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Abstract

Semi-solid flow batteries (SSFB) have emerged as a promising electrical energy storage technology.
The performance of a SSFB is influenced by the presence of conducting carbon black (CB) particles in
its electrolyte. In particular, the pumping and electrical resistance of an SSFB are significantly affected
by the CB suspension, as its conductivity and rheology depend on the flow profile. This thesis aims
to quantify the effects of a turbulent flow profile on the conductivity and electrical resistance, given the
rheological proparties of the CB suspension. As a result, it seeks to enhance our understanding of
the impact of turbulence on the electrical and pumping resistance of the electrolyte inside an SSFB.
To this end a Filter Matrix Lattice Boltzmann Method (FM-LBM) is diploid as fluid dynamics model to
accurately simulate non-Newtonian turbulent channel flow. Additionally, a model for describing the
electric potential within a variable conductor is implemented to determine the total electrical resistance.

The implementation of the FM-LBM on a GPU allowed for efficient simulation of non-Newtonian
turbulent fluid flow. The FM-LBM demonstrates good results compared to analytical data and known
Newtonian turbulent simulations. Using the power-law viscosity model to approximate the CB rheology,
the flow and shear rate characteristics of turbulent non-Newtonian channel flow is simulated. Data was
obtained for different turbulent regimes represented by a general wall shear stress Reynolds number
ReGτ and different shear-thinning rheologies represented by power index n. The simulation results
reinforced the credibility of the study by demonstrating a damped turbulent effect in line with previous
pipe flow research on turbulent shear thinning flow.

Turbulent conductivity fields are obtained by utilizing the shear rate profile and a conductivity shear
rate relation obtained from previous experimental research. For large constant channel heights the
increase in ReGτ results in an increase in conductivity. Subsequently, by using the potential model
to determine the resistance, a decrease in total resistance is found. However, a large increase in
pumping power needed to reach the turbulent state, results in a drastic decrease of overall efficiency.
This efficiency is defined by the proposed non-dimensional power number, which relates the electrical
power over pumping power to ReGτ .

Additionally, the increase in conductivity for larger Reτ is found to show different scaling in the
laminar and turbulent regime. As a results, the laminar conductivity fields, showed higher conductivity
and lower resistance than the transitional turbulent conductivity fields when a smaller channel height
is considered. It can therefore be concluded, that the characteristic shape of the laminar conductivity
profile is preferable to its turbulent counterpart.

Additional research is needed to determine the exact channel dimensions for which turbulence in
the shear thinning CB suspension can be expected. Developing a coupled electrochemical-transport
model is also recommended to get a more complete description of the effect of turbulence on the
electrochemical performance of a SSFB.
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1
Introduction

The utilization of renewable energy sources such as solar and wind has exhibited a consistent upward
trend, driven by intensified efforts by governments and industries [26][25]. In particular, solar and wind
energy production has experienced substantial growth, with a staggering thirty-fold increase in solar
power between 2010 and 2019 [74]. To meet the net zero targets set out by the IPCC, an additional
seven-fold increase in solar and wind energy production is required to supply the world with enough
carbon neutral energy sources in 2030 [68].

However, this surge in intermittent penetration of renewable energy presents a challenge from an
energy security point of view. As solar and wind power generation is dependent on weather and sea-
sonal factors, there is a need for large-scale, carbon-free energy storage to effectively balance energy
demand and the grid. The ideal energy storage system should be affordable, safe, and has a long
cycle life, while also considering factors such as power and energy density, material availability, and
recyclability. Several large-scale carbon-free energy storage technologies are currently available, in-
cluding pumped hydro storage, compressed air energy storage, hydrogen storage, and various types of
batteries. The selection of the most suitable storage method depends on factors such as the required
capacity, power output, storage duration, and geography.

Among the range of available battery options, flow batteries offer significant advantages over presently
utilized lithium-ion solutions for large-scale energy storage. In particular, ongoing advancements in re-
dox flow batteries have shown improved life cycle performance, cost effectiveness, simplified recycla-
bility and, notably, superior scalability compared to other battery technologies [46][65]. Consequently,
redox flow batteries, specifically vanadium redox flow batteries, have received substantial attention in
recent decades, with approximately 30 active installations worldwide [73].

However, the relatively high costs associated with vanadium redox flow batteries, attributed primarily
to their low energy density and expensive materials, as well as the use of potentially toxic substances,
have forced research into alternative materials for flow batteries [47]. One such alternative concept
is the semi-solid flow battery. This particular battery utilizes a solid particle suspension, resulting in
a higher energy density and the possibility of reduced storage costs. However, this concept is still
in its early stages, and the impact of internal electrical resistance and mechanical friction within the
fluid is not yet fully understood. Particularly, the potential effects of turbulence on the electrochemical
performance of such a Semi-Solid Flow Battery remain unknown.

The objective of this research is to enhance our understanding of the influence of turbulence on
the electrical and mechanical energy losses within a Semi-Solid Flow Battery. By investigating this
aspect, we aim to gain insights that will contribute to the development and optimization of Semi-Solid
Flow Battery technology.

This chapter will give an introduction to the design of the semi-solid flow battery (SSFB) and how it
compares to other battery options in section 1.1. A short overview of recent studies on the carbon black
suspension inside the SSFB as well as on the numerical simulation of turbulent non-Newtonian fluids
will be discussed in Sections 1.2 and 1.3. The research questions and the thesis outline are discussed
in section 1.4.

1
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1.1. Semi-Solid Flow Batteries
Flow batteries (FB) share similarities with conventional batteries, such as those commonly found in
smartphones, because they convert and store electrical energy into chemical energy and vice versa.
In flow batteries, electrical energy is stored through a redox reaction. This reaction takes place in the
electrolytes, which are divided by a membrane, effectively separating the two half-reactions. During
discharge, one of the halves reactions release an electron which flows from the respective half cell
through an external device to reach the other half cell. In the opposite half cell, the second half reaction
accepts the electron. During this process, an ion passes through the membrane, completing the charge
loop and enabling the flow battery to supply electrical energy to an external device.

The difference in FBs from conventional batteries is their ability to constantly supply new chemical
half-reactions to the battery by pumping fresh liquid electrolytes through it. Consequently, chemical en-
ergy can be stored in tanks situated outside the electrochemical stack, which includes the membrane
and current collectors. The capacity of the battery increases with the size of these tanks, whereas its
power is determined by the characteristics of the electrochemical stack, such as the distance between
the current collector and the membrane. This decoupling of power and capacity is a significant advan-
tage of flow batteries over conventional batteries when considering large-scale energy storage [2]. The
main advantages of FB compared to conventional batteries can be further summarized as follows [49]:

• Cost-effectiveness: Less battery components, such as membranes and current collectors, are
needed for equal capacity, reducing the total cost of implementation.

• Extended life span: Flow batteries typically have a longer lifespan compared to lithium-ion bat-
teries. Continuous flow of fresh electrolytes in flow batteries helps mitigate degradation issues,
enabling them to withstand a high number of charge-discharge cycles without significant capacity
loss.

• Safety: Flow batteries have inherent safety advantages over conventional lithium ion batteries.
Because the reactants in flow batteries are stored in separate tanks, the risk of thermal runaway
or catastrophic failure is significantly reduced.

However, the main downsides of an FB are its low energy and power density compared to conventional
batteries [22]. Specifically, the low energy density of the electrolytes requires more fluid, and therefore
a larger battery. The lower power density restricts the power output and, therefore, the charge and
discharge rates of a single cell.

A Semi-Solid Flow Battery (SSFB) aims to improve these two shortcomings of a FB by replacing the
active particle solution by an active particle suspension. Utilizing an electrolyte that incorporates solid
particles dispersed within it improves both the energy and power density of an SSFB by alleviating the
solubility limitations associated with using a solution-based electrolyte [22]. Consequently, a greater
number of active particles can be dissolved within the same fluid volume, leading to an increased energy
density. Additionally, the SSFB can exploit higher potential redox couples, such as lithium, which are
insoluble in water. This characteristic further enhances the power density of the SSFB.

The downside of a SSFB is the enhanced viscosity associated with the use of suspended active
particles in the electrolyte. To this end, the porous media used in a FB to increase the reaction rate over
the full half cells is replaced by a suspension of carbon black (CB) particles to conduct the electrons [22].
The addition of this CB suspension further changes the rheological properties of the fluid, affecting the
pumping power needed during operation. The operation performance also depends significantly on the
ability of the CB suspension to conduct electrical current [86]. The main focus of this research will be on
the way the rheological and conductivity characteristics of the CB suspension affect the performance
of an SSFB.

1.2. Previous Research on Carbon Black Suspensions
In order to facilitate reactions across the entire half-cells of an SSFB, carbon black particles are intro-
duced into the electrolyte to create an electron-conducting suspension. CB particles have the ability to
conduct electrons by aggregating into clusters. When the concentration of CB particles exceeds the
so called percolation threshold, these clusters form a network that spans the entire half cell, leading to
a significant enhancement in electronic conductivity [85][86].

The rheological and conductivity characteristics, such as the percolation threshold, maximum vis-
cosity, and electron conductivity, are found to differ between the choices of the CB particle, the con-
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Figure 1.1: Figures show the experimentally obtained conductivity (σ) and viscosity (µ) correlations to shear rate (γ̇) of a
non-aqueous CB suspension [86]. The variation in conductivity and viscosity is a result of the shear rate causing the

breakdown of CB clusters, as schematically depicted above both plots.

centration of CB and the type of liquid in which the CB particles are suspended. What all CB suspen-
sions have in common is a strong shear dependence of the rheological and conductivity characteristics
[85][86][56]. This can be explained by fluid shear breaking up the CB aggregates, which changes the
viscosity and conductivity.

For both CB suspensions it was found that this braking down of the CB clusters results in a thixotropic
rheological property. This means that the fluid becomes thinner when shear is applied over a period of
time [56]. For the non-aqueous CB suspension, a time-independent shear thinning viscosity character-
istic was also experimentally defined, linking shear rate γ̇ to viscosity µ as can be seen in Figure 1.1.
The same study also experimentally obtained the relation between conductivity σ and γ̇, as shown in
figure 1.1. Both figures also represent the dispersion of the CB clusters due to shear rate that gives
rise to the varying viscosity and conductivity.

The fact that both viscosity and conductivity depend on the shear rate results in these properties
being dependent on the flow profile of the electrolyte in a SSFB. As a result, this has sparked research
interest in investigating the impact of various flow profiles on the electrical resistance of the CB suspen-
sion and the pumping power required to push the electrolyte through the SSFB. The important findings
can be summaries as follows:

• For aqueous CB suspensions, the effects of a laminar flow profile on CB resistance were ex-
perimentally studied [63]. Depending on the type of CB particle, the conductivity increased or
decreased with an increase in flow rate.

• For non-aqueous CB suspensions the experimentally obtained shear rate relations found by
Youssry et al. [86] where used to study the effects of different laminar flow profiles on CB re-
sistance and pumping power numerically [64]. The conductivity was found to be several orders
of magnitude lower than that of the aqueous CB suspension. This was manly attributed to the
low overall conductivity of non-aqueous CB. However, the discrepancy was enlarged by low con-
ductivity bands in the middle of the channel which result from the laminar flow profile.

Both the above mentioned studies did not consider a turbulent flow profile. A turbulent flow, due
to its drastically different shear rate profile, is assumed to change the conductivity characteristics of a
CB suspension significantly. Therefore, the main focus of this research will be to study this effect. The
next section will discuss the simulating of such non-Newtonian turbulent flow profiles.
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Figure 1.2: The figure illustrates a schematic representation of different flow regimes within a channel, including laminar flow,
non-Newtonian turbulent flow, and Newtonian turbulent flow.

1.3. Previous Research on non-Newtonian Turbulence
When a flow profile transitions from the orderly laminar state to the disordered turbulent state the flow
and subsequent shear rate profile changes drastically. Furthermore, modifying the rheological char-
acteristics directly affects the turbulent flow profile, as is schematically depicted in Figure 1.2. The
changes in flow profile consequently modify the shear rate profile, resulting in a corresponding change
in the conductivity of the CB suspension within a SSFB.

Non-Newtonian turbulence is of significant interest in various industrial applications, aside from in
SSFB. In recent decades, there has been a growing focus on simulating these non-Newtonian turbulent
flows, driven by the increased computational power necessary for numerical analysis of turbulence.
This section provides a concise overview of the latest advancements in the field of non-Newtonian
turbulence simulation. Additionally, it highlights the developments related to the utilization of the Lattice
Boltzmann Method, which is the chosen numerical method for this research.

Research on Numerical Simulation of Turbulent non-Newtonian Flow
Most of the numerical work done on non-Newtonian turbulence modeling has used the Direct Numerical
Simulation method. Using either the Finite Volume Method [87][30] or the Spectral Element Method
[70][71] the turbulent flow profile was simulated using the power-law viscosity model to implement the
shear-thinning rheological characteristics. The most important findings can be summarised as follows

• The shear-thinning rheology makes the turbulence weaker as compared to Newtonian flow.
• The increased apparent viscosity away from the wall leads to the damping of the wall-normal
velocity fluctuations, therefore decreasing the wall normal turbulent energy transfer. This effect
also results in a stronger anispotropy of the turbulent structures.

• Shear-thinning turbulence also exhibits drag reduction when compared to Newtonian turbulence
resulting in lower wall friction and higher fluid velocity.

All the above mentioned studies where conducted using a pipe geometry 1. Given the squared
geometry of most SSFB designs this research will aim to improve the understanding of non-Newtonian
flow in a parallel plate geometry. Also the shear-rate profiles, needed to determine the effects of turbu-
lence on the CB conductivity remain unreported requiring further research.

Research on the Lattice Boltzmann Method
The Lattice Boltzmann Method (LBM) is a novel numerical simulation technique that employs Kinetic
Theory to solvemacroscopic fluid properties, such as turbulent flow profiles. Rather than directly solving

1As of the finalisation of this thesis a paper was published that studies the non-Newtonian flow characteristics in a closed
channel [36].
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the governing equations, the LBM simulates fluid density on a lattice using streaming and collision
processes. This method enhances parallel capabilities and facilitates ease of implementation. Hence,
the LBM will be employed as the numerical simulation technique in this research. To accelerate the
numerical simulation process, the parallel capabilities of the LBM will be harnessed by implementing it
on a Graphics Processing Unit (GPU).

The relevant research on (GPU) implementations of the LBM used for turbulent simulations can be
summed up as follows:

• GPU Implementations using the Bhatnagar-Gross-Krook (BGK)-LBM have shown a rapid growth
in simulation speed [21]. Using this method, turbulence has been simulated in a channel flow
geometry within the time span of hours [28]. However, the BGK-LBM has shown limited numerical
stability, especially for low viscosity [89]

• To improve the numerical stability the Filter-Matrix (FM)-LBM was introduced [75]. This method
has also shown success in the simulation of Newtonian turbulent channel flows [88][69].

• Previous research on non-Newtonian laminar flow has shown good stability of the FM-LBM [64].

This research will aim to combine the separate knowledge on the FM-LBM for simulating turbulence,
the utilization of a GPU for fast numerical processing and the implementation of non-Newtonian fluid
rheology in the FM-LBM. By combining these areas of knowledge, a model will be developed with the
capability to simulate turbulent non-Newtonian flow.

1.4. Research Goal
This research aims to better understand the non-Newtonian turbulent characteristics of a carbon black
suspension and through that the effects of turbulence on the internal electrical conductivity and total
resistance of a Semi-Solid Flow Battery. This section will provide an overview of the research structure
and research questions that constitute the foundation of this study.

1.4.1. Research Structure
The research can be structured in the following steps.

1. Implementation of the FM-LBM on a GPU to effectively simulate turbulent non-Newtonian channel
flow

2. Characterization and analysis of the shear rate profile arising from the turbulent flow profile within
the channel.

3. Extraction of the CB conductivity profile from the turbulent shear rate profile.
4. Calculate the potential field inside the CB conductivity profile to determine the total CB resistance.
5. Derive scaling laws for the effects of turbulence on the electrical CB conductivity and resistance

as well as the pumping power needed for operation.

1.4.2. Research Questions
The goals of this research can be expressed in the following research questions.

• How can existing LBM techniques be implemented on aGPU to simulate turbulent non-Newtonian
channel flow that resembles carbon black rheology characteristics in a reasonable time frame?

– What are the numerical design choices needed to simulate non-Newtonian turbulence using
the Direct Numerical Simulation method?

– How much can the GPU implementation enhance computational efficiency without compro-
mising on accurate results?

• What is the Reynolds number effect of shear thinning non-Newtonian viscosity on the turbulent
characteristics and specifically the shear rate profile inside a channel?

– What are the effects of the shear thinning rheology on the turbulent statistics and shear rate
profile?

– How do the non-Newtonian turbulent statistics and shear rate profiles change for different
Reynolds number turbulence regimes?
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• What is the effect of turbulence on the internal conductivity and subsequent electrical resistance
of a carbon black suspension as well as the pumping power needed to pump the suspension
trough the SSFB?

– How does the shear thinning rheology influence he electrical conductivity and Resistance of
a CB suspension in different Reynolds number turbulence regimes?

– What are the characteristic differences in conductivity and Resistance between laminar and
turbulent CB suspension flow fields?

– How do the resistance and pumping power scale with respect to different laminar and turbu-
lent flow regimes.

1.4.3. Outline
The structure of this thesis can be outlined as follows: Chapter 2 provides a theoretical background
on electrochemical modeling, non-Newtonian turbulence simulation, and GPU programming. Chap-
ter 3 describes the numerical implementation of the FM-LBM for simulating turbulent non-Newtonian
flow. Chapter 4 explains the implementation of the electrical potential model for calculating electri-
cal resistance. The results are presented in two chapters. Chapter 5 discusses the fluid flow results
with a focus on numerical benchmarking, non-Newtonian flow simulation and the resulting shear-rate
profiles. Chapter 6 explores the results of CB conductivity derived from turbulent shear rate profiles
and subsequent electrical resistance characteristics. Lastly, Chapter 7 presents the conclusions and
recommendations for further research.



2
Theory

The research question exploring the impact of turbulence on the electrical resistance of a CB suspen-
sion within a SSFB through numerical simulation, spans across multiple fields of physics. Specifically,
this research is built upon three distinct theoretical fields: electrochemical modeling, fluid modeling, and
high-performance computing. This chapter will lay out the relevant theories within these fields such to
obtain the knowledge behind the modeling of the turbulent non-Newtonian fluid flow and the electrical
potential field inside the SSFB.

Firstly, Section 2.1 will delve into the comprehensive explanation of the theory behind electrochemi-
cal performance modeling. Subsequently, the focus will shift towards the theories concerning fluid flow
simulation. In particular, Sections 2.2 and 2.3 will provide an overview of fluid modeling and the lattice
Boltzmann method (LBM) respectively. Following that, Sections 2.4 and 2.5 will delve into the theories
underlying non-Newtonian fluids and turbulence respectively. Finally, the chapter will conclude with an
overview of the relevant concepts within the field of high-performance computing and programming on
a GPU.

2.1. Electrochemical Performance of a Semi-Solid Flow Battery
This chapter will discuss the relevant theory behind the modeling of the electrochemical performance of
a SSFB. Specifically the effects of the internal conductivity of the CB suspension on the total electrical
performance will be considered.

First, the operational fundamentals of a SSFB are further explained in Section 2.1.1. Subsequently
the performance metrics important to SSFB design are discussed in section 2.1.2. Then, Section 2.1.3
will consider the different forms of internal resistance associated with a SSFB. The theory and methods
behined the electrochemical modeling will be discussed in Section 2.1.4. Finally, the theory behind the
quantification of the total electrical resistance of the CB suspension will be discussed in section 2.1.5.

2.1.1. Operational Fundamentals of a Semi-Solid Flow Battery
A Flow Battery (FB) and the more specific Semi-Solid Flow Battery both are Galvanic cells which pro-
duce electrical energy via electrochemical reactions. Figure 2.1 depicts such a (Semi-Solid) Flow Bat-
tery. In this section the working principals and differences behind both energy storing devices is dis-
cussed.

A Flow Battery (FB) is a type of battery that uses liquid active electrochemical energy carriers that
are stored outside the battery. These energy carriers are two parts of a redox couple where the re-
ducer (Red) and oxidant (Ox) together with the electrolyte make up the anodic and cathodic material
respectively. In a flow battery thesematerials are separately pumped through an ion-exchange/electron
extraction power stack. In this cell the anode and cathode fluids are separated by a membrane. This
membrane is a electrical insulator while being permeable for ions. When the cell is connected to an
external circuit the oxidation and reduction reactions take place in the anode and cathode respectively.
The electron is transported via the electrode of the anode through an external circuit to the electrode
of the cathode. To avoid positive and negative charge accumulation in the anode and cathode respec-
tively, the membrane acts as a salt bridge transferring positive cations (Ca+) and negative anions (An−)

7
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Figure 2.1: Schematic illustration of a (Semi-Solid) Flow Battery. The anodic and cathodic liquids are pumped through the
battery where the redox half reactions take place and electrical energy is produced.

from one side to the other. This closes the charge loop and makes it possible for the FB to generate
electrical power as long as new active anodic and cathodic material is pumped into the system.

