world-2024-edition. Accessed 13 May 2025.

[8] J. Kenneth Shultis and Richard E. Faw. Fundamentals of Nuclear Science and Engineering. Marcel Dekker,
Inc., New York, USA, 2002. ISBN 0-8247-0842-3.

[9] SAMOSAFER Project. Concept of the molten salt fast reactor (msfr). https://samosafer.eu/project/
concept/, 2025. Accessed: 28 March 2025.

[10] Jan L. Kloosterman. Safety assessment of the molten salt fast reactor (samofar). In Thomas James Dolan,
editor, Molten Salt Reactors and Thorium Energy, pages 565–570. Woodhead Publishing, 2017. doi: 10.
1016/B978-0-08-101126-3.00020-8. URL https://doi.org/10.1016/B978-0-08-101126-3.00020-8.

[11] N. Le Brun, G. F. Hewitt, and C. N. Markides. Transient freezing of molten salts in pipe-flow systems:
Application to the direct reactor auxiliary cooling system (dracs). Applied Energy, 186(Part 1):56–67, 2017.
doi: 10.1016/j.apenergy.2016.09.099. URL https://doi.org/10.1016/j.apenergy.2016.09.099.

[12] Lelio Luzzi, Antonio Cammi, Valentino Di Marcello, and Carlo Fiorina. An approach for the modelling
and the analysis of the msr thermo-hydrodynamic behaviour. Chemical Engineering Science, 65(16):4873–
4883, 2010. doi: 10.1016/j.ces.2010.05.040. URL https://doi.org/10.1016/j.ces.2010.05.040.

[13] Parviz Moin and Krishnan Mahesh. Direct numerical simulation: A tool in turbulence research. Annual
Review of Fluid Mechanics, 30:539–578, 1998. doi: 10.1146/annurev.fluid.30.1.539.

[14] Cyrus K. Aidun and Jonathan R. Clausen. Lattice-boltzmann method for complex flows. Annual Review of
Fluid Mechanics, 42:439–472, 2010. doi: 10.1146/annurev-fluid-121108-145519. URL https://doi.org/

10.1146/annurev-fluid-121108-145519.

[15] P. L. Bhatnagar, E. P. Gross, and M. Krook. A model for collision processes in gases. i. small amplitude
processes in charged and neutral one-component systems. Physical Review, 94(3):511–525, 1954. doi:
10.1103/PhysRev.94.511.

[16] Y. H. Qian, D. D’Humières, and P. Lallemand. Lattice bgk models for navier-stokes equation. Europhysics
Letters, 17(6):479–484, 1992. doi: 10.1209/0295-5075/17/6/001.

[17] Yongguang Cheng and Hui Zhang. A viscosity counteracting approach in the lattice boltzmann bgk model
for low viscosity flow: Preliminary verification. Computers & Mathematics with Applications, 61(12):3690–
3702, 2011. doi: 10.1016/j.camwa.2010.08.078.

https://unfccc.int/process-and-meetings/the-paris-agreement
https://unfccc.int/process-and-meetings/the-paris-agreement
https://www.nasa.gov/news-release/nasa-analysis-confirms-2023-as-warmest-year-on-record/
https://www.nasa.gov/news-release/nasa-analysis-confirms-2023-as-warmest-year-on-record/
https://earthobservatory.nasa.gov/images/153806/2024-was-the-warmest-year-on-record
https://earthobservatory.nasa.gov/images/153806/2024-was-the-warmest-year-on-record
https://climatewatchdata.org/key-visualizations?visualization=4
https://www.eia.gov/outlooks/ieo/narrative/index.php
https://www.eia.gov/outlooks/ieo/narrative/index.php
https://www.gen-4.org
https://www.gen-4.org
https://www.iaea.org/publications/15488/nuclear-power-reactors-in-the-world-2024-edition
https://www.iaea.org/publications/15488/nuclear-power-reactors-in-the-world-2024-edition
https://samosafer.eu/project/concept/
https://samosafer.eu/project/concept/
https://doi.org/10.1016/B978-0-08-101126-3.00020-8
https://doi.org/10.1016/j.apenergy.2016.09.099
https://doi.org/10.1016/j.ces.2010.05.040
https://doi.org/10.1146/annurev-fluid-121108-145519
https://doi.org/10.1146/annurev-fluid-121108-145519

bibliography 57

[18] D. D’Humières. Generalized lattice boltzmann equations. Rarefied Gas Dynamics: Theory and Simulations,
159:450–458, 1992.