The Semi-Solid Flow Batterie (SSFB) is an improvement of the above mentioned FB concept first
proposed by Duduta et al. [22]. It differs from the FB concept in two ways:

• Firstly, in a SSFB the active reducer and oxidant are solid particles suspended in a liquid elec-
trolyte. This in contrast to a FB where the active materials are dissolved in the electrolyte. The
reason for this change is the increase in energy density of the total electochemical fluid [22]. This
increase in energy density has two reasons. The first one is the freedom to use redox couples
that have a higher energy density but can not be dissolved in an electrolyte. The second reason
is the liberation of the solubility constraint of the active materials making it possible to increase
the amount of active material with respect to the electrolyte.

• The second change the SSFB design makes with respect to the the FB, has to do with the elec-
trical conductance of the electrode fluid. The FB makes use of a porous medium to increase
the conductivity and with that the reaction rate over the full flow channels/electrodes. Due to the
increased viscosity of the SSFB electrolyte solutions, the use of such a porous medium requires
much more pumping power. Therefore, in a SSFB a liquid electrical conducting medium is added
to the electrolyte. Different kinds of Carbon Black (CB) suspensions are used to generate this
conducting medium [22][86].

2.1.2. SSFB Performance Metrics
As mentioned, the SSFB has at its main advantage the decoupling of battery power and capacity. To
achieve this it does however come with a possible decrease in energy efficiency due to the introduc-
tion of a mechanical pump requiring energy. The main SSFB performance metrics, considered in this
research, are therefore:

• Battery capacity is defined as the amount of electric charge that a battery can store and deliver,
typically measured in ampere-hours [Ah]. In a SSFB this is the amount of active electrolyte
material that is capable of participating in the redox reaction.

• Battery energy efficiency, describes the percentage of electrical energy [J ] put into storage that is
later retrieved. In a SSFB the loss of efficiency is made up of mechanical losses due to pumping
as well as the internal energy losses associated with the electrochemical process.

• Battery power, represents the rate at which electrical energy is generated or consumed by a
battery system. In a SSFB the battery power is determined by the rate of the electrochemical
reactions as well as the potential losses due to internal resistance.

The current density j [A/m2] and cell voltageEcell lie at the base of the performance metrics defined
above. The cell voltage is defined as

Ecell = Eeqcell −∆Ereactions −∆Eelectic −∆Eionic (2.1)
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with Eeqcell the equilibrium potential of the redox couple without any current induced losses. The losses
that follow from the current flowing are: ∆Ereactions the voltage losses due to chemical reactions,
∆Eelectric the Ohmic losses due to electron resistivity and ∆Eionic the losses due to ion resistivity.

Reducing these losses subsequently improves the performance metrics such as battery power. The
effects of turbulence on the conductivity of the CB suspension will have a direct influence on the elec-
trical Ohmic losses ∆Eelectic and therefore on the performance metrics of a SSFB.

2.1.3. Electronic and Ionic Resistance
This section will discuss the internal electric and ionic Ohmic losses due to the electric and ionic resis-
tance.

Electronic Resistance
During the charge and discharge cycles an electronic current flows from the reduction half reaction to
the oxidation half reaction. During this path the electronic current experiences resistance resulting in
the Ohmic potential. In a SSFB this potential drop can be broken down in three parts namely the charge
transfer resistance, carbon black resistance and external circuit resistance. The internal resistance is
only made up of the first two.

The resistance linked to the electron transfer between the cation and the carbon black network is
known as the charge transfer resistance. Whilst important for overall SSFB performance, there is no
available research on how this resistance changes for flow profile characteristics [53]. Modeling this
resistance will therefor lie outside of the scope of this research.

The carbon black (CB) resistance is the resistance the electrical current experiences when flowing
through the carbon black network. The CB conductivity is the reciprocal of electrical resistivity, and is
defined by σ and has units of [mS/cm]. Using Ohm’s law, σ quantifies the local electric current density
j induced by the electric field via

j = σE (2.2)

where the electric field is defined as
E = −∇Φ (2.3)

with Φ being the electric potential inside the CB.
A conductive CB network is obtained when the CB suspension reaches a certain critical concentra-

tion. This concentration is called the percolation concentration and describes the moment for which the
CB suspension forms a electrical conducting network with σ > 0, that spans the full cell. As discussed
in section 1.2, this CB conductivity depends on a wide range of factors like the CB concentration, the
sort of CB particles used and the composition of the surrounding medium. This research will focus on
the non-aqueous Ketjen black EC-300 CB suspension with a volume fraction of ϕCB = 0.021. This
choice is made due to the optimal conductivity verses viscosity characteristics [64].

Figure 2.2 shows the CB conductivity dependence on shear rate for the CB concentrations chosen
in this study. The fit to this measurement data obtained by Youssry et al. [86] can be expressed as a
fourth order polynomial described by equation (2.4)

σ(γ̇) = exp(p0γ̇
3 + p1γ̇

2 + p2γ̇ + p3) (2.4)

with coefficients p0 = −8.07e − 3, p1 = 5.22e − 2, p2 = 0.334 and p3 = −7.55 [64]. Since it is hard
to predict what happens outside the given curve the conductivity is assumed to remain constant for
γ̇ ≤ 1e− 3 [s−1] and γ̇ ≥ 634 s−1 [s−1].

Due to the turbulent flow fields considered in this study, the shear rate field γ̇(x, t) will fluctuate
over space and time. In turn this will lead to an internal conductivity field σ(x, t). What the turbulent
characteristics are of this conductivity field and what effect this will have on the total Ohmic losses will
be the focus of this research.

Ionic Resistance
In order to maintain a balance of charge during the charge and discharge cycles of a flow battery,
ions need to transfer from one cell to the other. The ionic resistance resulting in the ionic Ohmic drop
∆Eionic can be contributed to the electrolyte and the ion exchange membrane ion resistance. The ease
at which ion’s transfer through this media is expressed by a electrolytic conductivity κ which, just as
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Figure 2.2: Non-aqueous CB suspension conductivity dependence on shear rate for different CB concentrations [86]

with the electric conductivity, relates the ionic current i to the ionic potential gradient ∇ϕ via Ohm’s law.
Depending on the type of aqueous and non-aqueous electrolytes the κ for the membrane and elec-
trolyte differ significantly. As an example, for the non-aqueous electrolyte, the ion conductivity inside
the electrolytes itself ranges from 5 to 10 [mS/cm] corresponding to several order of magnitude higher
κ than σ [84].

The ionic conductivity is multiple orders of magnitude higher than the electronic conductivity. The
electron conductivity will therefore be a limiting factor and quantifying ∆Eelectric will therefore be the
key to finding the electrochemical performance of a SSFB. This will be the focus for the rest of this
research where equation (2.4) will be used to describe the effect of turbulence and subsequent shear
rate γ̇ on the electrical conductivity and subsequent Ohmic losses.

2.1.4. Modeling Electrochemical Performance
To determine the variable electrical Ohmic losses exactly, the path of the electron needs to be known.
Therefore the location of the reaction needs to be determined. To this end the electrochemical kinetics
inside a SSFB need to be modeled.

Electrochemical Kinetics
Modeling the current-voltage relation in a SSFB starts with Faraday’s law of electrolysis

∂ρc
∂t

= neFaRj⊥ (2.5)

linking the redox reaction rate per unit area j⊥ [molm−2s−1] to the change in local current density
ρc [Cm

−3]. This is done via the number of electrons per reaction ne the active specific surface area
aR [m−1] and Faraday’s constant F [Cmol−1] [83]. In a SSFB the aR is determined by the physical
properties of the CB suspension chosen.

The reaction rate per unit area j⊥ depends on the following factors:

• Oxidant and Reductant (Ox/Red) activation potential EaOx/EaRed
• Oxidant and reductant reactant concentrations COx/CRed

• Temperature T
• Effect of activation overpotential

η = (Φ− ϕ)− (Φeq − ϕeq) (2.6)

where Φeq and ϕeq represent the electronic and ionic equilibrium potentials.
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When the reaction kinetics are assumed to be of first order and there is assumed to be one (dominant)
electron transfer involved, the Butler Volmer (BV) equation describes j⊥. This equation is expressed
as

j⊥ =
j∗

F

(
CRed

CeqRed
e

αOxFη

RGT − COx

CeqOx
e−

αRedFη

RGT

)
(2.7)

with α the charge transfer coefficient, RG the universal gas constant, T the temperature and j∗ the
exchange current density [Am−2] [4].

The BV equation links the reaction rate to the electric and ionic potentials as well the concentrations
of the reactant species. The reaction rate goes to zero when the over potential is zero and when the
concentration reactant species CRed/Ox at the electrode surface is depleted. However, both the over
potential and concentration depend on the reaction rate themselves. Combining the BV equation with
the conservation and transport equations to model the linked effects between current, potential and
concentration results a model for the full electrochemical performance of a SSFB. This will be discussed
next.

Tertiary Current Distribution
To model the full electrochemical performance of a SSFB, the effects of reaction kinetic, Ohmic resis-
tance and concentration gradients are linked in a so called tertiary current distribution [37][58]. A short
overview of this will be given here.

The reaction kinetics defined by the BV equation (2.7) can be linked to the concentration gradients
via the source therm of the convection diffusion equation

∂Cr
∂t

+∇ · (uCr) = ∇ · (Dr,eff∇Cr) +
Fzr
RT

∇(Dr,effCr∇ϕ)− aRj⊥ (2.8)

with the reactant concentration Cr(x, t) [molm−3],Dr,eff the effective diffusion coefficient [m2 s−1] [44]
and zr the charge of reactant r. In a flow battery the convection will dominate the mass transfer and
the limiting factor for the reactant concentration going to zero can easily be resolved by pumping more
reactant into the elelctrochemical stack [22].

The effect of reaction kinetics on electric potential Φ can be derived via the charge conservation
equation

∇ · j =
∂ρc
∂t

(2.9)

together with ohms law (2.2), Faraday’s law (2.5) and the definition of the electric field (2.3). These
equations combine to the non-linear differential equation

−∇ · σ(∇Φ) = neFaRj⊥(Φ) (2.10)

where the electric potential Φ(x, t) depends on space and time. When considering turbulent flow in a
SSFB the electronic conductivity σ(x, t) will also depend on space and time due to its dependence on
shear rate, as was mentioned in section 2.1.3.

Solving the tertiary current distribution is usually done using the COMSOLTM metaphysics engine
and results in the ionic and electronic potential fields and current distribution [55]. Using this the effective
CB Ohmic resistance ∆Eelectric(x) can be determined.

However, due to the combined complexities of the shear thinning rheology, variable CB conductivity
and turbulent flow profile this can not be easily implemented. This research therefore uses a simplified
method to characterise the CB Ohmic resistance. This method will be discussed next.

2.1.5. Carbon Black Resistance
To characterise the effect turbulence has on the electrical conductivity and resistance of a Carbon Black
suspension inside a SSFB, the following assumption will be made. Instead of incorporating varying
electrical current paths, all the reactions are assumed to take place at the membrane. The channel will
be considered as a variable cuboidal conductor, with a voltage difference applied from the membrane to
the current collector side, as illustrated in the figure 2.3. This hypothetical situation does not represent
the expected behaviour of a SSFB, where the reactions are expected to take place near the current
collector since the ion conductivity is way larger than the electron conductivity [64]. However, it does
provide a good measure for overall CB resistance and the effects turbulence has on it.



2.1. Electrochemical Performance of a Semi-Solid Flow Battery 12

Figure 2.3: Figure shows a single flow channel represented as a cuboidal conductor with variable conductance σ(x, t) due to
the variable shear rate γ̇(x, t). The area A represents the area of the current collector and ∆V the externally applied potential

difference.

If all the reactions take place near the membrane, the current will need to pass the full channel or
electrode height to the current collector and the reaction rate will remain zero over the full channel. The
charge conservation equation (2.9) can therefore be rewritten in the same way as (2.10) with j⊥ = 0

−∇ · σ(∇Φ) = 0 (2.11)

resulting in a potential conservation equation.
The channel with varying turbulent flow field and subsequent varying shear rate γ̇(x, t) and result-

ing varying conductivity σ(x, t) is therefore seen as a varying cuboidal conductor. The CB electronic
resistance R is computed by applying a voltage difference ∆V over the channel and using ohms law

R =
∆V

I
(2.12)

with I representing the total current. The total current can be derived by solving equation 2.11 over this
cuboidal conductor and using it to determine the current density j using equation (2.2). Finally the total
current is obtained by integrating across all the current densities via

I =

∫∫
A

σ(x)∇Φ(x)dA (2.13)

with A the area of the electrode.
To further characterise the conductivity an effective conductivity σeff is defined. Using Pouillet’s

law and the CB electronic resistance R this effective conductivity becomes

σeff =
2H

RA
(2.14)

with H the channel half height and A the area of the electrode.
Using this total channel resistance R and effective conductivity σeff the effects of the varying tur-

bulent CB conductivity fields σ(x, t) will be further characterised. How equation (2.11) is solved, using
the FVM, will be discussed in chapter 4
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2.2. Fluid Dynamics Models
To study the effect of turbulence on the conductivity characteristics of the CB suspension in a SSFB,
the turbulent non-Newtonian shear rate characteristics need to be modeled inside the flow channel.
Fluid flow modeling is a vast field in physics and in this section an overview of the basic fundamental
methods used for fluid modeling are touched upon. Specifically the different approaches used are
categorised into three physical scales, namely the microscopic, mesoscopic and macroscopic scales.
At the microscopic scale, the behavior of individual atoms and molecules is studied. In contrast, the
macroscopic scale, is concerned with the behavior of systems that are large enough to be visible to
the naked eye. The mesoscopic scale lies in between the microscopic and macroscopic scales and
studies the statistical behaviour of clusters of atoms and molecules [42].

For the macroscopic scales the continuum theory is used which leads to the well know Navier-
Stokes equations describing fluid motion. This fluid model will be discussed in Section 2.2.1. Further-
more, describing fluids in the microscopic scale is done using molecular dynamics theory whilst for the
mesoscopic scale the kinetic theory is used. The kinetic theory is discussed in Section 2.2.2.

Figure 2.4: At the microscopic scale, the behavior of individual atoms and molecules is studied. In contrast, the mesoscopic
scale focuses on the behavior of systems that are larger than individual atoms and molecules, but still small enough to be
considered as a whole. The macroscopic scale, on the other hand, concerns with the behavior of systems that are large

enough to be visible to the naked eye [42].

2.2.1. Navier-Stokes Equation
The continuum approach provides a mathematical framework for describing fluid dynamics in the scale
where the behavior of individual fluid particles can be considered negligible. This scale is characterised
by time and length scales for which the Knudsen number is smaller than Kn < 0.01 and within this
scale the fluid flow can be described using classical mechanics [43]. In the continuum description the
motion of the fluids are governed by the conservation of mass, the conservation of momentum and the
conservation of energy. These conservation assumptions result in a set of partial differential equations
known as the Navier-Stokes equations.

The Navier-Stokes equations are in fact a generalisation of Newton’s first and second law of physics.
When the mass in the system is conserved the change in density ρ is given by

∂ρ

∂t
+∇ · (ρu) = 0 (2.15)

with the second term describing the in and outflow of mass in a control volume. Using the conservation
of mass, the generalisation of Newtons second law for fluids becomes

ρ

(
∂u

∂t
+ (u · ∇)u

)
= −∇p+∇ ·

{
µ

[
∇u+ (∇u)T − 2

3
(∇ · u)I

]
+ ζ(∇ · u)I

}
+ ρg (2.16)

with u the velocity and p the pressure of the fluid [5]. The molecular diffusion in the momentum equation
is due to two different viscous forces represented by the dynamic viscosity µ and bulk viscosity ζ. These
viscosities are the proportionality factors linking the fluid resistance or shear rate to the shear stress and
compression stress respectively. In this research the viscosity wont be constant. How this so called
non-Newtonian viscosity will be represented is discussed in Section 2.4.
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Solving equation (2.16) results in the time and space dependent flow and pressure fields from which
the shear rate and subsequent CB conductivity can be determined. Different methods like the Eulerian
Finite Vollume, Finite Element and Finite Difference methods and the Lagrangian Smoothed Particle
Hydrodynamics method are all able to solve (2.16) directly [34].

2.2.2. Kinetic Theory
This study employs the Lattice Boltzmann Method, derived from kinetic theory, as an indirect approach
to solving the Navier-Stokes equation. The upcoming section will discuss the theory behind the Kinetic
Theory and the next section will dive deeper into the Lattice Boltzmann Method.

Kinetic theory is a mesoscale representation, that utilizes a particle distribution function to describe
the behavior of collections of atoms ormolecules in gasses and liquids. This particle distribution function
is represented by f(x, ξ, t) varying over space, time and velocity direction. It is defined in such a way
that f(x, ξ, t)dξdx represents the number of particles at time t in volume element dx around position
x, which have particle velocities in a range dξ around velocity direction ξ [8]. Whilst the distribution
function describes the fluid at a mesoscale, macroscopic fluid properties can be recovered from it via
equations

ρ(x, t) =

∫∫∫
f(x, ξ, t)d3ξ (2.17)

and
ρ(x, t)u(x, t) =

∫∫∫
ξ f(x, ξ, t)d3ξ. (2.18)

with u(x, t) the macroscopic velocity vector [42].
To find the evolution of the distribution function the Boltzmann equation is used. It expresses the

rate of change of the distribution function as the result of collisions between particles and the external
forces acting on them. The full Boltzmann equation is given by

∂f

∂t
+ ξ · ∇f︸ ︷︷ ︸
A

+
Fβ
ρ
∇ξf︸ ︷︷ ︸
B

= Ω(f)︸ ︷︷ ︸
C

(2.19)

where A describes the advection of f , B the body forces affecting velocity and C the source term of
f also called the collision operator [72]. This collision operator in its most general form is described
by a double integral over velocity space considering all possible outcomes of a two-particle collision. It
conserves mass, momentum and translational energy whilst making sure that the distribution function
f locally evolves towards its equilibirium feq. This Maxwell-Boltzmann equilibrium function originates
from gas theory and takes the form of

feq(x, ξ, t) = ρ

(
1

2πRT

)3/2

e−|ξ|2/(2RGT ) (2.20)

with RG the gas constant and T the temperature [51].
Using a technique called the Chapman-Enskog analysis, it can be proven that the Boltzmann equa-

tions recovers to the macroscopic fluid characteristics governed by the Navier-Stokes equations (2.16).
This will be further discussed in section 2.3.2. To solve the Boltzmann equation numerically and with
that the macroscopic fluid properties defined by the Navier Stokes equations, the Lattice Boltzmann
Method is used. In the next section this method will be elaborated on further.

2.3. Lattice Boltzmann Method
In this research the Lattice Boltzmann Method (LBM) will be used to model the turbulent non-Newtonian
flow field inside a SSFB. The LBM will be used over the more conventional CFD methods due to its
computational efficiency, inherent parallelisation potential [42] and relative ease of implementation. The
LBM does however require large amounts of data restricting the upscaling ability of the implementation.
When this restriction is overcome using aGPU, the LBMwill enable the completion of the high resolution
turbulent non-Newtonian simulations needed in this research, within a reasonable time frame [38].

In this section an overview is given on how the LBM arises from kinetic theory (section 2.3.1) and
how it links to the Navier-Stokes equation using the Chapman Enskog analysis (section 2.3.2). Finally
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the iterative process solving the Lattice Boltzmann equation is described in section 2.3.3. In the next
chapter the full implementation of the specific Filter Matrix-LBM model used in this research to solve
the LBM, will be elaborated on.

Figure 2.5: Different 3D velocity discretization schemes used to discretize the Boltzmann equation over velocity [42].

2.3.1. Discretization of the Boltzmann Equation
To find the macroscopic fluid characteristics using kinetic theory, the Boltzmann equation (2.19) needs
to be solved numerically. To do so the distribution function f is discretised over space x, time t and
microscopic velocity ξ reducing the number of degrees of freedom [42]. To discretise ξ different 3D ve-
locity schemes can be used such as D3Q15, D3Q19 and D3Q27where the velocity resolution increases
accordingly, as can be seen in figure 2.5. The discretised Lattice Boltsmann equation describes the
evolution of particle density corresponding to every discretised velocity fi(x, t). It takes the form of

fi (x+ ciδt, t+ δt)− fi(x, t) = Ωi(x, t) (2.21)

with ci the discretised velocity direction, δt the discretised time step and Ω the before mentioned col-
lision operator [42]. Ω depends in a non-linear matter on fi such that mass and momentum are con-
served, expressed by ∑

i

Ωi(fi) = 0
∑
i

ciΩi(fi) = ρg (2.22)

with ρg representing the body force [23]. The discretised Maxwellian equilibrium distribution function
(2.20) becomes [42]

feqi = wiρ

(
1 +

ci · u
c2s

+
(ci · u)2

2c4s
− u · u

2c2s

)
(2.23)

where cs represents the lattice speed of sound and wi the lattice weights. Both cs and wi differ per
velocity discretisation scheme.

2.3.2. Chapman Enskog Expansion
It can be shown that for Eulerian non-viscous flows the particle distribution fi takes the form of the
equilibrium distribution feqi [42]. To find the non-equilibrium contribution to fi that incorporates the
viscous dissipation found in the NS equation the Chapman-Enskog method is used [14].

The primary concept behind determining this fneqi = fi − feqi contribution involves representing fi
as a perturbation expansion around feqi :

fi = feqi + ϵf (1) + ϵ2f (2) + ... (2.24)

The ϵ represents a smallness parameter and acts as a label to later remove higher order terms from
the equation. This perturbed fi is substituted in the first order expansion of the LBM equation (2.21)
which takes the form of:

∂tfi = Ωi(f)− ci · ∇fi (2.25)

If the time scale ∂t and spatial scales ∇ are also expanded and only the first two orders of fi are
considered, the solution for fneqi can be found [42]. The distribution function incorporating viscous
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dissipation then becomes

fi = ρwi

(
1 +

ci · u
c2s

+
(ci · u)2

2c4s
− u · u

2c2s
− ν

[
(ci · ∇)(ci · u)

c4s
− (1 +

2

D
−B)

∇ · u
c2s

])
(2.26)

where the viscous term represents fneqi [88]. In (2.26) the B = ζ/ν represents the lattice bulk viscosity
over the local lattice kinematic viscosity. D represents the spatial dimension of the scheme. This B is
usually chosen to be equal to 1 but as discussed in chapter 3 it can be seen as a free parameter aiding
in numerical stability [88].

Using the conservation criteria for the collision operator (2.22) it can be shown that fi recovers
the full Navier-Stokes equation (2.16) up to second order accuracy [29]. Solving the LBM using an
appropriate collision operator leads to the macroscopic quantities in the continuum domain

ρ(x, t) =
∑
i

fi(x, t) ρ(x, t)u(x, t) =
∑
i

cifi(x, t) p = ρc2s (2.27)

2.3.3. Stream and Collision Step
To solve the Lattice Boltzmann equation (2.21), and therefore finding how f changes over time and
space, two iterative steps need to be taken. These two steps are the stream and collision step as
seen in figure 2.6. In the stream step the distribution functions are propagated to the neighboring
nodes along their velocity directions. In the collision step the particle densities are redistributed over
the velocitie such that mass, momentum and energy are conserved. Therefore, to close the system a
collision operator, incorporating the macroscopic fluid properties, needs to be found.

Different kinds of collision operators have been developed with the most common ones being the
Bhatnagar Gross Crook (BGK) -, Multiple Relaxsation Time (MRT) - and the Filter Matrix (FM) - Lattice
Boltzmann Method [42]. In this study, the FM-LBM will be used. In section 3.1 the derivation and
implementation of this model will be discussed.

Figure 2.6: Stream and Collision step

2.4. Non-Newtonian Fluids
As mentioned in section 2.1.3 the aqueous Carbon Black suspension inside the proposed Semi-Solid
Flow Battery design exhibits strong non-Newtonian behaviour. Non-Newtonian fluids distinguish them-
selves from Newtonian fluids by their variable molecular viscosity. This is due to the apparent viscosity
ν of such non-Newtonian (NN) fluids being dependent on the velocity gradients in the fluid and in some
cases also elastic effects [9]. In section 2.4.1, a short overview is given on the distinction between New-
tonian and non-Newtonian and the different types of NN-fluids will be discussed. After this introduction
into NN-fluids, the power-law viscosity model approximating the Carbon Black viscosity characteristics
will be introduced in section 2.4.2.
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Figure 2.7 Figure 2.8

Figure 2.7 represent the characteristics of different time in-dependent non-Newtonian fluids where figure 2.8 does so for time
dependent fluids [16].

2.4.1. Different Classes of non-Newtonian Fluids
Most fluids that consist of particles with low molecular weight like for example water, molten metals,
alcohol and dissolved salts, exhibit Newtonian flow behaviour [9]. This means that the shear stress τ
linearly scales with the shear rate γ̇

τ = µγ̇ (2.28)

with µ representingthe viscosity [16]. However, with non-Newtonian flows like suspensions (e.g. quick-
sand), emulsions (e.g. butter) and polymeric solutions (e.g. molten plastics) this shear stress and
shear rate relation is strictly non-linear. These varying viscosity characteristics, or so called rhologies,
generate non-linear stress responses in the fluid.

Depending on the type of non-Newtonian fluid, the apparent viscosity increases or decreases for
intensifying shear rates. For a specific class of fluid this shear-thickening and shear-thinning behaviour
can on top of that also change over time. The time independent non-Newtonian fluids are called purely
viscous or generalised Newtonian flows whereas the time dependent or partially time dependent non-
Newtonian fluids are called viscoelastic or elastico-viscous fluids [16].

The flow curves of the different kinds of time independent fluids can be found in figure 2.7. In this
figure it can be seen that for pseudo-plastics (also called polymeric fluids) the viscosity decreases with
increased shear rate constituting shear-thinning behaviour. For dilatant fluids the viscosity increases
with shear rate, constituting shear-thickening behaviour. In figure 2.8 the two kinds of time-dependent
fluid types are displayed. The distinction between the two is that the viscosity of thixotropic fluids
decreases over time whilst it increases over time for rheopectic fluids.

2.4.2. Power-law Viscosity Model
Non-aqueous Carbon Black suspensions exhibit strong shear-thinning and time dependent rheological
characteristics [86][56]. To study the turbulent characteristics of this fluid, only the shear-thinning be-
haviour will be considered in this research. The fluid rheology is therefore assumed to be independent
of its shear rate history. To further generalise the rheological properties a model will be used to approx-
imate the experimentally obtained viscosity dependence on shear rate. This approximation, using the
power-law viscosity model is done to study the turbulence characteristics of shear thinning fluids in a
more general way.

The power-law viscosity model is a time independent or generalised Newtonian fluid model. It uses
a stress tensor τ in a simplified way w.r.t the full Navier-Stokes equation (2.16) by leaving out the
compression therms. Here τ = 2µ(γ̇)S only depends on a variable viscosity µ(γ̇) and the pure shear
rate-of-strain tensor S = 1

2 (∇u + (∇u)T ) [70][71][30]. The shear rate γ̇ is defined as the second
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Figure 2.9: Non-aqueous CB suspension viscosity dependence on shear rate as found by Youssry et al. [86]. To different
shear rate ranges in the experimental data the power-law viscosity is fitted.

invariant of the rate-of-strain tensor

γ̇ = (2S : S)
1
2 =

√
2

(
1

2

(
∂ui
∂xj

+
∂uj
∂xi

))2

(2.29)

The power-law (Ostwald–de Waele) model is then used to express the apparent molecular viscosity in
therms of shear rate via

µ(γ̇) = ρν(γ̇) = Kγ̇n−1 (2.30)

with K representing the consistency index in units of [kg/,m−1s2−n] and n the power-law index [16].
Figure 2.9 shows how different parts of the experimentally obtained viscosity curve of the CB sus-

pension can be fitted to different power-law indices n. In the current research the non-Newtonian shear
thinning behaviour of the CB suspension will be approximated with the power-law viscosity model. The
next section will discuss how the fluid flow of the simplified CB rheology in a turbulent state will be
characterised.

2.5. Turbulence
This research aims to quantify the turbulent channel flow profile characteristics of the shear thinning CB
suspension via numerical simulation such to determine its effect on the internal resistance of a SSFB.
To quantify the influence of turbulence on the internal resistance it is important to take a look at what
turbulence is, how it can be simulated numerically and how it can be characterised statistically. This
section will give an overview of the important concepts answering these three questions. Among other
things the DNS simulation technique will be discussed in section 2.5.2. The turbulent statistics and
Reynolds number, characterising turbulent flow, will be discussed in section 2.5.3 and 2.5.4.

2.5.1. What is Turbulence
Turbulence is a complex and chaotic flow of fluid that is characterized by disordered, unpredictable and
fluctuating motion. It is a common phenomenon that can be observed in a wide range of fluid flows,
including in the atmosphere, oceans, rivers, and in the pipes and ducts that transport fluids in industrial
settings such as in a Semi-Solid Flow Battery.

In essence, turbulent flow adheres to the exact sameNavier-Stokes equations (2.16) as laminar flow.
These equations seem deterministic, meaning that if the initial conditions and boundary conditions are
known, the future behavior of the fluid can be predicted and described by a unique solution. However,
as the mathematician Hardamard pointed out in his 19 century paper, there is one extra condition that
determines if a set of partial differential equations define a fully deterministic problem [35]. The third
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condition states that for a so called well posed problem small disturbances in the initial or boundary
conditions only lead to small variations in the final solution.

Turbulence is an example of an ill-posed problem since this third condition is not satisfied. Small
perturbations in the initial and boundary condition make for small fluctuations in the flow profiles. For
turbulent flows these small-scale, fluctuations in the fluid velocity, grow and interact in a way that has
a large influence on the total flow profile. Since the boundary and initial conditions can in reality never
be described infinitely precise, the final solution for turbulent flow can therefore not be fully predicted.
Modeling turbulence therefore presents a significant challenge for scientists and engineers because it is
difficult to predict and control. Despite this, much progress has been made in understanding turbulence
and developing methods for simulating flows in the past 70 years [12]. The following sections will
cover the essential concepts in turbulence simulation and statistical characterization to facilitate the
quantification of the effects of turbulence on the flow profile of a CB suspension.

2.5.2. Direct Numerical Simulation
There are several different methods for simulating turbulent flows, including Direct Numerical Simula-
tion (DNS), Large Eddy Simulation (LES) and Reynolds-Averaged Navier-Stokes (RANS) simulation.
DNS is a high-precision method that solves the Navier-Stokes equations directly for all scales of motion.
LES is a hybrid method that captures the large-scale motion using a filtered version of the Navier-Stokes
equations, while the small-scale motion is modeled using subgrid-scale models. RANS is a statistical
approach that involves averaging the Navier-Stokes equations over numerous time and spatial incre-
ments. This process yields a set of equations that characterize the mean flow and turbulence [34].

DNS is considered the most accurate method of simulating turbulent flows since it requires no
modeling. However, this method requires the computational domain to be large enough to contain the
large scale motions of size L, while also having a high enough spatial resolution δx to describe the
small scale eddies. Furthermore the simulation time step δt should be small enough to incorporate all
the time varying fluctuations. The spatial and time resolution is described by the Kolmogorov length
ηK and time τK scales given by

ηK =

(
ν3

ϵ

) 1
3

τK =
(ν
ϵ

) 1
2 (2.31)

with ϵ representing the the average rate of dissipation of turbulence kinetic energy per unit mass, and
ν the kinematic viscosity of the fluid [40]. Since ϵ is correlated with the intensity of the turbulence, a
higher turbulent intensity requires a higher resolution. This scaling is found to be equal to

N =

(
L
ηK

)3

∝ O(Re
9
4 ) (2.32)

withN the number of grid points andRe the Reynolds number which will be further discussed in section
2.5.4.

The main reason for selecting the DNS model in this research, rather than the RANS and LES mod-
els, is as follows. Both the RANS and LES models require a turbulence model, and the incorporation
of complex rheologies in these models is not yet fully matured, particularly for the LBM. Given the com-
plex rheology of the carbon black suspension, the decision was made to therefore opt for the full DNS
approach.

2.5.3. Turbulent Statistics
As mentioned, turbulence is inherently unstable, chaotic and ill-posed meaning that every simulation
with the same boundary conditions (BC) and initial conditions (IC) generates different flow profiles. To
still be able to characterise the flow, turbulent statistics are used. With these statistical characteristics,
simulations can be compared and statements about the reliability of the results can be made. In this
research three different statistical concepts are used to compare the simulation results with literature
values namely: averages, fluctuating components and two point correlations. This section discusses
all of them.

Firstly, for the turbulent flow field quantities such as the velocity components ui, vorticity components
ωi and shear rate γ̇, the instantaneous quantity can be split into an average plus a fluctuation component.
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This so called Reynolds decomposition is given by

u = u+ u′ (2.33)

with the bar denoting the average and the fluctuation term indicated by a prime [59]. Using this decom-
position the following statistical measures are used:

• The average inside a turbulent flow field is defined as the assembly average. When the flow field
is statistically converged this assembly average can be obtained by averaging over space and
time [59]. The time average ui can be obtained by measuring the observable over a period of
time and taking the average of the readings. For the spatial average < ui > the observable is
averaged over a cross sectional area for which the same behaviour is expected. In the numerical
research that follows the assembly average, combining both spatial and temporal averages, will
be denoted with an overline.

• To quantify the fluctuations the Reynolds stress tensor is used. This component of the stress
tensor in the Reynolds Averaged Navier Stokes equation accounts for the turbulent fluctuations
in fluid momentum [59]. For constant density, the Reynolds stress is written as

τ ′′ij = u′iu
′
j , (2.34)

or the average fluctuating velocity components. Closely related to the Reynolds stress compo-
nents are the root mean square velocity fluctuation which are defined as

u′i,RMS =

√
u′iu

′
i, (2.35)

and the turbulent kinetic energy defined as

k =
1

2

(
u′u′ + v′v′ + w′w′

)
, (2.36)

where (u, v, w) correspond to the x, y, z velocity’s respectively.
• The last statistical quantity considered in this research is the two-point spectral correlation func-
tion. Where the above two statistical quantities only describe the single point turbulent statistics,
constituting first order statistics, the correlation function describes the spatial structure of turbu-
lence which is called second order turbulence [59]. The two point correlation u′i(x1)u′j(x2) is a
function the separation vector r = x1 − x2. The correlation tensor can therefore be written as

Rij(r) = u′i(x1)u′j(x2), (2.37)

and describes the longitudinal, transversal and cross-correlations in six independent components
[59]. In this research the longitudinal point correlation is used to estimate the characteristics
longitudinal length scale LL via

LL =
1

u′2

∫ ∞

0

Rxx(rx, 0, 0)drx =
1

u′2

∫ ∞

0

u′(x)u′(x+ r)dr, (2.38)

which is a good measure for the large scale turbulent motion in channel flow [59][30].

2.5.4. Reynolds Number
The Reynolds number is a dimensionless parameter that is used to characterize the relative importance
of inertial forces to viscous forces in a fluid flow. It is defined as the ratio of the fluid’s inertia to the
viscosity forces, and is given by the equation

Re =
UH

ν
, (2.39)

with U the characteristic velocity and H the characteristic length scale.
In fluid dynamics, the distinction between laminar and turbulent flow is often made based on the

value of the Reynolds number. For duct flows with Reynolds numbers below Re < 3000, the viscous
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forces dominate and the flow is typically laminar. In contrast, for larger Reynolds numbers, the inertial
forces dominate and the flow is typically turbulent. Inside the turbulent regime the Reynolds number is
also used as the single non-dimensional parameter to compare the complex dynamics of turbulent flow
with other numerical studies and experiments. By varying the Reynolds number in the simulation, the
effects of different turbulent characteristics on the internal resistance of a SSFB can also be quantified.

There are different definitions of Re numbers that all depend on the choice of characteristic velocity
and length scale. Examples are the center-line Reynolds number Rec defined with the velocity in the
center-line U = Uc or the mean velocity Reynolds number Rem with the mean velocity U = Um. In
turbulent channel flow research another common definition of the Reynolds number is the wall shear
stress turbulent Reynolds number given by

Reτ =
uτH

ν
(2.40)

with uτ the wall friction velocity which is defined as

uτ =

√
τw
ρ

(2.41)

with τw representing the statistically averaged wall shear stress [59].
For non-Newtonian fluids the viscosity can vary over space and time. It is therefore in general

unclear what viscosity scale to use when defining a non-Newtonian Reynolds number. However, for
some specific non-Newtonian viscosity models such as the power-law viscosity model used in this
research, there are viscosity scales that result in usefull Reynolds numbers. This study makes use of
the wall viscosity νw as the relevant viscosity based on a discussion of various options by [71]. This
viscosity scale results in the so called generalized Reynolds number defined as [50]

ReG =
UH

νw
=

ρUH

K
1
n τ

1− 1
n

w

(2.42)

which can be rewritten to the wall shear stress general Reynolds number

ReGτ =
ρuτH

K
1
n τ

1− 1
n

w

(2.43)

used in this research.
The generalised Reynolds number enables the Reτ number to be determined in advance by using

the relation for wall shear stress
τw = ρgH, (2.44)

which directly follows from the macroscopic force balance in a channel [71]. With the help of the wall
shear velocity and viscosity, all further parameters can be non-dimensionalised via

u+ =
u

uτ
z+ =

zuτ
νw

t+ =
tuτ
H

γ̇+ =
γ̇µw
τw

. (2.45)

Using this non-dimensionalization together with the generalised Reynolds number and statistical
quantities, the turbulent flow can be fully characterized. This enables the comparison of the turbulent
fluid flow simulation in this research with literature values.

2.6. Parallel Programming on a Graphics Processing Unit
In this last section of the theory chapter, a shift is made from the physics theory behind electrochemical
and fluid flow modeling to the computer science topic of implementing these models on high perfor-
mance computers. This shift is needed since the turbulence simulations aimed for in this research will
require a large amount of computations to comply with the resolution and domain size restrictions of
DNS. As an example, the LBM simulation by Amati et al. sequentially reads in a 0.6 GB distribution
function, changes every one of its 80 million entries and finally writes it back in memory more than a
million times [3]. If every entry in this array were changed sequentially, the total computation time for
such a simulation would span a lifetime.
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Luckily, the LBM is easily broken down into small parts that can be solved in parallel, significantly
reducing the total simulation time [42]. Although this can be done on a central processing unit (CPU),
the Graphics Processing Unit (GPU) architecture has shown three hundred-fold performance gains
compared to traditional CPU-based LBM implementations. This remarkable improvement is attributed
to the highly parallel structure of the GPU, making it an attractive alternative for CFD simulations. This
makes it a compelling alternative for Computational Fluid Dynamics (CFD) simulations [10]. This the-
oretical section aims to explore the concepts of parallel programming and the GPU architecture, with
a particular focus on the NVIDIA specific Compute Unified Device Architecture (CUDA) programming
language.

The advantages of parallel programming for the turbulent LBM simulations will be discussed in sec-
tion 2.6.1. After this, an overview of the differences between GPU’s and CPU’s programming will be
given in section 2.6.2. Section 2.6.3 will finalize this theoretical section with an overview of the NVIDIA
specific GPU hardware and software hierarchies. In the next chapter, the exact FM-LBM implementa-
tion on the GPU will be discussed using the theory discussed here.

2.6.1. Parallel Programming
Parallel programming is a technique that involves breaking down a large computational task into smaller
subtasks that can be executed simultaneously on multiple processing units, such as CPU cores or GPU
threads. This approach enables faster execution of the task by exploiting the available processing
power in parallel, rather than relying on a single processing unit to perform the entire task sequentially.

There are two main challenges when writing parallel algorithms. The first challenge is finding pos-
sibility’s of breaking up the code efficiently to allocate tasks to available resources for simultaneous
execution. Ideally, using N times more processors should result in N times faster computation or pro-
cessing of N times more data in a fixed time. However, if the algorithm steps depend heavily on each
other, they cannot take advantage of the additional resources and must run sequentially. The measure
of an effective parallel implementation is the parallel efficiency, where the ideal situation of n more pro-
cessors leading to an n-time reduction gives an efficiency of 100% [81]. Luckily the LBM is inherently
parallisable due to the collision step being totally independent of its neighbours and the stream step
only requiring information of its next neighbours. Therefore, these steps can be easily broken down
into many parts that can be executed efficiently in parallel [42].

The second challenge is making sure the program avoids race conditions. In programming, two
forms of race conditions are considered [66]. The first occurs when multiple threads that solve different
parts operate at different speeds and the algorithm that moves does not wait for both threads to finish.
A good analogy for this is a car factory where the chassis and engine, both from different assembly
lines, are combined before the engine is fully finished. The second race condition, also known as the
data race condition, is when two threads write to the same piece of data simultaneously resulting in
undefined memory corruption [80].

The programming techniques and tools used for overcoming the above-mentioned challenges in
programming parallel systems depend on the organization of processors andmemories within a parallel
computer. The next section will discuss these different parallel systems.

2.6.2. CPU vs GPU
In the realm of parallel computing, there exist three primary paradigms that take advantage of differ-
ent architectures: shared memory systems, distributed memory systems, and the GPU [24]. These
different system architectures, schematically depicted in figure 2.10, can be characterised as follows.

• Shared Memory Systems: These systems consist of a CPU with multiple cores, all connected
to the same shared random access memory (RAM). The computations are done on the CPU
cores with high clock speeds, and information is shared via vast cache memory and easy RAM
access. CPU’s also have large control units that direct the operation of the processor, increasing
the speed of the process [31]. The main advantage of shared memory systems is their ease of
programming using for example the OpenMP programming interface (API) [13]. However, the
main disadvantage is that scaling to larger systems becomes difficult due to limitations in the
number of processors that can access shared memory.

• Distributed Memory Systems: These systems try to overcome the constraints of shared mem-
ory systems by coupling many CPU’s together using a messaging passing algorithm like MPI [52].
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Using the MPI protocol, shared results as well as synchronization messages are sent between
the distributed systems through a connective network. Distributed memory systems are highly
scalable and can be used to build very large systems with thousands of processors. However,
the MPI protocol is more complex than the protocols used for shared memory systems. Also, the
parallel efficiency is very much restricted by the connection speed of the network connecting the
CPU’s [24].

• GPU systems: Apart from speeding up code using conventional processors, one can also make
use of a specialized co-processor like a GPU. Where a CPU is built to execute one task as fast
as possible, a GPU is a processor built for executing as many tasks at the same time as possible.
GPU’s are therefore made up of multiple orders of magnitude more cores than a CPU enabling
a task to be broken down in many more parts that can all be run in parallel. This drastically
improves the instruction throughput and memory bandwidth of a GPU compared to a CPU. The
drawback of a GPU w.r.t. to a CPU is the low clock speeds of the individual GPU cores as well as
a significantly lower amount of cache memory creating memory latency when code is executed
in an nonoptimal way [24]. Therefore, to fully unlock the GPU’s potential, these factors need to
be overcome with an efficient algorithm. To write this efficient algorithm for a GPU different API’s
can be used. For NVIDIA GPU’s the CUDA api is usually used [19].