[19] Congshan Zhuo, Chengwen Zhong, and Jun Cao. Filter-matrix lattice boltzmann model for incompressible
thermal flows. Physical Review E, 85(4):046703, 2012. doi: 10.1103/PhysRevE.85.046703. Received 16
September 2011; published 11 April 2012.

[20] Li-Shi Luo, Wenhui Liao, Xuechen Chen, Yanhua Peng, and Weizhong Zhang. Numerics of the lattice
boltzmann method: Effects of collision models on the lattice boltzmann simulations. Physical Review E,
83(5):056710, 2011. doi: 10.1103/PhysRevE.83.056710.

[21] J. A. Somers. Direct simulation of fluid flow with cellular automata and the lattice-boltzmann equation.
Applied Scientific Research, 51(1):127–133, 1993. ISSN 1573-1987. doi: 10.1007/BF01082526.

[22] M. Rohde, D. Kandhai, J. J. Derksen, and H. E. A. van den Akker. A generic, mass conservative local grid
refinement technique for lattice-boltzmann schemes. International Journal for Numerical Methods in
Fluids, 51:439–468, 2006. doi: 10.1002/fld.1140. Published online 20 December 2005.

[23] Congshan Zhuo, Chengwen Zhong, and Jun Cao. Filter-matrix lattice boltzmann model for incompressible
thermal flows. Physical Review E, 85(4):046703, 2012. doi: 10.1103/PhysRevE.85.046703.

[24] Daniel Van Bemmelen. Influence of turbulence on the internal conductivity and total electrical resistance
of a carbon black suspension inside a semi-solid flow battery. Ma thesis, Delft University of Technology,
2023.

[25] Pieter van der Spek. Gpu-accelerated large eddy simulation of non-eutectic msfr salt freezing in turbulent
channel flow, February 2024. Master’s Thesis.

[26] Celeke Bus. Simulating the transient freezing in cooled non-eutectic molten salt channel flow, 2022. Mas-
ter’s Thesis.

[27] Rongzong Huang, Huiying Wu, and Ping Cheng. A new lattice boltzmann model for solid–liquid
phase change. International Journal of Heat and Mass Transfer, 59:295–301, April 2013. doi: 10.1016/
j.ijheatmasstransfer.2012.12.040. URL https://doi.org/10.1016/j.ijheatmasstransfer.2012.12.

040.

[28] D. R. Noble and J. R. Torczynski. A lattice-boltzmann method for partially saturated computational cells.
International Journal of Modern Physics C, 9(08):1189–1201, 1998. doi: 10.1142/S0129183198001026.

[29] Yong Mann Chung and Hyung Jin Sung. Comparative study of inflow conditions for spatially evolving
simulation. AIAA Journal, 35(2):269–274.

[30] Floor Collenteur. Experimental investigation of solidification phenomena in turbulent and laminar chan-
nel flows. Applied physics master thesis, Delft University of Technology, Delft, The Netherlands, February
2024. Supervisors: Dr. Ir. Martin Rohde, Prof. Dr. Ir. Jan Leen Kloosterman, Dr. Stephen de Roode. Daily
Supervisor: Ir. Bouke Kaaks.

[31] F.T.M. Nieuwstadt, B.J. Boersma, and J. Westerweel. Turbulence: Introduction to Theory and Applications
of Turbulent Flows. Springer International Publishing, 2016.

[32] Harrie van den Akker and Rob Mudde. Fysische Transportverschijnselen: denken in balansen. TU Delft
Open Publishing, 5th edition, 2023. ISBN 978-94-6366-680-0. doi: 10.5074/t.2023.002. URL https://doi.

org/10.5074/t.2023.002. Licensed under a Creative Commons Attribution 4.0 International license.

[33] Yongming Zhang. Critical transition reynolds number for plane channel flow. Applied Mathematics and
Mechanics, 38(10):1401–1410, 2017. doi: 10.1007/s10483-017-2245-6.

[34] V. R. Voller, M. Cross, and N. C. Markatos. An enthalpy method for convection/diffusion phase change.
International Journal for Numerical Methods in Engineering, 24(1):1–287, 1987. doi: 10.1002/nme.
1620240119. URL https://doi.org/10.1002/nme.1620240119.

[35] Timm Krüger, Halim Kusumaatmaja, Alexandr Kuzmin, Orest Shardt, Gonçalo Silva, and Erlend Magnus
Viggen. The Lattice Boltzmann Method: Principles and Practice. Springer International Publishing, 2017.
doi: 10.1007/978-3-319-44649-3.

https://doi.org/10.1016/j.ijheatmasstransfer.2012.12.040
https://doi.org/10.1016/j.ijheatmasstransfer.2012.12.040
https://doi.org/10.5074/t.2023.002
https://doi.org/10.5074/t.2023.002
https://doi.org/10.1002/nme.1620240119

58 bibliography

[36] Vijay Kotra, Sathish Kumar Konidala, N. Anusha, and R. Nageswara Rao. Recent advances and applications
of turbulent flow chromatography. Asian Journal of Chemistry, 29(4):771–778, 2017. doi: 10.14233/ajchem.
2017.20258.