Figure 2.10: Difference in Shared Memory Systems, Distributed Memory Systems and GPU Systems.

2.6.3. GPU Hierarchies
To enable the GPU’s full potential, it is vital to understand how the CUDA programming language inter-
acts with the GPU hardware. To this end we will look at three hierarchies that lay the groundwork in
understanding the NVIDIA GPU programming language, memory management and hardware specifi-
cations.

Software Hierarchy
NVIDIA GPU’s make use of the CUDA programming language. This programming language breaks
the code up into kernels that represent the code to run in parallel [19]. To manage the sequence of
execution and the memory access pattern of each execution of this kernel, the computational domain
outlined by the kernel is divided into three levels: threads, blocks, and grids. These three levels are
represented in figure 2.11 and are defined as follows.

• Threads represent a single execution of a kernel.
• Blocks represent a group of threads that are executed at the same time. For every kernel, the
number of threads per block is equal.

• Grids represent the full computational domain defined by the kernel. The thread/block/grid con-
figurations can vary across different kernels.

Memory Hierarchy
The next hierarchy that will be discussed is the memory hierarchy. Due to the small cache memory and
control unit for every thread, an non-optimal use of memory can lead to a substantial loss of parallel
efficiency. A solid understanding of the memory hierarchy is therefore vital when writing efficient CUDA
code. The most important memory forms are ordered here by thread access speed, going from fastest
to slowest [19].
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Figure 2.11 Figure 2.12

Figure 2.11 shows a schematic depiction of the thread, blocks an grid hierarchy used by the CUDA API to let the kernel know
where to access memory. The memory and hardware hierarchy of a GPU is depicted in Figure 2.12

• Register memory is the fastest memory and is private to threads.
• Shared memory is also fast memory that is accessible for all threads in one block.
• Constant and Texture memory is read only and is private to a kernel.
• Local memory is part of global memory and therefore slow. It is private to threads and is used
when the register spills.

• Global memory is slow memory private to a kernel and accessible by all threads.
• Host memory is the memory of the CPU that sends the kernel task to the GPU. The connection
between global memory and host memory is very slow.

Hardware Hierarchy
Finally everything comes together in the hardware hierarchy, as depicted in Figure 2.12. At the core
of the NVIDIA GPU architecture lie multiple streaming multiprocessors (SMs), each of which has its
own set of CUDA cores that can execute threads concurrently. These SMs have a warp scheduler
that organizes threads into groups of 32, called warps, and schedules them for execution on a set of
available CUDA cores [19]. The number of SMs and CUDA cores per SM vary per devise, but if, for
example, there are 8 cores per SM it takes 4 clock cycles to execute all 32 threads in one warp. The
warp scheduler optimizes the performance of the GPU by minimizing the number of instructions that
are stalled or idle, resulting in efficient processing of data.

To bring it all together, the CPU functions are rewritten as kernels to implement the code on a GPU.
Kernels are executed from the host CPU and can only access memory that is sent from the CPU to the
GPU. Where a function iterates over the computational domain using loops, the GPU uses the afore-
mentioned software hierarchy system built up of threads, blocks, and grids. This software hierarchy
lets the kernel know what part of global memory it needs to change, and it also determines which ker-
nels are executed at the same time in the SM and can therefore access shared memory. The kernel
takes as input the number of threads per block (tpb) and blocks per grid (bpg), which determines the
threads that are executed at the same time in an SM. Due to the large difference in memory bandwidth
between the different types of memory, determining tpb and bpg, as well as managing other memory
access, is very important. The decisions made in implementing FM-LBM on the GPU are elaborated
on in Section 3.5.
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Fluid Dynamics Model

This chapter is dedicated to the implementation of the model that utilizes the LBM to describe the
turbulent flow inside an SSFB. The CB suspensions inside this SSFB exhibits strong shear-thinning
non-Newtonian behavior, making the viscosity range for which the fluid model needs to operate large.
To accurately model this non-Newtonian turbulent behavior, the FM-LBM collision operator is used. The
FM-LBM has been shown to be more stable than MRT-LBM and BGK-LBM [89], where especially BGK-
LBM shows problems with low viscosity [15][42]. Section 3.1 discusses the specifics of the FM-LBM
model, where 3.2 discusses the initial and boundary conditions used. To be able to simulate turbulent
flows via the high-fidelity DNS method the large amounts of calculations are preformed on a GPU.
Section 3.5 explains in detail the implementation of FM-LBM on the GPU.

3.1. Filter Matrix Lattice Boltzmann Method Implementation
The Filter Matrix Lattice Boltzmann Method (FM-LBM) is a method developed by Somers et al. [75]
and subsequently extended to D3Q19 by Zhou and Zhong [89][88].

To find the collision operator Ω(Ni) that mimics the average effect of collision, the FM-LBM makes
use of a staggered grid. This staggered grid shifts the Lattice Boltzmann equation (2.21) half a grid
node and time step

fi

(
x+

ciδt

2
, t+

δt

2

)
− fi
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)
= Ωi(x, t) (3.1)

Subsequently this shifted equation is Taylor expanded around fi(x, t)
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2
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2
ci · ∇fi(x, t)±

δt

2
∂tfi(x, t) +O(δt2) (3.2)

where the higher order terms are omitted. By substituting the distribution function fi = feqi +fneqi (2.26),
found using the Chapman-Enskog expansion, into (3.2) one finds the collision operator

Ωi(f) =
ρwi
c2s

(
(ci · ∇)(ci · u)− c2s∇ · u+ ci · g

)
(3.3)

where g represents the body force term. In this derivation, the mass conservation equation (2.15) is
used, as well as a simplification of the Navier-Stokes equation in the form of ∂tρu ≈ −∇p + F =
− 1
c2s
∇ρ+ F [75].
Combining the first order Taylor expansion of the LBM equation (2.25) with the second order Taylor

expansion of the staggered LBM equation (3.2) one can now derive the FM-LBM
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Substituting (2.26) and (3.3) into this equation leads to the full distribution function:
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A reversible filter matrix Eik can be introduced to transform this distribution function to moment space
α. The distribution then takes the form of
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with ωiEik = E−1
ki and the moment space represented by:
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(3.7)

Due to the 3 dimensional nature of turbulent flow, this thesis uses the D3Q19 scheme of the FM-LBM.
As described by Zhuo and Zhong [88] the filter matrix Eik can be chosen as

Eki =



1, cix, ciy, ciz, 3c
2
ix − 1, 3c2iy − 1, 3c2iz − 1, 3ciyciz, 3cixciz,

3cixciy, 3cix
(
c2iy − c2iz

)
, 3ciy

(
c2iz − c2ix

)
, 3ciz

(
c2ix − c2iy

)
,

cix
(
3c2iy + 3c2iz − 2

)
, ciy

(
3c2ix + 3c2iz − 2

)
,

ciz
(
3c2ix + 3c2iy − 2

)
, 3
(
2c2ix − c2iy − c2iz

) (
|ci|2 − 1.5

)
3
(
c2iy − c2iz

) (
|ci|2 − 1.5

)
, 3 |ci|2

(
|ci|2 − 2

)
+ 1



T

(3.8)

and by using equations (3.8) and (3.5) the moment vectors can be expressed as:

α±
k =



ρ
ρux ± δtFx/2
ρuy ± δtFy/2
ρuz ± δtFz/2

3ρu2x + ρ (−6v ± δt) ∂xux + (2− 3B)ρv∇ · u
3ρu2y + ρ (−6v ± δt) ∂yuy + (2− 3B)ρv∇ · u
3ρu2z + ρ (−6v ± δt) ∂zuz + (2− 3B)ρv∇ · u

3ρuyuz + ρ (−3v ± 0.5δt) (∂yuz + ∂zuy)
3ρuxuz + ρ (−3v ± 0.5δt) (∂xuz + ∂zux)
3ρuxuy + ρ (−3v ± 0.5δt) (∂xuy + ∂yux)

0, k = 10, . . . , 15
0, k = 16, 17, 18



(3.9)

The α±
10−15 terms represent the six third higher order terms and can be applied with a free parameter ϑ1

via α+
10−15 = −ϑ1α−

10−15. The three fourth higher-order terms α
±
10−15 can be applied in the same way

using the free parameter ϑ2. To increase numerical stability, the same free parameters B = 3, ϑ1 = 0.8,
and ϑ2 = 0.95 are chosen as in the turbulent simulation work done in [88].

3.2. Boundary Conditions
The computational domain in which the turbulent non-Newtonian fluid flow will be simulated is repre-
sented by a rectangular channel shown in figure 3.1. The domain is bounded by periodic boundary
conditions in the span and streamwise directions and a no-slip boundary at the top and bottom of the
channel. This wall-bounded flow can represent either the anode or cathode of an SSFB when the
height of the electrode 2Hphy is much smaller than the length Lphy and widthWphy of the electrode. In
this case, it can be assumed that the inlet and electrode walls in the stream direction x and the span
direction y have very little effect on the total stream profile inside the SSFB. The current collector and
membrane, representing the top and bottom of the electrode, are assumed to be flat parallel plates.
Therefore, the surface roughness of both materials is not taken into account.
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Figure 3.1: Computational domain with periodic boundary conditions in the stream- and span-wise directions and a no slip
boundary condition at the parallel plates.

No Slip Boundary Condition
The no slip velocity boundary condition is applied to set the fluid velocity to zero at the walls. In the
lattice Boltzmann method, the bounce back method is commonly used for implementing this condition
[69]. This method reverses the velocities of particles that collide with the wall, causing them to be
reflected back to their original node. The wall is typically positioned halfway between two lattice nodes.

There are two approaches to the bounce back method: the full-way and the halfway bounce back
methods. The full-way method reflects populations directed at the wall to nodes inside the wall and
reverses their directions in the next collision step, which takes two time steps and is first order accurate
[42]. In the halfway method, particles are assumed to hit the wall halfway through the streaming step,
their directions are immediately reversed, and the streaming step is completed. This method is second-
order accurate [42].

In this research, the halfway bounce back method was preferred because of its higher accuracy.
This method is represented with the dark gray arrows in Figure 3.2.

Periodic Boundary Condition
The periodic boundary conditions, applied in this research, represent the domain that extends to infinity
in the span and stream directions. However, due to the periodicity of the domain, it is important that the
computational domain is large enough to not effect the turbulence in an unphysical manner. To this end,
the computational domain must encompass the large-scale turbulent structures. The implementation
of the periodic boundary condition is represented in the light gray arrows in figure 3.2.

3.3. Initialisation
To study the turbulent characteristics of non-Newtonian turbulence inside a SSFB, the simulation is
initiated in such a way to that it creates the desired chaotic turbulent characteristics in a sustained
matter. To this end, two things need to be done. First, a body force and viscosity characteristic are
chosen in such a way as to obtain the desired statistical characteristics represented by the Reynolds
number of general wall shear stress ReGτ . Second, a random fluctuating initial velocity field is chosen
to induce a turbulent field that is lasting. These two steps will be elaborated on in this section.

Parameter Input
First the choice of the body force and viscosity field is elaborated on. The most important factor in this
choice is the numerical stability limits that restrict the maximum velocity Umax. For the BGK method,
theoretical stability analysis results in a maximum lattice velocity of Umax ≈ 1

2
δx
δt [42], where practical

stability lies well below this value [15]. The practical stability limit for the FM-LBM is less well docu-
mented. When considering turbulent channel flow simulations, previous research has found that for an
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Figure 3.2: Halfway bounceback and periodic boundary conditions for the no slip wall boundary conditions and the stream and
span-wise periodic boundary conditions.

average maximum velocity of umax ≤ 0.13 [ls lt−1] the simulation remains stable [69][88]. Using this
umax and a desired ReGτ and power index n one can obtain the grid dimensions D, body force g and
consistency index K following the next steps:

1. Determine u+max either from known turbulent simulation data or from the known analytical solution
in the laminar regime.

2. Use u+max and the known stability constraint umax to obtain uτ using formula (2.45).
(Simulation tip) Note that we want to take uτ as high as possible since this increases t+ and,
consequently, decreases the number of simulation steps needed to obtain the desired turbulent
statistics.

3. In theory, the dimension of the gridD = (Nx, Ny, Nz) should now be determined from theReynolds
number using the approximation given by equation (2.32). However, in practice, the domain is
chosen with memory constraints in mind, as will be extensively discussed in the results chapter
6.

4. Using the chosen D and with thatH = 1
2Nz one can now determine g from uτ using the definition

of uτ (2.41) combined with the known expression of tw (2.44).
5. Using the desired ReGτ for a given n one can obtain the consistency indexK from equation (2.43).

K

ρ
=

(
1

ReGτ

)n(
Hn+2

gn−2

) 1
2

(3.10)

where K/ρ = ν for n = 1.

These steps result in all the input parameters needed for the turbulent non-Newtonian simulation.

Induced Turbulence
To create the sustained turbulent flow characteristics given the input parameters, random fluctuations
must be induced. To this end, there are two possible routes. Either a distribution function fstarti with
known turbulent channel flow characteristics is used or a fluctuating velocity together with a viscosity
and density field is used to create fstarti . The second method will be discussed here.

To build the initial velocity field, first a laminar parabolic flow field is taken with Umax = 0.12 [ls lt−1].
To this flow field, divergence free random fluctuations are added, in the form of a sum of sine waves with
random frequencies. An upper limit of these frequencies is defined, such that the velocity derivatives
over the initial velocity field do not become too high. This results in a damping effect on the turbulence
and therefore a reduced chance of inducing sustained turbulence. In practice, an upper limit of the
frequency is defined as amax2π/Ni with amax = 50.

The initial velocity field, together with the density and viscosity field, is used to first derive α−
k using

(3.9). This is then in turn used to derive the initial distribution function f−i = fstarti using equation (3.6).
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3.4. Turbulent Statistics Implementation
The turbulent fluid flow simulation consists of three distinct phases. First, the simulation is initialized,
as discussed above. Subsequently, the simulation progresses towards a statistically converged state,
and finally, the statistical quantities of the flow are determined. The process of obtaining the statistical
quantities, which are discussed in Section 2.5.3, is explained first. This knowledge is then applied to
describe the statistical convergence phase.

Mean and Root Mean Square Implementation
Firstly the method behind obtaining the statistical data will shortly be discussed. The foundation of all
turbulent statistics lies in the calculation of average values and Root Mean Square (RMS) fluctuations.
When the simulated turbulence is statistically converged, this average is obtained by average over
space and time. Therefore, this average resembles the assembled average [59].

Specifically, the average of a observable λ, for example the streamwise velocity u or shear rate γ̇,
is calculated via

λ(z) =
1

NpNxNy

Np∑
ts=tp0

Nx∑
x=0

Ny∑
y=0

λ(x, y, z,∆tpts) (3.11)

with Np representing the number of times the observable field is saved over time, tp0 the simulation
time step of the first saved field and ∆tp the number simulation steps between each save. The RMS
fluctuation of an observable λ is very similarly computed via

λ′RMS(z) =

√√√√√ 1

NpNxNy

Np∑
ts=tp0

Nx∑
x=0

Ny∑
y=0

[λ(x, y, z,∆tpts)− λ(z)]2 (3.12)

with λ the average of the observable. In all the simulations presented in this study Np = 80 and
∆tp = 10 000.

Figure 3.3: Schematic depiction of the statistical convergence check implemented in this study using the Lconv
2 error norm

represented in equation (3.13).

Statistical Convergence Implementation
To determine the simulation time tconv after which the simulation exhibits statistically converged turbu-
lence, the L2 error norm is used [42]. Specifically, the L2 error norm is used in this research to compare
the average stream-wise velocity profile ui(z) with another stream-wise velocity ui+1(z), obtained from
data later in time. If the simulation is statistically converged, the average velocity profiles ui(z) and
ui+1(z) will be the same, and the convergence error norm Lconv2 will go to zero.
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The averaged velocities are obtained using equation (3.11) with Np = Nc and ∆tp = ∆tc. The
convergence error norm can therefore be defined as

Lconv2 (ti+2) :=

√∑
z [ui(z, ti → ti+1)− ui+1(z, ti+1 → ti+2)]

2∑
z u

2
i+1(z)

(3.13)

where ti+1 = ti +Nc∆tc. This is also schematically depicted in figure 3.3.

3.5. GPU Implementation
In this research, the programming language Python is chosen because of its large user base, producing
a vast amount of documentation, making the implementation of the code easier. However, Python,
being a high-level language, is very slow compared to compiled languages like C++ and FORTRAN.
To achieve the computational speed needed for the DNS simulations required in this study, the NUMBA-
CUDA package is used to compile the GPU part of the code to C-CUDA, using just in time compilation
(jit), after which it can be read by the GPU [45]. After compilation it is found that the performance
of NUMBA-CUDA and C-CUDA are comparable, when implemented correctly [62]. The Python GPU
implementation proposed here therefore has the potential to fully make use of the GPU power. To
optimize the NUMBA-CUDA implementation of the FM-LBM on the GPU, some important decisions
were made. These decisions will be elaborated on here. A full overview of the algorithm, used to
simulate the turbulent non-Newtonian fluid flow, will be given in the next section.

Optimizing Threads per Block and Blocks per Grid
The first optimization has to do with optimizing the use of GPU resources. To this end the following
optimization was made:

• The threads per block (tpb) and blocks per grid (bpg) orientation is taken as such that the tpb are
a multiple of 32. As mentioned, the warp scheduler clusters 32 threads to be executed on the
cores of one streaming multiprocessor (SM), and the SM runs one block at a time [19]. Therefore,
if the tpb are not a multiple of 32 some cuda cores will remain unoccupied within one warp cycle.
Specifically, in this research the tpb is oriented to be tpb = (Nx,1,1).

Optimizing Memory Handeling
Due to the large amount of data involved in a LBM simulation, GPU implementations for the LBM usually
run into memory bandwidth problems [77][61]. Therefore, the memory access patterns are optimized
in the following way’s:

• The transmission of data between the CPU and GPU is minimized due to the low memory band-
width connection between these devise memories. Specifically, data is only sent to the GPU
using the call .to_device() at the beginning while data is only sent back to the CPU using
.copy_to_host() for saving scalar data Np times.

• To optimize thememory use on theGPU, the kernel makes use of register memory where possible.
However, to save the moment array of length Nc=19 inside the kernel, local memory is used with
the call cuda.local.array(Nc, float32). The input float32 sets the datatype of this array to
single precision. This is done for all the variables and array’s inside the full simulation. To this
end, the numpy array types are specified using numpy.single.

• The scalar and distribution values are stored in one-dimensional arrays. As stated by [42] the
overhead of C type n-dimensional arrays is badly handled by a GPU compared to 1-dimensional
arrays. Therefore, it is faster to store the 3D scalar and 4D distribution data in a 1-dimensional
array.

• The data is stored in such a way that consecutive reads from memory read consecutive parts
inside the array. This is called memory coalescence and significantly increases the simulation
speeds for GPUs [42][21]. To this end, the Array of Structuresmethod or AoS is imitated by placing
theNc velocity distributions next to each other in the array since these velocity distribution values
are summed over at every node. Due to the tpb orientation in the streamwise direction, the Nx
nodes are clustered next since the threads executing these collision steps are run successively
inside a block. To this end, f(x, y, z, i) is represented in a 1-dimensional array as f(i + Nc x +
NcNx y +NcNxNy z) and a scalar λ(x, y, z) is represented as λ(x+Nx y +NxNy z).
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• Optimizing the memory access pattern is more difficult for the stream step, as this step is inher-
ently uncoalesced [28]. Different papers present methods of using shared memory to optimize
the memory access pattern of threads inside a block [67][77]. However, these methods create a
large overhead in the implementation and reduce the scalability of the final code. Therefore, this
research used global memory to store the post-stream distribution function fposti . To increase the
access speed of this slow memory, the pull-in stream method is used over the push-out stream
method. Since, as found by [82], reading from uncoalessed memory is faster than writing to
uncoalessed memory [21]. The pull-in method is used.

Avoiding Race Conditions
Lastly, to avoid race-conditions when executing the code in parallel on the GPU, the code makes use
of kernel synchronization. Within the CUDA API the call cuda.synchronize() is used to let the next
kernel execution wait before all the threads from the previous kernel are executed.

3.6. FM-LBM GPU Algorithm
The full DNS procedure of the FM-LBM implementation of a body force driven turbulent non-Newtonian
flow on the GPU is defined in the following Algorithm. With this algorithm the turbulent flow profile of
the CB suspension inside a SSFB will be simulated. A schematic depiction of this algorithm is also
found in figure 3.4.

1. Initialisation [CPU] Either using a fstart = f−i from a previous simulation or by following the
initialisation steps to build f−i in CPU memory.

• Build initial fluid properties: velocity ui, velocity derivatives ∂ui/∂xi, density ρ and viscosity
ν fields from random fluctuations.

• Build α−
k using fluid properties and equation (3.9).

• Build f−i from α−
k using equation (3.6).

2. Kernel Activation’s [CPU] To activate the Kernels the following steps are taken.

• Send all the scalar array’s holding the fluid properties as well as the distribution array’s
holding f−i , f

post
i , f+i to GPU global memory.

• Define tpb and bpg
• Invoke the activation of both the Stream and Collide kernel for every simulation time step Nt

3. Stream Step Kernel [GPU] To let the neighboring nodes interact with each other the following
stream steps are taken per node.

• Pull in the neighboring distribution functions into the fposti array in global memory.
• Apply bounce back and or periodic boundary condition if the node sits on a boundary.

After the Stream Kernel is done working through all the threads, the simulation is synchronised.
4. Collision Step Kernel [GPU] The kernel is executed for every point in the computational domain

using the tpb and bpg to define its location in memory.
a Pre-collision moment [GPU] α−

k is obtained from f−i using equation (3.7) where the information
of f−i is extracted from global memory and α−

k is stored in local memory.
b Fluid properties extraction [GPU] From α−

k and the viscosity of the previous time step, the new
kinematic viscosity ν, density ρ and the fluid velocities and their derivatives are extracted using
equation (3.9)

• Density is obtained from α−
0

• Velocity components are extracted from α−
1−3

• Velocity divergence components are extracted from α−
4−6 and cross derivatives are extracted

from α−
6−9.

• Using the velocity derivatives the shear rate γ̇ is derived using equation (2.29)
• With γ̇ the viscosity is determined and updated in global memory

c Post-collisionmoment [GPU] Using the fluid properties and α−
k the post-collision moment vector

α+
k is built according to (3.9) and saved in the local memory of α−

k .
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d Post-collision distribution [GPU] Using equation (3.6) the post-collision distribution f+i is up-
dated in global memory.

5. Convergence Check [GPU/CPU] Running steps 3 and 4 until the simulation is statistically con-
verged, which is checked using the Lconv2 error norm (3.13).

• [GPU] Add the streamwise velocity profile u from register memory to the global array usum
every ∆tc simulation time steps.

• [GPU] When the velocity profiles are summed upNc times, the usum array is sent from global
to CPU memory.

• [CPU] The average velocity profile ui+1(z) is made from usum using equation (3.11).
• [CPU] The Lconv2 is determined using ui+1(z) and the average velocity ui(z) determined
Nc∆tc time steps back using equation (3.13).

• [CPU] Average velocity is saved to CPU memory to be used for next Lconv2 calculation.

6. Data Save [GPU/CPU] After the simulation is statistically converged (tp0 ) steps 3 and 4 are re-
peated to obtain the statistical data. To this end the fluid properties are savedNp times to a binary
file once every ∆tp simulation time steps.

• [GPU] Load the fluid properties from register memory to global memory.
• [GPU] Synchronise the kernel such to make sure all the threads have updated the scalar
array in global memory.

• [GPU] Send the filled scalar array’s to the CPU ram memory.
• [CPU] Save the scalar array in a binary file on the host hard drive.
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Figure 3.4: Algorithm for the FM-LBM implementation on a GPU. CPU-memory is represented in green, Global-memory is
represented in red and Local/Register-memory is represented in orange



4
Electric Potential Model

This chapter is devoted to the implementation of the model describing the electric potential inside the
Carbon Black suspension flowing through a SSFB. As described in section 2.1.5 the electric potential
equation (2.11) takes the form of a conservation law. The Finite Volume Method (FVM) is a well-
established technique used to solve differential equations related to conservation laws in various fields
such as fluid dynamics, heat transfer, and electromagnetics. Therefore, this research will use the FVM
to solve the electric potential to determine the total internal resistance and effective conductivity inside
an SSFB. Specifically, the 2D method developed by Peters will be extended to 3D to incorporate the
3D effects of turbulence [64].

In this chapter, we will elaborate on how the FVM is used to solve the potential equation inside an
SSFB under equilibrium conditions. First, section 4.1 will describe how the governing conservation law
is rewritten to Finite Vollume form and discretized in 3D. Then, section 4.2 will discuss the geometry
and how the boundary conditions are implemented. How this system of equations is converted to
matrix form and solved is then discussed in section 4.3. Finally, section 4.4 describes how the internal
resistance is obtained from the electric potential.

4.1. Finite Volume Discetization
With finite volume models, the computational domain is divided into contiguous, non-overlapping vol-
ume elements. Differential equations are integrated over each control volume and then converted to
surface integrals using the divergence theorem to calculate the flow of the integrand through the sur-
face of the control volume. The flux emerging from a control volume is equal to the flux entering its
adjacent control volumes, creating a system of interdependent equations [27].

Applying the divergence theorem on the potential equation one obtains∫∫∫
Ω

∇ · σ∇Φd3r =

∫∫
∂Ω

σ∇Φ · n̂dA =

∫∫
∂Ω

J · n̂dA =

∫∫
∂Ω

∂ρc
∂t

· n̂dA = 0 (4.1)

Figure 4.1: Figure shows the cuboidal finite volume element for discretization of the potential equation (left). It also shows the
neighboring volume elements are oriented w.r.t. the central element represented by P .

34
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where Ω represents a volume element. The meaning behind this charge conservation equation is that
if a closed surface does not enclose any current source (∂ρc/∂t = 0), the sum of the currents passing
through that surface will be zero [32].

If one takes a cuboidal volume elements (Figure 4.1), the above mentioned surface integral can be
rewritten to a sum of 6 surface integrals integrating the potential gradient over the faces of the cube.
Equation (4.1) can in that case be rewritten as

0 =

∫∫
∂ΩEeast

σ
∂Φ

∂x
dydz −

∫∫
∂ΩWast

σ
∂Φ

∂x
dydz

+

∫∫
∂ΩNorth

σ
∂Φ

∂y
dxdz −

∫∫
∂ΩSouth

σ
∂Φ

∂y
dxdz

+

∫∫
∂ΩTop

σ
∂Φ

∂z
dxdy −

∫∫
∂ΩBottom

σ
∂Φ

∂z
dxdy

(4.2)

where every element represents the electric current flowing through the respective surface of the finite
volume element.

For the discretization, the gradient of the electric potential is approximated on the surface using the
central difference method. Since the information of σ is also stored in the center of the finite volume
its value at the surface of the element also needs to be approximated. To do so, linear interpolation
is used. As an example, the east surface element of a volume element is expanded. In the example,
P represents the internal point and the W its west neighboring vollume element. The discretization of
this surface element becomes∫∫
∂ΩWest

σ
∂Φ

∂x
dydz = −

t∫
b

n∫
s

σ(xw)
∂Φ(xw)

∂x
dydz =

σ(xP) + σ(xW)

2

Φ(xW)− Φ(xP)

∆x
∆y∆z+O(∆x2) (4.3)

where the lower case characters represent the position at the respective boundary of the volume el-
ement. In this derivation the volume elements are assumed to be equally sized, since this choice is
made in the rest of this research. The order of accuracy results from the truncation error that originates
from the central difference method [27].

Apart from this choice and the choice of a square volume element, this discretization is fully general.
How it is implemented in the domain representing a SSFB is discussed in the next section.

Figure 4.2: The flow channel and surrounding domain discretized using the finite volume method with equally sized volume
elements.

4.2. Geometry and Boundary Conditions
This section will discuss the geometry and subsequent boundary conditions used to solve the potential
field in a SSFB. As discussed in section 2.1.5, the assumption is made that all the reactions take place
near the membrane. The flow channel can therefore be seen as a cuboidal conductor with variable
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conductivity σ(x, t). The flow profile in the anode and the cathode is assumed to be the same, making
the σ(x, t) profile in both half cells the same. As a result, the internal potential field Φ will also be equal
up to a minus sign. Therefore, only one cell will be considered and the external potential will be applied
over the conducting plate located at the top representing the current collector and a insulator plate at the
bottom representing the membrane. Since the potential will not be zero around the cuboidal conductor,
a surrounding medium is added to close the system of equations. A schematic 2D representation of
the computational domain is found in figure 4.2. In the figure four distinct regions are found:

• Flow channel (blue): This region represents the flow channel where the turbulent LBM simu-
lation generates a shear rate profile (γ̇LBM ) which results in a spatial conductivity profile σ =
σ(γ̇LBM (x)).

• Parallel plates (dark gray): The top plate represents the membrane where the reactions take
place, resulting in Φ = Vmax and the bottom plate represents the cathodic current collector set to
zero potential Φ = 0. The potential difference is therefore ∆V = Vmax The height or thickness of
the plate is defined by Tplate

• Surrounding medium (white): In this region the conductivity is set to a small value σ → 0 to
ensure that all current flows from the membrane through the channel to the current collector. The
thickness of the surrounding medium is defined as Tsur. The number of volume elements in every
direction Nsur will remain constant making Tsur

∆x = Tsur

∆y = Tsur

∆z .
• Boundary (light gray): The potential at the boundary is set to zero (Φ = Vboundary = 0). In reality,
the electric potential approaches zero at Tsur → ∞. However, for large channel dimensions, the
edges of the channel have a small contribution to the total potential inside the channel. Therefore,
the solution will remain accurate for a relatively small numbers Tsur.

To discretize the domain, the cuboidal volume elements will have dimensions equal to ∆x = Nx

L ,
∆y =

Ny

W and ∆z = Nz

2H where L, W , H represent the flow channel length, width and half height, re-
spectively. The dimensions of the channel (Nx, Ny, Nz) are determined by the LBM turbulent flow sim-
ulations. The entire computational domain will have dimension (Ni, Nj , Nk) that includes the thickness
of the plates and the surrounding medium. Indices i, j and k will represent the Cartesian coordinates
x, y, z respectively.

At the domain boundary or at the boundary of the parallel plates, the Dirichlet boundary condition
is used. In this case the potential gradient from equation (4.2) at the finite volume face neighboring the
boundary is approximated using either the forward or backward difference method. The conductivity
at this surface is not interpolated but chosen to be equal to that of the internal volume point, since the
conductivity outside the boundary is not defined. If the same example is chosen as in the previous
section but with the west neighborW being a domain boundary node the discretization becomes

∫∫
∂ΩWest

σ
∂Φ

∂x
dydz = −

t∫
b

n∫
s

σ(xw)
∂Φ(xw)

∂x
dydz = σ(xP)

Vboundary − Φ(xP)

∆x/2
∆y∆z +O(∆x) (4.4)

where the order of accuracy results from the truncation error that originates from the forward or back-
wards difference method [27]. The total discretization of this node then becomes

0 =
σi,j,k + σi+1,j,k

2

Φi+1,j,k − Φi,j,k
∆x

∆y∆z + σi,j,k
Vboundary − Φi,j,k

∆x/2
∆y∆z

+
σi,j,k + σi,j+1,k

2

Φi,j+1,k − Φi,j,k
∆y

∆x∆z +
σi,j,k + σi,j−1,k

2

Φi,j−1,k − Φi,j,k
∆y

∆x∆z

+
σi,j,k + σi,j,k+1

2

Φi,j,k+1 − Φi,j,k
∆z

∆x∆y +
σi,j,k + σi,j,k−1

2

Φi,j,k−1 − Φi,j,k
∆z

∆x∆y

(4.5)

Now we know how and where potential equation is discretized, the next section will elaborate on
the solution method for the system of linear equations.

4.3. Solution Method
For each cuboidal volume element the integral over the 6 faces described by (4.2) can be discretized
using equations (4.3) and (4.4) for, respectively, an internal and boundary neighbor. Since this equation
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is linked to its six neighboring elements due to their shared boundary surface, the equations form a
system of linear equations. This system can be written in the form a matrix equation

MU = b (4.6)

where M represents a square matrix of size (NiNjNk) × (NiNjNk) and U and b represent vectors of
length (NiNjNk). U is defined as such that U(iNj Nk + j Nk + k) represents Φ(i, j, k).

The equation for every volume element is translated into six components of M and one component
of b. As an example equation (4.5) will be converted to matrix form resulting in the next entry’s

M(iNj Nk + j Nk + k ; iNj Nk + j Nk + (k + 1)) = t =
σi,j,k + σi,j,k+1

2

∆x∆y

∆z

M(iNj Nk + j Nk + k ; iNj Nk + j Nk + (k − 1)) = b =
σi,j,k + σi,j,k−1

2

∆x∆y

∆z

M(iNj Nk + j Nk + k ; iNj Nk + (j + 1)Nk + k) = n =
σi,j,k + σi,j+1,k

2

∆x∆z

∆y

M(iNj Nk + j Nk + k ; iNj Nk + (j − 1)Nk + k) = s =
σi,j,k + σi,j−1,k

2

∆x∆z

∆y

M(iNj Nk + j Nk + k ; (i + 1)Nj Nk + j Nk + k) = e =
σi,j,k + σi+1,j,k

2

∆y∆z

∆x

(4.7)

M(iNj Nk + j Nk + k ; iNj Nk + j Nk + k) = −
(
t+ b+ s+ w + e+ σi,j,k

2∆y∆z

∆x

)
b(iNj Nk + j Nk + k) = −Vboundary + σi,j,k

2∆y∆z

∆x

This method generates a non-Singular banded matrix M. For which the solution vector U represents
the potential field.

To solve the system of equations, package pyamg is used. Specifically, pyamg implementation of
the Ruge-Stuben applied multigrid (AMG) method is used [6]. This choice is made due to its ability to
solve large-scale linear systems with optimal performance whilst not requiring any information about
the structure of the matrix.

4.4. Electric Field and Resistance
Using the potential field derived from solving the linear set of equations, the total internal resistance
and effective conductivity of the CB suspension inside a SSFB can be calculated. From Ohms law it
can be seen that the flux through every face of the volume element is equal to the current flowing from
one volume to the other. The current flowing through the top of a volume element can therefore be
discretized via

jz(xt) = −
(
σi,j,k−1 + σi,j,k

2

)(
Φi,j,k − Φi,j,k−1

∆z

)
∆x∆y (4.8)

where xt is the location of the interface between the volume elements.
Since there is no charge generated inside the channel and the charge is conserved, the net current

flowing through the channel is constant. This means that the total current I can be computed by
summing up the current density’s jz between any contour in between the two parallel plates. The total
resistance Rtot can then be easily computed using the potential difference between the parallel plates
∆V . Using Pouillet’s law (2.14) the effective conductivity can then easily be computed with A the area
of the parallel plates defined as A = L ·W



5
Validation and Turbulent Flow Results

The goal of this research is subdivided into two parts. The first part has the goal of correctly simulating
the turbulent flow profile of a shear-thinning fluid. The second part will use the data from these turbulent
simulations to determine conductivity of the carbon black suspension, after which the electrical resis-
tance will be determined by computing the potential inside the SSFB. This chapter will focus on the
first part where the non-Newtonian flow will be simulated using the FM-LBM implemented on a NVIDIA
GPU.

Before the proposed simulation method is used to obtain the turbulent non-Newtonian channel flow
characteristics, this chapter describes how the setup was validated. The validation results of the LBM
on the GPU are described in Sections 5.1, 5.2 and 5.3, respectively, dealing with the computational
performance, laminar flow, and Newtonian turbulent flow results. After benchmarking the LBM imple-
mentation, it is used to simulate turbulent non-Newtonian power-law flow in section 5.4. In section 5.5
the shear rate profiles of the Newtonian and non-Newtonian simulations are analyzed, setting the stage
for Chapter 6, in which the conductivity measurements which will make use of these shear rate profiles.

5.1. Parallel Performance GPU
In this study the FMLBM-D3Q19 model was implemented in Python. The code was parallelized using
the CUDA programming language such that it could run on a NVIDIA Tesla A100 GPU, facilitated by
Delft Blue [1]. The hardware specifications of the GPU used are given in table 5.1. In this section, the
performance of this code, used for all other simulations, is elaborated on.

To obtain the computational performance of the current FM-LBM GPU implementation, the simula-
tion speed is tested on a square grid. As a measure of kernel performance, the number of 106 grid
nodes that are updated per second (MLUPS) is used to compare the data with other LBM GPU imple-
mentations. As can be seen in Figure 5.1, the simulation performance plateaus around 350 MLUPS.
As expected, the simulation time for a simulation step where all the scalar parameters are stored on
CPU memory is approximately 2 times slower.

Since the LBM is constrained by its memory use, the theoretical maximum LUPS can be derived
from

LUPS =
BWSDK

NA
(5.1)

with BWSDK the memory bandwidth of the GPU, and NA the number of memory accesses per node
[21]. In this research NA is made up of one read and one write of the Nc = 19 distributions for the
stream and collide kernel. Additionally, the viscosity array is read from and written to every collision
step to enable the non-Newtonian behaviour. Using single precision, every element is made up of 4
bytes, so in total NA = 4 · (4 · 19 + 2 · 1) = 312 bytes for a single node. As found by Delbosc et al.
[21] and Forslund et al. [28] the BWSDK is approximately 70% percent of the theoretical bandwidth
of BW = 1134 GB/s. Using the maximum theoretical performance derived from equation (5.1) and
comparing it to the simulation performance found in Figure 5.1 the bandwidth utilization of this setup
equates to 14%. This is significantly lower than the 80% utilization other GPU-LBM implementations
find [21][38][28].

38
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Table 5.1: GPU hardware specifications [60], [1]

NVIDIA Tesla V100S

CUDA cores 5120
dims of grid (231, 216, 216)
dims of block (210, 210, 26)
Number of SM 4
Blocks per SM 32
Threads per SM 2048
Register per SM (K) 64
Shared mem. per block (KiB) 64
Local mem. per thread (KiB) 512
Global memory (Gb) 32
Memory bandwidth (GB/s) 1134

Figure 5.1: FM-LBM GPU implementation performance for a
3D channel of size N3 nodes, where N ∈ [32, 352].

Performance of a simulation step with and without saving the
simulation data is show in million lattice updates per second

(MLUPS).

The main difference between the current GPU implementation compared to the more efficient algo-
rithms implemented in [21][38][28] is the use of shared memory in the stream and collision step. As
mentioned in section 2.6.3, this significantly improves the speed at which the kernels inside a block
can access the neighboring and intrinsic distributions. This therefore explains the low bandwidth uti-
lization of the current algorithm. Further research can implement shared memory use by either writing
an MPI-like algorithm [21][38] or using an Open Graphics Library OpenGL [28].

The second disadvantage of the current setup is the implementation of the stream and collision
steps in separate kernels. This separation doubles the number of reads from and writes to global
memory, resulting in the total number of MLUPS more than halving when compared to an algorithm
that combines the stream and collide step in one kernel. Specifically, this combined algorithm achieves
a plateau of approximately 900 MLUPS. However, this combined kernel suffered from unresolved race
conditions, resulting in a slight asymmetry in the channel flow simulations. This error rendered this
implementation ineffective.

Given the low efficiency, the current algorithm is not an optimal LBMGPU implementation. However,
the current GPU implementation is around three times faster than the simulation speed found by the
FM-LBM implementation reported by Zhuo and Zhong on a 16-core CPU [88]. Given this improvement,
which results in a maximum simulation time of approximately 30 hours, the current setup is adequate
for the goal of this research.

5.2. Laminar Flow
To determine if the proposed FM-LBM implementation on the GPU constitutes basic physical behavior,
the algorithm is first benchmarked in the laminar regime. To this end, the laminar flow simulation of
the shear-thinning CB rheology, approximated by the power-law viscosity model, is compared with
analytical solutions. This section will discuss these laminar flow results or power-law simulations with
decreasing power-law index n.

Analytical Solution
Due to the computational domain with its periodic boundary conditions in the x and y directions, the
simulation represents a parallel plate configuration which stretches to infinity in the x and y directions.
For this situation, the analytical solution can easily be computed from (2.16) by assuming steady state,
fully developed flow in the streamwise direction. For a body force g driven flow this solution takes the
form of

uax(z) =

(
n

n+ 1

)(ρg
K

) 1
n
(
H

n+1
n − |H − z|

n+1
n

)
(5.2)

with the channel half height H. The rheology is represented in the power-law index n and the consis-
tency index K of equation (2.30). Using this equation for the streamwise velocity profile the analytical
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solution for the shear rate can be derived from (2.29) via

γ̇(z) =

√(
∂ux
∂z

)2

=
g

K
(|H − z|)

1
n (5.3)

and with the definition of the power-law (2.30) also the analytical solution for the viscosity ν becomes

ν =
K

ρ

( g
K

(|H − z|)
1
n

)n−1

. (5.4)

Input Parameters and Convergence
To check if the LBM represents shear thinning fluids in a physical way, 5 simulations with decreasing
power index n are simulated on the GPU and compared to the analytical solutions mentioned above.
These simulations are executed for a Reynolds number equal to Rec = 100 that is well in the laminar
range [59] and a domain equal to D = (5, 5, 128). This domain is chosen such to equal the number of
wall normal gridpoints Nz that will be used in the turbulent simulations. The consistency index K and
stream-wise body force g are chosen in such a manner that Rec = 100 and Umax = umaxx = 0.1 [ls lt−1]
via

g =

(
n+ 1

n

)
U2
max

HRec
K =

(
UmaxH

Rec(gH)
n−1
n

)n
(5.5)

where the restriction of maximum lattice speed Umax is important since FM-LBM becomes unstable for
much higher lattice velocities [42].

Another important input parameter choice is the cut-off viscosity. Since, for shear thinning fluids,
the viscosity goes to infinity when γ̇ → 0, a choice for νmax needs to be made. Different νmax were
tested, and for νmax > 20 [ls2 lt−1] the simulation showed good agreement with the analytical solutions.
Therefore, to be safe, the maximum viscosity was set to νmax = 50 [ls2 lt−1] for the remainder of
all shear thinning simulations. Another choice of input parameter that remains constant for all other
simulations is the lattice density ρ0 = 1 [ls−3].

The simulations are initiated with zero velocity, after which, driven by the body force, the flow profile
transitions to a steady state. To determine whether the simulation converges to this steady state, the
Lconv2 convergence method is used as stated in section 3.4. Specifically, equation (3.13) is used with
Nc = 1 and ∆tc = 1 [lt] to determine the difference between u(z, t) and u(z, t+∆t). The simulation is
taken to represent a steady state for Lconv2 ≤ 10−7.