[37] David C. Wilcox. Turbulence Modeling for CFD, Volume 1. DCW Industries, La Cañada, California, 3rd,
illustrated edition, 2006. ISBN 9781928729082.

[38] Sal Rodriguez. Applied Computational Fluid Dynamics and Turbulence Modeling: Practical Tools, Tips
and Techniques. Springer Nature Switzerland AG, Cham, Switzerland, 2019. ISBN 978-3-030-28690-3. doi:
10.1007/978-3-030-28691-0.

[39] Philipp Neumann, Hans-Joachim Bungartz, Miriam Mehl, Tobias Neckel, and Tobias Weinzierl. A coupled
approach for fluid dynamic problems using the pde framework peano. Communications in Computa-
tional Physics, 12(1):65–84, July 2012. doi: 10.4208/cicp.210910.200611a.

[40] Sydney Chapman, Thomas George Cowling, and D. Burnett. The Mathematical Theory of Nonuniform
Gases: An Account of Kinetic Theory of Viscosity, Thermal Conduction, and Diffusion. Cambridge University
Press, 1952.

[41] Uriel Frisch et al. Lattice gas hydrodynamics in two and three dimensions. Technical report, Los Alamos
National Laboratory (LANL), 1986.

[42] Congshan Zhuo and Chengwen Zhong. Les-based filter-matrix lattice boltzmann model for simulating
fully developed turbulent channel flow. International Journal of Computational Fluid Dynamics, 30(7-10):
543–553, Nov 2016. ISSN 1061-8562. doi: 10.1080/10618562.2016.1254777. URL https://doi.org/10.

1080/10618562.2016.1254777.

[43] K. Suga, Y. Kuwata, K. Takashima, and R. Chikasue. A d3q27 multiple-relaxation-time lattice boltzmann
method for turbulent flows. Computers Mathematics with Applications, 69(6):518–529, March 2015. doi:
10.1016/j.camwa.2015.01.002.

[44] Mees Wortelboer. Investigating gpu-accelerated double distribution function lattice boltzmann schemes
for heat transfer and phase change in turbulent flows. Ma thesis, Delft University of Technology, 2023.

[45] T. Zhang et al. General bounce-back scheme for concentration boundary condition in the lattice boltz-
mann method. Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 85(1):1–14, 2012. ISSN
1539-3755. doi: 10.1103/PhysRevE.85.016701.

[46] Nitin S. Dhamankar, Gregory A. Blaisdell, and Anastasios S. Lyrintzis. Overview of turbulent inflow bound-
ary conditions for large-eddy simulations. AIAA Journal, 56(4):1417–1442.

[47] A. Sohankar, C. Norberg, and L. Davidson. Low-reynolds-number flow around a square cylinder at inci-
dence: Study of blockage, onset of vortex shedding and outlet boundary condition. International Journal
for Numerical Methods in Fluids, 26(1):39–56, 1998. ISSN 0271-2091.

[48] The Julia Programming Language. Julia Documentation. https://docs.julialang.org/, 2025. Ac-
cessed: July 8, 2025.

[49] Tom Entes. Development and integration of a gpu-accelerated lattice boltzmann simulation tool for ther-
mal hydraulics with neutronics for multiphysics simulations in molten salt fast reactor cores. Master’s
thesis, Delft University of Technology, Delft, The Netherlands, February 2025. Supervisors: Dr. Ir. M. Ro-
hde, Dr. Ir. D. Lathouwers, Prof. Dr. Ir. B.J.H. van der Wiel, and Prof. Dr. Ir. C. Vuik.

[50] Robert D. Moser, John Kim, and Nagi N. Mansour. Direct numerical simulation of turbulent channel flow
up to r eτ = 590. Physics of Fluids, 11(4):943–945, 1999. doi: 10.1063/1.869966.

[51] John Kim, Parviz Moin, and Robert Moser. Turbulence statistics in fully developed channel flow at low
reynolds number. Journal of Fluid Mechanics, 177:133–166, 1987. doi: 10.1017/S0022112087000892.

[52] Oscar Flores and Javier Jiménez. Hierarchy of minimal flow units in the logarithmic layer. Physics of Fluids,
22(7):071704, 2010. doi: 10.1063/1.3464157.