Results and Discussion
Figures 5.2 show the simulation results of the laminar power law simulations with power law indices
n ∈ [1, 0.7, 0.5, 0.3, 0.1]. To characterise the total error of the simulated profiles with respect to their
respective analytical solutions the L2 error norm is used in the following form

L2(t) :=

√∑
z (ϕn(z, t)− ϕa(z, t))

2∑
z ϕ

2
a(z, t)

(5.6)

where ϕ is either the velocity, shear rate or viscosity [42]. In Figures 5.2a, 5.2c and 5.2d it can be seen
that the converged steady-state simulations match the analytical solutions represented in the dotted
lines. Especially the viscosity 5.2c and shear rate 5.2d profiles match their analytical solutions very
well with a maximum error L2 = 5.5 10−5.

For the stream-wise velocity profiles, the L2 errors are approximately a factor 10 higher than for the
ν and γ̇ profiles. To further sort out where this deviation comes from, the local error of the analytical
solution w.r.t. the simulation is determined via

ϵu(z) =

∣∣∣∣un(z)− ua(z)

ua(z)

∣∣∣∣ ∗ 100% (5.7)

for which the results are shown in Figure 5.2b. Two things can be noticed from these errors.
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• Firstly, the error increases near the boundary and this effect is larger for lower power indices
n. This behavior can be explained by the second-order accuracy of the half-way bounce-back
method. Since for a lower n the shear rate increases near the wall, the error also increases. As a
result of this error behavior, the velocity profiles uy and uz are not zero. These non-zero velocity
profiles generate the error in the ux velocity profile seen in Figure 5.2b. However, since the error
is still relatively small and especially the L2 error norm value speaks of a very good agreement,
this wall error is not considered a problem.

• Second, for n = 0.1 there is an increased error in the middle of the channel. This can be explained
by the cut of viscosity being a bit too low for such a shear-thinning fluid. However, since in further
research n > 0.6, νmax = 50 is found to be sufficient, as this error only occurs for n = 0.1.

In conclusion, the laminar simulations show good agreement with the analytical solutions, especially
for n > 0.6. For the number of gridpoints chosen, the local error in the velocity profile remains within
1% at the boundary for moderately small n > 0.6 and the shear rate and viscosity profiles show even
better agreement.

All in all the laminar flow can be regarded as validated. The next sections will be devoted to Newto-
nian turbulent simulations to further benchmark the numerical setup before it will be used to simulate
non-Newtonian flow.

(a) streamwise velocity (uX ) with fit (b) Ux error w.r.t. fit in %

(c) Viscosity profile with fit (d) shear rate profile with fit

Figure 5.2: Figures show normalised velocity (u) 5.2a, viscosity (ν) 5.2c and shear rate (γ̇) 5.2d of a laminar flow profile. Al
data is compared with the analytical solution (5.2) where the L2 error norm is obtained via (5.6) with t the simulation step after
which the simulation is fully converged. The error between the numerical and analytical velocity profile as calculated using (5.7)

is shown in 5.2b
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5.3. Turbulent Newtonian Flow
To find out if the FB-LBM implemented on the GPU also represents physical behavior in the turbulent
regime, the method is benchmarked to known Newtonian turbulent channel flow statistics. This is done
for the three different wall shear stress turbulent Reynolds numbers Reτ = {110, 180, 395} for which
the numerical input data can be found in table 5.2. These Reynolds numbers represent transitional,
low Re and high Re turbulence, respectively. Eventually, the turbulent non-Newtonian simulations will
also be executed in the different turbulent regimes represented by these Reynolds numbers. This will
help determine the effects of turbulence on the electrical resistance of a CB suspension inside a SSFB
in different turbulent regimes.

First, the results of Reτ = 180 will be compared to other turbulent LBM simulations in section 5.3.1.
Then section 5.3.2 will compare the differentReτ simulations with each other and with known simulation
data using different simulation methods.

Table 5.2: Numerical settings for the turbulent Newtonian channel flows for bench marking against the simulations done by
KMM [54] and TS [79]

.

Reτ Reoutτ Rem Nx x Ny x Nz u+ ∆z+ ν g
110 109.6 1618 512 x 128 x 128 3.636e-3 1.72 2.116e-3 2.07e-7
180 180.2 2795 256 x 128 x 128 6.667e-3 2.8 2.37e-3 6.94e-7
180 180.9 2800 512 x 128 x 128 6.667e-3 2.8 2.37e-3 6.94e-7
395 398.3 7020 460 x 230 x 230 5.714e-3 3.4 1.66e-3 2.84e-7

5.3.1. Low turbulent statistics results
The paper by Kim et al. on the DNS simulation of Reτ = 180 turbulence was the first of its kind
[39]. Therefore, the simulation of turbulent channel flow Reτ = 180 has been widely used as a primary
reference in many subsequent research on turbulence [87][33]. So also in turbulent simulation research
using the (FM-)LBM [69][88][3].

This section compares the FM-LBM D3Q19 GPU implementation simulation results to the turbu-
lence characteristics found by Kim, Moser, and Mansour [54] (KMM). The turbulent first-order statistics
are also compared to the BGK simulation by Amati et al. [3], the FM-LBM D3Q18 simulation using local
grid refinement by Rohde [69] and the FM-LBM D3Q19 CPU implementation by Zhuo and Zhong [88]
(ZZ).

First, some comments will bemade on the question if the proposed simulations did in fact statistically
converge. Following that, the agreement of first- and second-order turbulent statistics with the expected
physical behavior is elaborated on.

Statistical Convergence
The simulations of Newtonian turbulent flow discussed in the following two sections all started from
random fluctuations as described in section 3.3. To be able to compare the turbulence statistics with
KMM, first the simulation needed to reach a statistically converged state. As mentioned in section 3.4
this is checked by determining the change in average streamwise flow profile over time. The change
is expressed in terms of Lconv2 through equation (3.13).

Figure 5.3 shows the Lconv2 time dependence for the simulation Reτ = 180. For this simulation,
every average flow profile is obtained by saving ux over intervals of ∆tc = 100 [lt], Nc = 1000 times.
As can be seen in Figure 5.3 it takes approximately 0.6 ·106[lt] time steps for Lconv2 to approach a small
constant value of approximately Lconv2 ≈ 0.005. Therefore, the convergence time of this simulation can
be approximated to be t+ ≈ 63. This is slightly more than the convergence time taken by ZZ (t+ = 56)
but less than the time taken by Rohde (t+ = 80).

It is interesting to note that the method to determine statistical convergence differs from the method
used by KMM. They chose to wait for the total shear stress to reach a linear relation in z following the
equation

−u′w′ + (1/Reτ )
∂u

∂z
(5.8)

to determine the point the simulation reached the statistical converged state [59][54].
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Figure 5.3: Figure shows the Lconv
2 convergence over time for the long Reτ = 180 turbulent simulation

This method is not applied in this research because it requires more memory and simulation time
steps to determine if the simulation has reached a converged turbulent state. This is due to the fact
that, to obtain−u′w′, the average of u and w must first be obtained. The number of time steps between
every determination of convergence is therefore doubled, requiring more simulation steps to pinpoint
the moment of convergence. However, in retrospect, the efficiency gain for the method chosen in this
research is negligible compared to the overall simulation time. Upcoming researchers are therefore
advised to opt for the method used by KMM.

The convergence method does, however, result in a good determination of the statistically con-
verged turbulent state. The final total shear stress relation follows the expected behavior, as can be
seen in Figure 5.4d and the convergence indication Lconv2 ≈ 0.005 happens around the same t+ as
other research. The method is therefore assumed to be adequate and all the statistical data for the
next chapter will therefore be regarded as statistically converged.

First Order Turbulent Statistics
The results of all the theoretically non-zero first-order turbulent statistics of the converged Reτ = 180
turbulent channel flow are presented in Figure 5.4. These figures show good agreement with the widely
used benchmark case by KMM [39][54]. Where the results differ from the expected behavior and why
will be discussed in the next section.

That the average stream-wise velocity profile u as calculated via (3.11) corresponds well with the
expected behavior, can be seen in Figure 5.4a. The u profile shows good agreement with KMM as well
as with the linear viscous sub layer relation

u+ = z+ (5.9)

for z+ < 5 and the wall region relation

u+ = 2.5 log(z+) + 5.5 (5.10)

for z+ > 30 [59].
Interestingly, KMMused a variable grid spacing with the first mesh point in z+ ≈ 0.05 and amaximum

gird spacing in the center of∆z+ = 4.4. On the contrary, the LBM simulations presented in this research
all have constant grid spacing. The spacing for the Reτ = 180 simulations is equal to ∆z+ = 2.8
making the difference in spacing of the first halfway point 1.4/0.05 = 28 times larger compared to KMM.
However, this low resolution does not seem to have a significant effect on u.

However, the low resolution has a significant effect on the results in the streamwise vorticity found in
Figure 5.4c. Here, an 70%overestimation of streamwise vorticity fluctuations near the wall is found w.r.t.
KMM. The fact that this deviation can be attributed to a higher spatial resolution can be substantiated
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(a) Mean streamwise velocity (ux) (b) RMS velocity fluctuations

(c) RMS vorticity fluctuations (d) Reynolds stress tensor

Figure 5.4: Figures display turbulent statistics from the fully developed Newtonian turbulent channel flow simulation at
Reτ = 180. Data is compared to a spectral method simulation by KMM [39][54] and a LBM simulation by Amati et al. [3]

with two observations. First, the results found by ZZ show better agreement in the vorticity. They
achieved this improvement by increasing the resolution and increasing the domain size. Second, further
research in finding the effects of a larger domain presented in this research in Table 5.2 did not improve
the vorticity profile. Therefore, it can be deduced that the superior results found by ZZ can be attributed
to the higher spatial resolution.

The low spatial resolution compared to KMM has an unknown effect on the statistical results, such
as the fluctuating velocity statistics, as found in the figures 5.4b. Here, the streamwise component of
the fluctuating velocity u′u′ shows a 5% deviation from the expected behavior found by KMM. Amati
et al., who also found the same error in

√
u′u′, contribute this to two effects [3]. Firstly, Amati et al.

state that lack of resolution can result in this overshoot, as reported by Kravchenko and Moin [41].
Secondly, the overestimation could be explained by the second-order accuracy of the LBM. The exact
contribution of these two errors remains unknown. Given the goal of this research, this will be left for
further research.

Regarding the low Reynolds number Reτ = 180 turbulent results, the following can be concluded.
Most first-order statistics show very good agreement with the expected physical behavior represented
by the DNS results of KMM. Only the streamwise vorticity and velocity fluctuations show a slight error,
which canmostly be attributed to the low wall resolution, and will be taken for granted in the remainder of
this study. What effect these inconsistencies will have on the final results will, however, be considered
in the next sections.

5.3.2. Transitional and high turbulent flow simulations
To further benchmark the FM-LBM implementation, the turbulent statistics of transitional and high
Reynolds number regimes will now be compared to results from literature. Specifically, the well es-
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tablished high Reynolds number simulations by KMM [54] and the extensive transitional turbulent DNS
study by Tsukahara et al. (TS) [79] will be used for comparison. The results of this study are shown in
Figures 5.5 where the results of low Reτ = 180 are also added.

Computational Domain Size
Before the statistical data is analyzed, a quick note will be made on how the input data for the different
simulations found in table 5.2 are chosen. To determine the domain size for step 3 in the initialization
steps of section 3.3, the following decisions are made for the high and transitional turbulent regimes.

For the high turbulent simulations the number of grid points is increased with the scaling found in
(2.32) rewritten to

N
(2)
z

N
(1)
z

=

(
Re

(2)
τ

Re
(1)
τ

) 3
4

(5.11)

where 1 correspond to the Reτ = 180 simulation input. This is a larger increase in the number of grid
points compared to KMM. However, due to homogeneous grid spacing restrictions of the LBM, the
resulting domain size and wall resolution still fall way behind on the simulations by KMM. Specifically,
in the current simulation, the wall resolution is still 25 times coarser, and the domain sizes in the stream
and span directions are 1

2π times smaller.
The decision to set the transitional Reτ = 110 computational domain to match the long simulation

domain of Reτ = 180 is based on the findings of TS [79]. According to their research, in transitional
turbulence, the size of large turbulent structures increased with decreasing Reτ . The simulation there-
fore requires a correspondingly larger domain to fully encompass them. However, the current LBM
Reτ = 110 simulation still utilizes a domain size that is smaller than the one used by TS. Specifically,
the stream-wise domain is 1.6 times smaller and the span-wise domain is 3.2 times smaller compared
to the domain used by TS.

The rest of the simulation parameters are found using the steps from section 3.3. How the simulation
results hold up on the smaller domains will be discussed next.

First Order Turbulent Statistics
When looking at the first-order statistically converged turbulent statistics in Figure 5.5 the results show
almost equally good agreement for transitional and high turbulent statistics as for the Reτ = 180 turbu-
lent statistics discussed in the previous section. There are, however, two issues to discuss, regarding
the streamwise velocity fluctuations and the average flow profile of the Reτ = 110 simulation.

In Figure 5.5a, it is interesting to observe that the Reτ = 110 simulation displays an underestimation
of the expected behavior in the average velocity profiles. Upon closer examination of the velocity
fluctuations in Figure 5.5b, the overestimation compared to the expected behavior decreases from 5%
for the Reτ = 395 and Reτ = 180 simulations to 3.5% for the Reτ = 110 simulation. This decrease in
both average and fluctuating stream-wise velocity statistics can be attributed to the insufficient domain
size, as noted by TS. They discovered an underestimation of the stream-wise velocity statistics due
to inadequate domain sizes in a transitional turbulent state with Reτ = 80. Interestingly, this effect
of insufficient domain size on velocity statistics is not observed for the Reτ = 180 and Reτ = 395
simulations, as confirmed by Chin et al. [17]. Their research demonstrated that insufficient domain
size has a limited impact on first-order turbulent statistics when considering higher Reτ turbulence.

Considering the goal of this research the Reτ = 110 first-order turbulence statistics are sufficient.
However, the fact that transitional turbulent simulations require a longer domain whilst maintaining
a fine resolution creates a challenge for the current FM-LBM implementation. In the current setup
the resolution and domain size cannot scale independently from each other, which directly scales the
number of grid points with the size of the domain. Without a form of grid refinement, the further study
of transitional turbulence is therefore hindered by memory constraints.

Two Point Correlation
When considering second-order turbulent statistics, the insufficient domain size has a more significant
influence on the results. This can be seen in Figure 5.5d where the long and medium Reτ = 180 simu-
lations show different medium streamwise correlation results. The reason for the increased correlation
for the shorter domain size is due to the periodic boundary conditions making the correlation go to 1
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(a) Mean velocity (b) RMS velocity fluc.

(c) Reynolds stress (d) Two-Point correlation

Figure 5.5: Figures display turbulent statistics from the fully developed Newtonian turbulent channel flow simulation at
Reτ = 180 and Reτ = 395. The first order turbulent statistics in Figures 5.5a, 5.5b and 5.5c are compared to the simulation by
KMM [54] and TS [79]. Figure 5.5d shows the streamwise component of the two point correlation function in the middle of the
channel (z+ = 179). The two point correlations do not represent the physical behaviour represented by KMM due to among

other things an insufficient domain length and sample size.

exactly a domain length away from the reference point. This same effect also overestimates the corre-
lation of Reτ = 395 since KMM also finds a slight overestimation with a 1

2π longer domain. This effect
of insufficient domain size on the two-point correlation is also reported by TS.

It must also be noted that the fluctuations in the two-point correlation profiles are artifacts generated
through an insufficient amount of data samples Np. This observation aligns with the findings of KMM,
who also reported slight fluctuations in their data. The data represented in the figure is therefore not a
good representation of the expected behavior.

An effect that can be deduced from the different simulations is the increased stream-wise correlation
for lowerReτ turbulent simulations. This gives an indication that transitional turbulence generates larger
turbulent structures. The same trend was also observed by TS, providing an additional indication for
the slight underestimation of streamwise mean and fluctuating velocity in the Reτ = 110 simulation,
which can be attributed to the insufficient domain size.

5.3.3. Newtonian Turbulence Benchmark Conclusion
Overall, the first-order turbulent statistics show reasonably good agreement with well established tur-
bulent statistics from KMM and TS [54][79]. Larger deviations from expected behavior come to show
when looking at the second-order turbulent statistics. However, given the goal of this research, only
requiring first-order shear rate statistics, this extra deviation is less important. Therefore, the current
results are deemed adequate for use in this research.

With these final Newtonian turbulent channel flow simulations, the bench marking of the proposed
fluid dynamics model, consisting of the FM-LBM implemented on the GPU, is finalised. For low and high
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turbulent simulations the current method shows good performance. However, given the coupled reso-
lution and spatial dimensions, the near-wall resolution and total domain size remain limited by memory.
This influences the stream-wise velocity fluctuations and transitional turbulence characteristics more
significantly. Given that the non-Newtonian simulations presented in the next section will use similar
resolutions as the simulations stated in this section, the influence of these lower resolutions will be
considered in the further results. Specifically the resolution effects on the shear rate profiles discussed
in Section 5.5 as well as the conductivity and resistance results in Chapter 6 are thoroughly discussed.

5.4. Turbulent non-Newtonain Simulations
Now that the FM-LBM method has proven its reliability by benchmarking against analytical and liter-
ature data, it will be used to simulate non-Newtonian turbulence in a SSFB. The power-law viscosity
model (2.30) will be used to mimic the shear thinning behavior of the CB suspension. Specifically, this
section will discuss turbulent DNS simulations for fluids with a non-Newtonian shear thinning rheol-
ogy at different general wall shear stress Reynolds numbers ReGτ for decreasing power-law indices n.
The simulation results from this section will be used in the research below, to determine the effect of
turbulence on the internal conductivity and resistance of the CB suspension inside an SSFB.

Section 5.4.1 will discuss the input parameters used in shear thinning turbulent simulations at dif-
ferent turbulent regimes, represented in Reynolds numbers Reτ = 110, Reτ = 180 and Reτ = 395.
Subsequently, Section 5.4.2 will discuss the first-order turbulent statistics and compare these results
with non-Newtonian pipe flow simulations. Finally, Section 5.4.3 concludes by discussing the damped
turbulent effect found for shear thinning rheologies.

Table 5.3: Numerical settings for the turbulent non-Newtonian power-law viscosity channel flow simulations

ReGτ n ReG,outτ ReGm
K
ρ [ls2 lt2−n] g [ls lt−2] uτ [ls lt−1]

110 0.6 109.1 3292 4.157e-4 3.674e-7 4.849e-3
180 0.9 181.1 2828 1.592e-3 6.942e-7 6.667e-3
180 0.8 177.9 2930 1.070e-3 6.942e-7 6.667e-3
180 0.7 178.4 3005 7.118e-4 6.942e-7 6.667e-3
180 0.6 174.9 3174 1.552e-4 1.372e-7 2.962e-3
395 0.8 399.8 7227 7.581e-4 2.839e-7 5.714e-3
395 0.6 396.3 7470 3.453e-4 2.839e-7 5.714e-3

5.4.1. Non-Newtonian Input Parameters
Before we look at the statistical results, the input parameters and initialization are discussed that are
used for the simulation that are represented in Table 5.3. To obtain these input parameters for the
varying combinations of n and ReGτ , the steps of Section 3.3 are used. This section, elaborates on, the
decisions for the wall friction velocity uτ and domain size D needed for Steps 2 and 3, respectively.

• Step 2: There are several choices made for uτ in Step 2. In most cases, uτ is taken to be equal to
its Newtonian counterpart. However, when the combinations of ReGτ and n are expected to show
weakly turbulent or even fully laminar characteristics, a different uτ is chosen. In these cases,
specifically for (ReGτ = 110, n = 0.6) and (ReGτ = 180, n = 0.6) uτ is obtained taking the laminar
u+max. This is done to make sure the lattice velocity does not exceed umax ≤ 0.2 [ls lt−1].

• Step 3: The choice of domain size D in Step 3 varies for ReGτ . The non-Newtonian simulations
of ReGτ = 110 and ReGτ = 395 make use of the computational domain D = (512, 128, 128) and
D = (460, 230, 230), equal to that of their Newtonian counterparts. The ReGτ = 180 simulation
uses a domain identical to that of the ReGτ = 110 simulation. The choice of larger domain sizes
for lower turbulent regimes is made due to the longer turbulent structures expected for shear-
thinning turbulence, as found in [30].

The final input parameters g and K are found by completing the steps in section 3.3. The non-
Newtonian simulations are initialised using the statistically converged distribution function of the re-
spective Newtonian ReGτ simulation. Finally, similar to the Newtonian simulation, equation (3.13) is
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used to determine the moment the simulation reaches a statistically convergent state. After this mo-
ment, the statistical data discussed in the next section are gathered using the same number of probes
Np = 80 and time steps between them ∆tp = 10.000 [lt] as the Newtonan simulations.

5.4.2. Non-Newtonian Turbulence Results
This section will discuss the results of the shear thinning turbulent channel flow simulation found using
FM-LBM. The statistical characteristics of the power-law viscosity simulations for varying general wall
shear stress Reynolds number ReGτ and power-index n will be compared to comparable data for pipe
flow simulations. Specifically, the DNS work done by, among others, Gavrilov and Rudyak [30] (GR)
and Rudman et al. [71][70] will be used as validation material for the channel flow DNS simulations
presented in this study.

First Order Non-Newtonian Turbulent Viscosity Statistics
First, the first order viscosity statistics will be discussed shortly. This is done to determine whether the
cut-off viscosity of νmax = 50 [ls2 lt−1] is adequate when simulating shear thinning turbulence using the
FM-LBM. As can be seen in a randomly chosen fluctuating viscosity field from the simulation of Reτ =
395, n = 0.6 in Figure 5.6a, the viscosity fluctuates between ν = 0.0023 [ls2 lt−1] and ν = 0.02 [ls2 lt−1],
which is well below the maximum viscosity. Also, the average viscosity curves shown in Figure 5.6b
show a smooth line with no unexpected behavior. Since the viscosity lies well below the cutoff point
of the viscosity νmax = 50 [ls2 lt−1], it is assumed that it is adequate. Since viscosity only increases
compared to Newtonian viscosity the under limit of the viscosity νw is also assumed adequate.

(a) Viscosity cross section ν [ls2 lt−1] (b) Mean viscosity profiles

Figure 5.6: The left Figure shows a cross section of an instantaneous viscosity field of the ReGτ = 395, n = 1 simulation at
y = 1

2
Hy . The right Figure shows the mean viscosity scaled with the wall viscosity for the power indices n = (1, 0.8, 0.6)

First Order Non-Newtonian Turbulent Velocity Statistics
Figures 5.7 show the ReGτ = 180 and ReGτ = 395 statistically converged turbulent statistics of the
power-law channel flow simulations with power-law index n = (1, 0.8, 0.6). This section will discuss
the validity and identify the main characteristics of these simulation results. The statistical data will
also be compared to the turbulent velocity statistics of shear thinning turbulent characteristics found in
power-law pipe flow simulations.

The first thing to note is the average stream-wise velocity profile, increasing in the middle for con-
stant ReGτ . This can clearly be seen in Figure 5.7a for ReGτ = 180 and in Figure 5.7b for ReGτ = 395.
The physical explanation for this is the high shear rate near the wall, decreasing the viscosity of the
shear thinning fluid. To characterise this increase in center line velocity, Clapp’s scaling law is used
[18]. This scaling law takes the form of

û = nu+ = A+B log ẑ (5.12)
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(a) NN Mean velocity ReGτ = 180 (b) NN Mean velocity ReGτ = 395

(c) NN RMS velocity fluc. ReGτ = 180 (d) NN RMS velocity fluc. ReGτ = 395

(e) NN Reynolds stress ReGτ = 180 (f) NN Reynolds stress ReGτ = 395

Figure 5.7: Figure shows the velocity statistics for shear thinning power-law fluids in a low and high turbulent state. The low
turbulent state is represented by a general wall shear stress Reynolds number of ReGτ = 180 were the high turbulent state is

represented by ReGτ = 395. Varying degrees of shear thinning characteristics are represented in the power-indices
n ∈ [1, 0.8, 0.6], where n = 1 represents the Newtonian behaviour discussed in the previous section.
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where

ẑ =

[(
ρnτ2−nw

)1/2
K

]
zn (5.13)

where the constants A and B are set to A = 2.5 and B = 5.5 for low Re number turbulence and B = 5.0
for high Re number turbulence to resemble the Newtonian scaling law (5.10) in the limit n = 1. Figures
5.8a and 5.8b compare û = nu+ to Clapp’s scaling law (5.12). Apart from the ReGτ = 180, n = 0.6
simulation, the ReGτ = 180 results collapse to Clapp’s experimentally defined scaling law. Figure 5.8a
shows a strong correlation with the scaling law for ẑ > 10. The simulation Reτ = 395 shows less
agreement with the scaling law, which can be expected since the high turbulent simulation results for
n = 1 already do not resemble the Newtonian wall region relation (5.10) as found by KMM [54]. The
ReGτ = 180, n = 0.6 simulation differs from the expected behavior, since it exhibits advanced transitional
turbulent characteristics [70], which will be further discussed in the next two sections.

(a) Scaled mean velocity Reτ = 180 (b) Scaled mean velocity Reτ = 395

Figure 5.8: Figure shows the mean velocity times profiles (times n) of the non-Newtonian Reτ = 180 and Reτ = 395
simulations. The velocity is compared to Clapp’s scaling law defined by equation (5.12) with for Reτ = 180 the constants

A = 2.5 and B = 5.5 and for the Reτ = 395 simulation a B = 5.0.

Secondly, the velocity fluctuations will be discussed in order to further quantify the characteristics
of shear-thinning turbulent channel flow. The velocity fluctuations and Reynolds stress characteristics
from Figure 5.7 will also qualitatively be compared to known pipe flow simulations. When comparing
the current channel flow simulations at ReG ≈ 3000 (ReGτ = 180) and ReGm ≈ 7300 (ReGτ = 395) with the
high ReGm = 10000 pipe flow simulation by GR [30] and intermediate ReGm = 5500 pipe flow simulations
by Rudman et al. [71], the following similarity is observed.

1. The peak in the streamwise velocity fluctuations u′u′ increases and slightly moves to the right for
decreasing power index n.

2. The non-streamwise fluctuations v′v′ and w′w′ decrease with decreasing n.
3. The Reynolds stress term u′w′ also decreases with decreasing n.

These observations result in the following conclusions, when regarding non-Newtonian turbulence and
the reliability of current results.

Firstly, observations 1 and 2 indicate an increased anisotropic turbulence effect for decreasing n.
Anisotropic turbulence is the counterpart of isotropic turbulence, which is defined as the invariance of
statistical properties under axis rotation [76]. As an example, the Newtonian high channel flow turbu-
lence Reτ = 395 shows almost isotropic turbulent characteristics in the channel center, since the veloc-
ity fluctuations are almost equal in all directions. The increase in shear thinning fluid rheology clearly
has an adverse effect on isotropic characteristics, which is especially evident in Figure 5.7c. Here, the
decreasing power index n results in an increase in the difference between u′,v′ and w′ constituting a
decrease of isotropic turbulence characteristics.

Another conclusion that can be drawn from the first two observations is that the highReGτ simulations
show a damped wall normal momentum transfer. To further study this, the turbulent kinetic energy k
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(a) Turbulent kinetic energy ReGτ = 180 (b) Turbulent kinetic energy ReGτ = 395

Figure 5.9: Figure shows turbulent kinetic energy for power-law viscosity simulations at low ReGτ = 180 and high ReGτ = 395.

determined by equation (2.36) is shown in Figure 5.9a for ReGτ = 180 and in Figure 5.9b for ReGτ = 395.
For the ReGτ = 395 simulation, a clear increase in k is observed near the wall and a slight decrease in
k in the middle of the channel. The pipe-flow simulations by GR also show this change for increased
shear-thinning viscosity, but with this change being even more pronounced. The explanation for this
behavior for k is a reduced momentum transfer between the near-wall layer and the flow core due
to shear thinning viscosity [30]. Specifically, the further away from the wall the lower the shear and
therefore the higher the viscosity, resulting in a damped wall normal momentum transfer.

The current low ReGτ = 180 channel simulation does not exhibit a decrease k in the center. This can
be described in part by a combination of shear thinning and transitional turbulent effects, that increase
both the anisotropy of the turbulence and, therefore, the streamwise fluctuations in the center of the
channel [78]. Since there is no data, to compare the low Re characteristics with, it is harder to say if
the current simulations accurately capture the change in turbulent anisotropy 1.

5.4.3. Damped Turbulent Effect
The section on non-Newtonain turbulent results will now be concluded with a description of the main
effect a shear-thinning rheology has on the turbulent characteristics. This is the observed damped
turbulent effect. The main indicators of this damped turbulent effect, as well as its consequences for
the design of the SSFB, will be discussed.

A shear-thinning rheology has a damping effect on the characteristics of the turbulence compared
to Newtonian turbulence of equal general wall shear stress ReGτ . This effect, also found in pipe flow
research [71][71], can be substantiated by two observations found when comparing the Newtonian and
non-Newtonian results from Figures 5.5 and 5.7, respectively.

• The first indication of the damped turbulence effect is strongly represented in the velocity fluc-
tuations. Specifically, the increase in streamwise fluctuations u′ and a decrease in spanwise
fluctuations v′ and wall normal fluctuations w′, as found in Figures 5.7c and 5.7d, resemble the
same trend for decreasing n as it does for decreasing Newtonian Ret demonstrated by Figure
5.5b. Therefore, a shear thinning rheology has the same anisotropic turbulent effect as decreas-
ing Reynolds numbers [78].

• The damped turbulence effect is also strongly represented in the Reynolds stress term u′w′.
Where the Newtonian results from Figure 5.5c represent the same decrease in −u′w′ for de-
creasing Reτ as the non-Newtonian simulations exhibit for decreasing n.

From these observations, it can be concluded that the turbulent shear thinning flow for a given ReGτ
resembles the same turbulent characteristics in velocity fluctuations as Newtonian flow with lower Reτ .
As a result, the ReGτ for which the laminar flow starts to transition to turbulence, from now on called

1During the finalisation of the current research a paper did come out studying Reτ = 180 turbulent power-law flow at a power
index n = 0.5 [36] using OpenFOAM with a larger domain. Upcoming research on non-Newtonian turbulence simulations using
the LBM is advised to use this research for further analysis.
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Figure 5.10: shows the mean streamwise velocity profile for the ReGτ = 110 power-law viscosity simulations. The two
power-law indices show are n = 1 representing Newtonian flow and n = 0.6. The n = 0.6 simulation shows full agreement

with the laminar solution (5.2).

ReG,Transitionτ , also increases for shear-thinning fluids. This can be clearly seen in Figure 5.10 where the
turbulence in the simulation (ReGτ = 110,n = 0.6) has completely died down, creating a laminar flow
profile in the stream direction.

For Newtonian flow, the wall shear stress Reynolds number for which the flow transitions from
a laminar to a turbulent state is found to be ReTransitionτ ≈ 64 [79]. Given the strong shear thinning
characteristics of the CB suspension, the suspension will reach a turbulent state for ReG,Transitionτ ≫ 64.
However, more research is needed on how ReG,Transitionτ depends on n and what the exact transition
point will be for the CB suspension in an SSFB.

The next sections will focus on the effect of turbulence on the conductivity and resistance of a CB
suspension. This will help determine if reaching a turbulent state is favorable in the first place. Some
notes on the scaling of the pumping power will also be made.

5.5. Turbulent shear profiles
Within the field of turbulent channel flow research, the statistical characteristics of the shear rate are
under reported. However, shear rate profiles are central to studying the effect that turbulence has on
the conductivity of CB suspensions and with that the internal conductivity and resistance of a SSFB
[86]. Therefore, this section will report on the statistical shear rate characteristics of a shear thinning
power-law viscosity fluid for different turbulent domains.

Effect of Shear Thinning Rheology and ReGτ on shear rate
Figure 5.11a shows the normalised mean shear rate profiles, and Figure 5.11b its RMS fluctuations,
derived from the fluctuating shear rate profiles using equation (3.11) and (3.12) respectively. The shear
rate γ̇ is defined by (2.29) where the velocity gradients follow directly from the moment vector αk in
the FM-LBM. To obtain the shear-rate statistics an equal amount of probes is used as for the previous-
mentioned turbulent statistics.

The following can be observed when comparing the shear rate characteristics of different flow
regimes ReGτ and rheologies n.

• Firstly, when considering the effects of shear thinning rheology, Figures 5.11 only show a small
effect of the power index n on γ and γ̇′. Specifically, only a small difference is found in the shear
rate profile between the simulations ReGτ = 180, 395 for the power law indices n = 1, 0.8, 0.6.

• Second, when considering the differences between the shear rate profiles at different flow regimes,
the most drastic difference for varying ReGτ is found when comparing the laminar and turbulent
flow regimes. In the center region where the laminar flow profiles go to zero, the turbulent flow
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(a) Mean Shear rate profile (b) RMS Shear rate fluctuations

Figure 5.11: Figure shows the mean and RMS fluctuating shear rate profiles for different turbulent power-law fluid channel flow
simulations.

profiles remain γ > 0 throughout the channel. Noteworthy, the laminar γ̇ do not go to zero entirely,
due to the finite resolution and an even amount of Nz grid points.

Given the significant difference in the laminar and turbulent shear rate profile, the most significant
effect a shear thinning rheology has on the shear rate profile is the increase in ReG,Transitionτ for decreas-
ing n. This is evident when comparing the Newtonian transitional turbulent simulation (ReGτ = 110,
n = 1) with the non-Newtonian laminar simulation (ReGτ = 110, n = 0.6).

Comparing Shear Rate Profiles in Physical Units
The above analysis compared the shear rate profiles in a non-dimensional sense. In the next chapter,
the shear rate profiles will have to be converted to physical units, such to use the experimental data from
Youssry et al. to obtain the conductivity fields [86]. Here, the shear rate profiles will be compared in a
randomly chosen physical dimension such to get a feeling of how theReGτ compare in the physical world.
The following section will discuss how the conversion to physical units is made as well as elaborate on
the main takeaways from the results shown in Figure 5.12.

Figure 5.12: Figure shows same average shear rate results as found in Figure 5.11a but converted to dimensional units. For
this conversion an arbitrary height H = 0.35 [m] and consistency index/density combination K/ρ = 1e− 4 [m2 s2−n] is

chosen.
To convert the shear rate to dimensional units given a Reynolds number, the following equation
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derived from (2.42) is used

γ̇w =

((
ReGτ
H

)2
K

ρ

) 1
2−n

(5.14)

The height is arbitrarily set to H = 0.35 [m] and consistency index/density combination is set to K/ρ =
1e− 4 [m2 s2−n].

It is clear that, while the shapes may not differ much in the turbulent state, the dimensional shear
rates increase substantially with increasing Re and n. This increase follows directly from (5.14) and
can be expressed by

γ̇
(1)
w

γ̇
(2)
w

=

(
ReG

(1)

τ

ReG(2)

τ

) 2
2−n

(5.15)

for equal height H and viscosity characteristics n,K between situations (1) and (2). The decrease of
γ̇w for decreasing n represents the drag-reducing property of shear-thinning turbulence. Therefore, the
pumping power needed to reach a certain ReGτ decreases, as will be discussed in the next chapter.

Discussion
When evaluating the reliability of the given shear rate characteristics, it is important to consider the
impacts of insufficient resolution and domain size, as mentioned in the previous section. The effects
can be summarised as follows.

• The largest error due to the insufficient resolution in first-order Newtonian turbulent statistics is
the overestimation of velocity fluctuations, with a maximum overestimation of 5% in streamwise
velocity fluctuations. Although this overestimation may have a small effect on shear rate fluctua-
tions (γ̇′), it has minimal impact on the mean shear rate (γ) since increased fluctuations contribute
equally to positive and negative shear rate contributions.

• As discussed, the insufficient domain size will have the most significant effect on the transitional
turbulent effects. It is unknown how this effect translates into the shear rate profile. Therefore,
further research is recommended, using larger domain sizes.

Overall, the errors are assumed to be small and the shear rate data are therefore deemed sufficient for
the rest of this research.
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Carbon Black Turbulent Conductivity

and Resistance Results

This final chapter will discuss the effects of turbulence on the electrical conductivity and resistance of
a Carbon Black suspension inside a semi-solid flow battery. The shear rate profiles obtained in the
previous sections will be used to determine the turbulent conductivity fields inside the anode and cath-
ode flow channels. Since there are no general laws describing the conductivity of CB, the experimental
results of Youssry et al. will be used to convert the shear rate fields discussed in section 5.5 to turbu-
lent conductivity fields. Using the Finite Volume method, the electric potential inside these turbulent
conductivity fields will be determined as described in chapter 4. From these electric potential fields, the
resistance and effective conductivity will be determined for varying laminar and turbulent regimes and
SSFB dimensions.

Before using the FVM to determine the electrical resistance of the CB suspension, it is first validated
in Section 6.1. Then a non-dimensional relation for the resistance characteristics will be derived in
section 6.2. The non-dimensional scaling relations from Section 6.2 will then be used, first, to describe
the Newtonian effective conductivity and resistance characteristics in Section 6.3. After this, the shear-
thinning rheology of CB is also incorporated in section 6.4. Lastly, a thorough analysis of how turbulence
affects the electrical conductivity and overall resistance will be discussed. This analysis forms the crux
of the research question, shedding light on the implications of turbulence for potential SSFB design, as
explored in Section 6.5

6.1. Finite Volume Method Validation
This section deals with the benchmarking of the FVM, implemented to determine the potential inside
the variable conductive CB suspension flowing through the SSFB. There are three different checks that
can be carried out to determine if the FVM solution corresponds to the expected physical behavior. The
chosen checks are the same as in [64] but extended to three dimensions.

The first two checks result from the absence of sources and sinks in the governing differential
equation (2.11).

1. The divergence of the current should be zero. Therefore, the net current, through any closed
contour outside of the current collectors should be zero. This is checked by adding up the Ix, Iy
and Iz contributions within a finite volume which should equate to zero.

2. The current cannot leave the conductor, which means that the total current normal to the potential
gradient (z-direction), should be constant inside the conductor, and zero outside.

On top of these checks, a benchmark study is performed with the goal to determine adequate in-
put parameters. Specifically, the benchmark study checks the different choices for the number of grid
points making up the surroundings of the conductorNsur as well as the conductivity of that surrounding
medium.. To do so, the analytically known potential in a conductor of constant conductance σ is simu-
lated, using the FVM. The reliability of this result is determined by comparing the resistance obtained
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Table 6.1: Constant input parameters for potential field calculations.

Lphy,Wphy 2, 0.5 [m]
∆V 1 [V ]
Nsur 4
σsur 1e− 15 [mS/cm]

from the simulation R, as described in section 2.1.5 and 4.4, to the resistance given by Pouillet’s law

Ra =
1

σeff

H

A
(6.1)

with H distance between the electrodes and A the area of the electrodes.
Table 6.1 shows the parameters that remain constant in the benchmark simulation as for all further

potential simulations. For the benchmark study, the channel half height, which varies in the subsequent
simulation, is set to Hphy = 1, which constitutes the upper limit of the expected simulations to come.
The Nsur and σsur where varied just as in [64] and found to be optimal for Nsur = 4 and σsur = 10−15.
The average and cross section of the potential field Φ for this simulation are shown in figures 6.1
respectively. The benchmark error of R with respect to Ra was found to be 0.002% which is more than
adequate for this study.

(a) Potential Φ cross section at j = 1
2Nj (b) Mean potential Φ(z)

Figure 6.1: Figure shows the benchmark results of the potential field inside a conductor of constant conductance.

6.2. Non-Dimensional Scaling Analysis
Since there are no known formulas relating turbulent characteristics to conductivity, the Buckingham πi
theorem is used to compute a set of non-dimensional numbers from the known variables influencing
the effective conductivity [11][7].

The effective conductivity σeff , as defined by Pouillet’s law (6.1), depends on at least 6 other phys-
ical variables such as the electrode-related physical dimensions A and H and potential difference
V = ∆V , as well as flow-related variables such as viscosity ν, flow velocity U , and wall shear stress τw.
The physical dimensions these variables share tallies up to 4. The problem can therefore be described
by p = 7− 4 = 3 dimensionless variables.

Different dependent dimensionless parameters can be chosen and the form used in this study is

σeffV
2

τwUmH
∝ Reθτ (

A

H2
)ψ (6.2)

where the non-dimensional σeff depends on the Reynolds number describing flow and A/H2 repre-
senting the electrode dimensions. Exponents θ and ψ represent scaling parameters that determine the
unknown relation between dimensionless numbers. The next section will establish what these expo-
nents are.
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A detailed examination of the non-dimensional effective conductivity is conducted. This non-dimensional
number, represented by the left-hand side of (6.2), which encompasses σeff , can be rewritten in a form
that represents the ratio between the electric power and the pumping power. Using the definition of the
pumping power in a channel

Pp = FfricUm = 2τwAUm (6.3)

this power number is defined as

Po =
σeffV

2

τwUmH
=
V 2 σeffA

H

τwAUm
=

V 2

R
1
2FfricUm

=
Pe
Pp

(6.4)

where Pe represents an electric power obtained using Poullet’s law. It is important to note that Pe does
not represent the electrical power of a SSFB. It does, however, represent the ease at which current can
flow trough the CB network where Pe increases for decreasing R.

The final non-dimensional scaling becomes

Po ∝ ReθPo
τ (

A

H2
)ψPo (6.5)

where the non-Newtonian version can be approximated by replacing the constant kinematic viscosity
µ in Reτ , by the wall viscosity µw to obtain ReGτ . It is important to note that the three non-dimensional
numbers cannot be easily changed independent of each other. The channel or electrode height H is
found, for example, in the Reynolds numbers as well as in the electrode dimensions. The wall shear
stress is on the other hand found in the power and wall shear stress Reynolds number.

The next section will use the results of the turbulent flow simulation and the calculation of the resis-
tance R to gain a sense of the scaling in the non-dimensional power scaling represented by (6.5). On
top of that the scaling of the dimensional σeff will be studied using

σeff ∝ Reθστ (
A

H2
)ψσ (6.6)

to express the characteristics in the exponents θσ and ψσ. The scaling of the dimensional R will be
expressed using

R ∝ ReθRτ (
A

H2
)ψR (6.7)

6.3. Turbulent Carbon Black Conductivity and Resistance in New-
tonian limit

To characterize the effect of turbulence on the effective conductivity and the CB resistance, the effect of
Newtonian turbulence is studied first. To do so, the experimentally obtained conductivity dependence
on shear rate found by Youssry et al. [86] will be used to convert the Newtonian shear rate fields
discussed in Section 5.5 to turbulent conductivity fields. Three different conversions to physical units
have been performed, to study the effect of turbulence on the CB conductivity in a wide range of that
conductivity curve. This will in turn help to define the effect of turbulence on the electron conductivity
inside a wide range of SSFB designs.