[53] Ricardo Vinuesa, Cezary Prus, Philipp Schlatter, and Hassan M. Nagib. Convergence of numerical sim-
ulations of turbulent wall-bounded flows and mean cross-flow structure of rectangular ducts. Mec-
canica, 51(12):3025–3042, 2016. doi: 10.1007/s11012-016-0558-0. URL https://doi.org/10.1007/

s11012-016-0558-0. 50th Anniversary of Meccanica.

https://doi.org/10.1080/10618562.2016.1254777
https://doi.org/10.1080/10618562.2016.1254777
https://docs.julialang.org/
https://doi.org/10.1007/s11012-016-0558-0
https://doi.org/10.1007/s11012-016-0558-0

bibliography 59

[54] G. Amati, S. Succi, and R. Piva. Preliminary analysis of the scaling exponents in channel flow turbulence.
Fluid Dynamics Research, 24(4):201–209, 1999. doi: 10.1016/S0169-5983(99)00022-0.

[55] P. Lammers, K.N. Beronov, R. Volkert, G. Brenner, and F. Durst. Lattice bgk direct numerical simula-
tion of fully developed turbulence in incompressible plane channel flow. Computers Fluids, 35(10):
1137–1153, 2006. ISSN 0045-7930. doi: https://doi.org/10.1016/j.compfluid.2005.10.002. URL https:

//www.sciencedirect.com/science/article/pii/S0045793005001891.

[56] T. Cziesla, H. Braun, G. Biswas, and N. K. Mitra. Large eddy simulation in a channel with exit boundary con-
ditions. NASA Contractor Report 198304 / ICASE Report No. 96-18 NAS1-19480, NASA Langley Research
Center, Hampton, Virginia, USA, March 1996. Operated by Universities Space Research Association.

[57] Ao Xu and Bo-Tao Li. Multi-gpu thermal lattice boltzmann simulations using openacc and mpi. Interna-
tional Journal of Heat and Mass Transfer, 201:123649, 2023. doi: 10.1016/j.ijheatmasstransfer.2022.123649.

[58] TU Delft. Performance characteristics of the DelftBlue “gpu” nodes. https://doc.dhpc.tudelft.nl/

delftblue/perf-V100S/, September 2024. Accessed 9 Jul. 2025.

[59] Nicolas Delbosc, Jean-François Dupuis, Patrick Lallemand, and Li-Shi Luo. Optimized implementation of
the lattice boltzmann method on a graphics processing unit towards real-time fluid simulation. Comput-
ers & Mathematics with Applications, 67(2):462–475, 2014.

[60] Jonas Tölke. Implementation of a lattice boltzmann kernel using the compute unified device architecture
developed by nvidia. Computing and Visualization in Science, 13(1):29, 2010.

[61] G. Gruszczyński and Ł. Łaniewski Wołłk. A comparative study of 3d cumulant and central moments lattice
boltzmann schemes with interpolated boundary conditions for the simulation of thermal flows in high
prandtl number regime. International Journal of Heat and Mass Transfer, 197:123259, November 2022.
ISSN 0017-9310. doi: 10.1016/j.ijheatmasstransfer.2022.123259. URL http://dx.doi.org/10.1016/j.

ijheatmasstransfer.2022.123259.

[62] F. Ren, B. Song, and H. Hu. Lattice boltzmann simulations of turbulent channel flow and heat transport
by incorporating the vreman model. Applied Thermal Engineering, 129:463–471, 2018. doi: 10.1016/j.
applthermaleng.2017.10.059.

[63] H. Kawamura, H. Abe, and Y. Matsuo. Dns of turbulent heat transfer in channel flow with respect to
reynolds and prandtl number effects. International Journal of Heat and Fluid Flow, 21(5):485–491, 2000.
doi: 10.1016/S0142-727X(00)00032-5.

[64] Hong Wu, Jiao Wang, and Zhi Tao. Passive heat transfer in a turbulent channel flow simulation using large
eddy simulation based on the lattice boltzmann method framework. International Journal of Heat and
Fluid Flow, 32(6):1111–1119, 2011. doi: 10.1016/j.ijheatfluidflow.2011.07.009.

[65] F. Lluesma-Rodríguez, S. Hoyas, and M. J. Perez-Quiles. Influence of the computational domain on dns
of turbulent heat transfer up to r eτ = 2000 for pr = 0.71. International Journal of Heat and Mass Transfer,
122:983–992, 2018. doi: 10.1016/j.ijheatmasstransfer.2018.02.047.

[66] Thomas S. Lund, Xiaohua Wu, and Kyle D. Squires. Generation of turbulent inflow data for spatially-
developing boundary layer simulations. Journal of Computational Physics, 140:233–258, 1998. doi:
10.1006/jcph.1998.5882.

[67] Carlo Fiorina and et al. Thermal-hydraulics of internally heated molten salts and application to the molten
salt fast reactor. In Journal of Physics: Conference Series, volume 501, page 012030. IOP Publishing, 2014.
doi: 10.1088/1742-6596/501/1/012030.

[68] Wenhui Du, Sheng Chen, and Guoqiang Wu. A new lattice boltzmann method for melting processes of
high prandtl number phase change materials. Journal of Energy Storage, 41:103006, 2021. doi: 10.1016/j.
est.2021.103006.

https://www.sciencedirect.com/science/article/pii/S0045793005001891
https://www.sciencedirect.com/science/article/pii/S0045793005001891
https://doc.dhpc.tudelft.nl/delftblue/perf-V100S/
https://doc.dhpc.tudelft.nl/delftblue/perf-V100S/
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2022.123259
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2022.123259

A A P P E N D I X - T H E R M A L I N S TA B I L I T I E S F O R
H I G H I N I T I A L T E M P E R AT U R E G R A D I E N T

(a) Instable thermal field with ∆+ = 2.8

(b) Stable thermal field with ∆+ = 2.4

Figure A.1: Graphs showing two-dimensional temperature snapshots taken at the same number of timesteps.Figure (a) a
temperature snapshot displaying thermal instabilities on a grid with ∆+ = 2.8 ,(b) a thermal field with gridsize
∆+ = 2.4 showing no instabilities.

	1 Introduction
	1.1 Molten Salt Fast Reactor
	1.1.1 Risk of freezing

	1.2 Previous Research
	1.3 Research Questions
	1.4 Thesis Outline

	2 Theoretical background
	2.1 Fluid dynamics
	2.1.1 Mass equation
	2.1.2 Momentum equation

	2.2 Thermodynamics
	2.2.1 Thermal energy equation
	2.2.2 Phase change

	2.3 Kinetic Theory
	2.3.1 Boltzmann equation

	2.4 Turbulence
	2.4.1 What is turbulence?
	2.4.2 Turbulence Statistics
	2.4.3 Channel flow
	2.4.4 Turbulence Simulation Techniques

	2.5 Parallel Programming on A Graphical Processing Units
	2.5.1 GPU hardware architecture
	2.5.2 Parallel programming and CUDA
	2.5.3 GPU memory hierarchy

	3 Numerical Methods
	3.1 Filter-Matrix Lattice Boltzmann Method
	3.1.1 Lattice Boltzmann Method
	3.1.2 Filter-Matrix Lattice Boltzmann Method
	3.1.3 D3Q19 velocity Scheme
	3.1.4 Conversion Parameters

	3.2 Filter-matrix Thermal Lattice Boltzmann Method
	3.2.1 Double-distribution function
	3.2.2 Enthalpy-distribution
	3.2.3 Enthalpy scaling
	3.2.4 Phase interface treatment

	3.3 Boundary conditions
	3.3.1 Wall conditions
	3.3.2 Inlet- and outlet conditions

	3.4 GPU implementation
	3.4.1 Julia
	3.4.2 Computational workflow and Kernel Design
	3.4.3 Race conditions
	3.4.4 Memory coalescence
	3.4.5 Shared memory and matrix multiplication

	3.5 Simulation Requirements
	3.5.1 Direct Numerical Simulation
	3.5.2 Initialization
	3.5.3 Convergence
	3.5.4 Averaging window and sampling rate

	4 Validation of Turbulence model
	4.1 Computational setup
	4.2 Benchmark studies and Simulation overview
	4.3 Periodic simulations
	4.4 Realistic inflow simulation
	4.5 GPU-performance
	4.5.1 GPU performance indicator
	4.5.2 Simulation efficiency results

	4.6 Conclusion

	5 Validation of Freezing model
	5.1 Computational setup
	5.2 Validation of the Freezing model
	5.2.1 Benchmarking of Thermal statistics
	5.2.2 Analytical expression for steady-state freezing
	5.2.3 Validation of Phase Change Implementation

	5.3 Simulations of a Spatially Developing Ice Layer
	5.4 Conclusion

	6 Conclusions & Recommendations
	6.1 Effects of Grid resolution and Domain Length on Turbulent statistics
	6.2 Implementation of Realistic streamwise boundary conditions
	6.3 Achieved Computational speed-ups
	6.4 Validation of Freezing model
	6.5 Spatially developing ice layer model
	6.6 Recommendations

	A Appendix - Thermal instabilities for high initial temperature gradient