In this section, the methodology behind the realization of these three different conversions will be
elaborated on and discussed in Section 6.3.1. The conductivity fields that result from these conversions
are discussed in 6.3.2. After this, the FVM is used to calculate the resistance R and effective conductiv-
ity σeff of the CB suspension resulting from the conductivity fields. Finally, these results are compared
to the non-dimensional equations found in the previous section to obtain the different characteristics
scaling parameters θ and ψ in the Newtonian limit.

6.3.1. Newtonian Conversion to Physical Units
In all the previous sections, the results were represented without dimensions using the Reynolds num-
ber to differentiate between turbulent regimes. The turbulent regimes represented by Reτ are defined
by a particular ratio between inertial forces and viscous forces. However, this ratio can be made up of
infinitely many combinations of channel half height H, wall shear velocity uτ , and viscosity ν. To deter-
mine the conductivity profiles and electrical resistance of the CB suspension inside an SSFB, different
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(a) Conductivity Ranges (b) Viscosity

Figure 6.2: Figures show where the different shear rate ranges lie on the conductivity curve for the three Hphy chosen. The
shear rate range is defined as γ̇(60)min → γ̇

(395)
w and encompasses all the local shear rates of of the flow regimes considered. As

an example, the way the different γ̇(i)min → γ̇
(i)
w ranges corresponding to the different Reτ are represented in in full shear rate

range is shown for Hphy = 0.383 [m] in Figure 6.2a.

choices of physical parameters will be made such as to represent the turbulent flow in different SSFB
designs. This section will examine the choices made to determine these physical parameters.

The effect of turbulence on the conductivity of a CB suspension, and with that the internal resis-
tance and effective conductivity of an SSFB, will be studied for different laminar and turbulent regimes.
Specifically, the laminar, transitional turbulent, low turbulent, and high turbulent regimes represented
by Reτ = (60, 110, 180, 395) will be considered.

To make the conversion from lattice units to physical units given the different Reτ , three different
physical channel half height Hphy are chosen. These Hphy together with Reτ in turn determine other
physical parameters such as the average velocity Um and the pumping power Pp. How the three
different Hphy, represented in table 6.2, are chosen, is broken down in the next steps.

1. First, a shear rate range is chosen such to represent the different regions on the experimentally
obtained conductivity curve 6.2a[86]. The shear rate range is defined as going from the lowest
shear rate of the current simulations belonging to Reτ = 60 to the highest shear rate belonging
to Reτ = 395. To determine the appropriate shear rate range, three steps are taken.

• First an upper limit of the shear rate range, corresponding to γ̇(395)max = γ̇
(395)
w , is chosen.

• Then Equation (5.15) is used to determine γ̇w for the other simulations Reτ .
• Finally, γ̇(60)min is obtained from γ̇

(60)
w and the shear rate data represented in section 5.5.

How the different shear rate ranges, resulting in the different Hphy, lay on the conductivity curve,
can be seen in Figure 6.2a. Here for each Hphy the ranges, going from γ̇

(60)
min → γ̇

(395)
max are

expressed in the solid lines.
2. Now a viscosity needs to be chosen, which will be taken constant within one choice ofHphy, such

to represent a Newtonian rheology. Three different physical viscosities for three different Hphy

are therefore chosen by taking the viscosity that corresponds to the CB viscosity at the wall shear
rate of the Reτ = 180 simulation, using the viscosity dependence found by Youssry [85]. The
choice of γ̇(180)w as reference is due to the Reτ = 180 simulation lying within the maximum and
minimum Reτ considered in this study. The different constant viscosities used are represented in
figure 6.2b.

3. Next to a viscosity, a density also needs to be chosen. To this end the density of the CB suspen-
sion used in this study is approximated by ρ ≈ 1200 [kgm−3].

4. Finally the physical channel half height can be determined. Using equation (2.40) one can obtain

Hphy =

√
Re2τ
γ̇2−nw

K

ρ

n=1
=

√
Re2τ
γ̇w

µ

ρ
. (6.8)
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Table 6.2: Table represents the different Hphy chosen and the resulting physical parameters of the flow profile inside the SSFB
assuming constant viscosity per chosen Hphy .

Hphy [m] γ̇min → γ̇w Reτ u+ γ̇w [s−1] U [ms−1] Pp [kW ]

0.945 0.04 → 6.94 60 19.9 6.92 2.17 0.062
2.1 → 23.3 110 9.30 23.3 1.86 0.178
4.2 → 62.3 180 15.6 62.3 5.1 1.30
13 → 300 395 17.8 300 12.6 15.8

0.383 0.12 → 23.1 60 19.9 23.1 2.94 0.153
7.0 → 77.6 110 9.30 77.6 2.52 0.442
14 → 208 180 15.6 208 6.90 3.25
43 → 1000 395 17.8 1000 17.3 39.1

0.141 0.36 → 69.2 60 19.9 69.2 3.25 0.207
21 → 233 110 9.30 233 2.78 0.597
42 → 623 180 15.6 623 7.63 4.39
130 → 3000 395 17.8 3000 19.1 52.9

where µ, γ̇w and ρ represent the physical parameters chosen above. The different Hphy resulting
from the different shear rate ranges are found in table 6.2

5. Using the average velocity u+ obtained from the Newtonian simulations represented in section
5.3.2 and the γ̇w from step 1 the physical velocity Uphy can be defined using equation (2.45). With
this information the pumping power Pp can be determined using equation (6.3) and (2.28)

Pp = FfricUm = 2τwAUm = 2µwγ̇wAUm (6.9)

where with A the electrode surface set to 1 [m2].

The above mentioned steps are repeated 3 times resulting in 3 differentHphy. The physical parameters
corresponding the 4 different Reτ and 3 different Hphy considered are represented in table 6.2.

Now the fluctuating shear rate fields of every Reτ simulation need to be converted from lattice to
SI units given the three different conversions mentioned above. This conversion is simply done by
γ̇phyfield = γ̇simfieldγ̇

phy
w where γ̇simfield represents the normalised fluctuating shear rate field obtained from the

Newtonian simulations presented in section 5.3.2.
How these shear rate fields influence the internal conductivity of CB, and with that the internal

resistance and effective conductivity of a SSFB, will be shown in the next sections.

6.3.2. Newtonian Conductivity Results
First of all, the conductivity statistics that result from the different NewtonianReτ simulations and subse-
quent varying conversions are shown in figures 6.3a, 6.3b, 6.3c corresponding toHphy = 0.141, 0.383, 0.945 [m]
respectively. To obtain these results, the shear rate fields are converted to conductivity fields using ex-
perimental measurements by Yousry expressed in equation (2.4). From these fluctuating conductivity
fields, the average and RMS conductivity is obtained using equations (3.11) and (3.12) with Np = 80
and ∆tp = 10000 (equal to the velocity data collection).

Two things can be clearly observed. First, given Hphy, a higher Reτ results in a higher conductivity.
This is due to the fact that the conductivity increases in the chosen shear rate ranges. Second, there is
a region for which the laminar Reτ = 60 simulation has a higher average conductivity than the Reτ =
110 simulation. However, on average, the turbulent simulation still shows slightly higher conductivity.
Specifically the varying average conductivity over the full channel σ for the Reτ = 110 compared to
Reτ = 60 flow regimes equate to (11.9, 15.6, 16.7) [%] for the heights (0.141, 0.383, 0.945) [m].

It is important to note that the increase in conductivity due to an increase in Reτ only holds for the
SSFB dimensions chosen here. If the Hphy is chosen to be smaller i.e. < 0.141 [m] and the shear
rate range subsequently higher, the shear rate will become γ̇ ≥ 634 [s−1] resulting in a constant σ as
can be seen in Figure 6.2a. With constant σ there will obviously be no improvement in conductivity
with increasing Reτ . This also explains the decrease in the percentile difference between the σ with
decreasing Hphy discussed in the previous paragraph.

In the particular Hphy chosen here, a significant increase in conductivity is found here. The next
section will elaborate on the effect this has on the CB resistance and effective conductivity.
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(a) σ and σRMS forH = 0.141 (b) σ and σRMS forH = 0.383

(c) σ and σRMS forH = 0.945

Figure 6.3: The data presented illustrates the mean conductivity curve σ(z) and the fluctuating conductivity curve σ′(z) across
the entire channel, considering various channel half heights Hphy that were examined. The RMS conductivity fluctuations are

represented by the shaded area defined as σ(z)− σRMS(z) → σ(z) + σRMS(z). The conductivity field from which the
statistics are represented here are obtained by converting the Newtonian turbulence shear rate fields to conductivity fields with

the experimental data from Youssry et al. [86]

6.3.3. Newtonian Resistance and Effective Conductivity Results
Using the Finite Volume method as described in chapter 4 the potential through the varying conductivity
field is calculated for every Np. From this, the fluctuating and average CB resistance Rtot/R′

tot and
effective conductivity σeff/σ′

eff are determined. As input for this FVM calculation the heights from
table 6.2 and the further input from table 6.1 is used. The dependence of the average and fluctuating
contributions of σeff and Rtot as well as the power number Po on Reτ for the three different Hphy are
plotted in figures 6.4. The small RMS fluctuations of all quantities are represented as error bars in the
plot.

To the Rtot, σeff and Po dependencies on Reτ the corresponding form of (6.5) is plotted in the
turbulent regime. The results in the varying scaling parameters θ are listed in the legends of the figures.
Noticeable is the increase in effective conductivity and decrease in internal resistance with increased
turbulence where, due to the definition of the effective conductivity, the θσ = −θR. That the θR and θσ
tend towards zero for decesing H can be explained by the conductivity curve being regarded as con-
stants for high shear rate. As explained in the previous subsection, when the value of H is smaller and
the corresponding γ̇w is higher, the impact of increased Reτ on conductivity becomes less significant.

Where the slight advantage of increased Reτ cancels out, is for the power number Po. Here the
decrease in resistance and subsequent increase in Pe is drastically canceled out by the negative effect
higher Reτ have on the pumping pumping power Pp. Specifically, the pumping power scaling in the
turbulent regime can be derived from the definition ofReτ (2.40), the definition of u+ and z+ from (2.45),
and the relation of u+(z+) in the wall region (5.10). Taking Uc = uτu

+(H+) and the known Um ∝ Uc
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relation [20], one derives for the pumping power the proportionality:

Pp ∝ Re3τ log(Reτ ) ≈ Re3τ (6.10)

in the turbulent regime Reτ ≳ 150 [79].
By applying the scaling law and considering the value of θR obtained from the scaling analysis of R

in Figure 6.4a, along with the definition of the power number in Equation (6.4), we can understand the
behavior of θPo as shown in Figure 6.4c. This behaveour can be expressed in equation

Po =
Pe
Pp

∝
1
R

τwUc
∝ Re−θRτ

Re3τ
= Re−θR−3

τ (6.11)

where the difference between θPo and −θR − 3 is approximately 10% Specifically, for channel heights
Hphy = 0.141/0.945, we observe that θPo = −2.85/− 2.67, while −θR − 3 = −2.57/− 2.36, resulting in
a difference of 10/12%.

Since −θR < 3, the decrease in the overall power number for increasing turbulence is dominated
by the increase in pumping power. This means that for a aqueous CB suspension in a SSFB the slight
increase in conductivity increase due to turbulence is nullified by the drastic increase in pumping power
to reach that turbulent state.

From the effect of channel half heightH on power number Po shown in figure 6.4d, no clear scaling
law can be derived. Further research in more physical SSFB dimensions needs to be done, to pin down
the expected scaling of the power number in this regard. However, the next section will dive deeper in
the effects of channel height on σeff in the non-Newtonian regime.

6.3.4. Newtonian Conductivity and Resistance Results Summary
All in all, from the results presented here, the following important observations can be distilled.

• Given the range of channel heights chosen here, an increasing turbulent Reτ results in a slight
decrease in CB resistance, and an equal inverse increase in its effective conductivity and electric
power number Pe.

• However, due to the large increase in pumping power needed to achieve the higher turbulent
regimes, the power number Po decreases.

• In the turbulent regimes, the non-dimensional numbers seem to fit a constant exponential for
varying Reτ and constant H, reasonably well. However, the θR and θσ scaling laws vary for
H which is expected from a theoretical standpoint since Reτ also dependent on H. The more
physical explanation, for the conductivity advantage of higher Reτ going to zero for smaller H,
has to do with the conductivity becoming constant for γ̇ ≥ 634 [s−1].

The effect of the shear-thinning rheology found in the CB suspension on conductivity and resistance
will be considered next, after which all the results will be discussed in the final section of this chapter.

6.4. Turbulent Carbon Black Conductivity and Resistance consid-
ering the Non-Newtonian Rheology

To incorporate the shear thinning behaviour in the analysis of the effect of turbulence on the internal
resistance and effective conductivity, the turbulent power-law simulations from the previous chapter will
be used.

Specifically, the shear-rate profiles of the simulations with power index n = 0.6 will be converted to
conductivity fields, due to their resemblance with the CB rheology found by Youssry et al. [86]. The
conversion will be discussed shortly in Section 6.4.1, and the resulting conductivity fields are discussed
in section 6.4.2. How the resulting CB resistance R and effective conductivity σeff compare to the
Newtonian results will be discussed in section 6.4.3. Finally the difference between the laminar and
turbulent CB resistance R and effective conductivity σeff will be discussed in section 6.4.4. How the
results can be interpreted when considering SSFB designs will be discussed in the final section of this
chapter.
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(a) Internal Resistance Rtot (b) Effective Conductivity σeff

(c) Power Number Po dependence on Reτ (d) Power Number Po dependence onHphy

Figure 6.4: The non-dimensional scaling of the power number Po with the Newtonian approximation is represented in Figures
6.4c and 6.4d. Figures 6.4a and 6.4b display the scaling for the CB resistance R and effective conductivity σeff respectively.
The different scaling parameters θ from equations (6.5), (6.6) and (6.7) are fitted to the turbulent data represented by Reτ > 60.

6.4.1. Non-Newtonian Conversion to Physical Units
The conversion steps to physical units are the same as for the Newtonian limit discussed in Section
6.3.1, with the only difference lying in the approximation of the viscosity (step 2). Where in Section
6.3.1 the viscosity was approximated to be constant for a given shear rate range, here the viscosity
will be approximated using the power-law viscosity model. A power-law of n = 0.6 is found to show
reasonable agreement with the CB viscosity in the range γ̇ ≈ 10 → γ̇ ≈ 200 [s−1] as can be seen in
Figure 6.5. The effects of turbulence on the internal resistance and effective conductivity will therefore
be conducted with a shear range that lies within this range. The specific range chosen goes from
γ̇
(60)
min = 0.02 → γ̇

(395)
w = 1000 (step 1) and results in a height of Hphy = 0.286 using equation (6.8). The

physical parameters are summed up in table 6.3.

Table 6.3: Table represents the physical parameters for varying ReGτ that results from the choice of Hphy and power-law
viscosity characteristics.

Hphy [m] γ̇min
→

[s−1]
γ̇w Reτ u+

µw
[kgm−1s−1]

U [ms−1] Pp [kW ]

0.286 0.02 → 68 60 16.3 1.85 5.3 1.3
0.5 → 161 110 30 1.3 12.5 5.3
12 → 325 180 18.8 0.989 9.7 6.3
20 → 1000 395 19.5 0.63 14 18
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Figure 6.5: Figure shows the power-law fit trough the Experimentally obtained rheological data by Youssry et al.[86]. For the
data points ranging from γ̇ ∈ [10, 300] the fit results in a consistency index of K = 10 [kgm−1sn−2 and a power-law index of

n = 0.6

6.4.2. Non-Newtonian Conductivity Results
The average and fluctuating conductivity inside the channel are shown in figure 6.6a. These results
were obtained by converting the turbulent shear rate profiles of the n = 0.6 simulations to conductivity
profiles using the physical parameters mentioned above, and the conversion method described in the
previous section. When comparing the non-Newtonian characteristic conductivity to the conductivity
curves found for the Newtonian simulations, one significant observation can be made. The difference
between γ̇w form varyingReGτ as found by equation (5.15) becomes smaller for n = 0.6w.r.t. n = 1. The
conductivity curves therefore lie closer to each other. Now the laminar ReGτ = 110 simulation has a 12%
higher average conductivity than its turbulent ReGτ = 180 neighbor. The positive effect of turbulence
on the CB conductivity is therefore diminished in the transitional region. The laminar simulation does
have a pronounced dip in the middle of the channel. How this translates to the electrical resistance
and effective conductivity will be discussed next.

6.4.3. Non-Newtonian Resistance and Effective Conductivity Results
Using the non-Newtonian conductivity fields and physical parameters discussed above as input for the
FVM, the electric potential and with that the resistance and effective conductivity of the CB suspension is
determined. These results are found in figure 6.6. Due to the laminar characteristics of the (ReGτ = 110,
n = 1) simulation, the number of points in the turbulent and laminar regime is restricted to pairs. The
fits of the scaling laws to the laminar and turbulent regimes are therefore not meant for any definitive
statements. The results do however tell an interesting story when comparing the laminar and turbulent
scaling parameters as well as comparing the turbulent scaling to its Newtonian counterparts. In this
regard the following statements can be made.

First, the turbulent non-Newtonian results are compared to the Newtonian results with equal γ̇(395)w =
1000 constituting the channel half height H = 0.383 [m]. The following observations can be made:

• The resistance of the non-Newtonian turbulent simulations in Figure 6.6b are lower than the New-
tonian simulations in Figure 6.4a, with a relative decrease ranging from 32% to 10% for increasing
ReGτ . This decrease in resistance for the non-Newtonian flow can be explained by the decreased
size of the channel due to the shear thinning rheology at equal γ̇w and Reτ . That the electrical
resistance is lower for non-Newtonian flow therefore directly follows from equation (6.8).

• The θTurbulentR scaling is less negative for the non-Newtonian simulation as compared to the New-
tonian simulation. This can be explained by the mentioned decreased distance between the γ̇w
for varying ReGτ as found by equation (5.15). This results in the non-Newtonian γ̇w for ReGτ < 395
laying above their Newtonian counterparts, resulting in a higher overall conductivity and lower
resistance for ReGτ < 395. This in turn makes the scaling of θTurbulentR less negative.
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When comparing the laminar and turbulent scaling parameters the following observations can be
made:

• It can be seen in Figure 6.6c that the turbulent σeff values are slightly higher than their laminar
counterparts. However, the laminar σeff values grow faster with θLaminarσ = 0.46 than the turbulent
ones characterised by θTurbulentσ = 0.30. Therefore there is a possibility that the laminar effective
conductivity is higher at some point in the transition region. The inverse can obviously be said of
the resistance scaling.

• That there are unknowns in the transition region can also be seen in the in the power number
scaling in Figure 6.6d. Just as with the Newtonian simulations the power number clearly favours
the laminar simulations due to the lower pumping power involved i.e. high Po. The approximate
exponential decay of the laminar Po, however, is larger with θLaminarPo = −1.82 than the turbulent
scaling of θTurbulentPo = −1.04. This leads to the Po for ReGτ = 110 and ReGτ = 180 being almost
equal, raising the question if the turbulent Po will be higher then the laminar Po, somewhere in
the transition region.

Apart from the unknowns concerning the transition region, the above mentioned results also only con-
cern one shear rate region with subsequent physical channel half height. To better understand the
effect of turbulence on the conductivity of CB in the transition region, as well as for more shear rate
regions, the next section will pit the laminar and turbulent conductivity field against each other in a more
broad sense.

(a) σ(z) and σRMS(z) (b) Internal Resistance R

(c) Effective Conductivity σeff (d) Power Number Po

Figure 6.6: Figure 6.6a shows the mean and fluctuating conductivity curves σ for the shear thinning turbulent simulations
(n = 0.6) given the channel height Hphy = 0.286. The rest of the figures represent the ReGτ dependence of the

non-dimensional power number Po, CB resistance R and effective conductivity σeff . The scaling parameters θ from equations
(6.5), (6.6) and (6.7) are fitted to the turbulent and laminar data represented by Reτ ∈ [60, 110] and Reτ ∈ [180, 395]

respectively.
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6.4.4. Non-Newtonian Laminar vs Turbulence Resistance and Effective Conduc-
tivity Results

This section will further study the laminar and turbulent conductivity and effective conductivity charac-
teristics in the transition region. The aim of this section is to answer the following two questions.

• How do the laminar and turbulent conductivity and effective conductivity compare when they
occupy the same region in the conductivity curve, i.e., they have equal γ̇w?

• How does this difference change when different parts of the conductivity are considered, i.e., for
different channel heights Hphy?

The questions originate from a closer inspection of the shape of the laminar and turbulent shear rate
profiles. The nondimensional average shear rate profiles of turbulent flows are lower, but do not show
the dip in the middle of the channel compared to the corresponding laminar flow profiles (as can be seen
in Figure 5.11a). Therefore, the question remains whether the characteristic shape of the turbulent flow
profile is preferable compared to a laminar flow profile, when considering the total electric resistance
of a CB suspension. This comparison is most relevant in the transition region where for equal pumping
power and channel height, either a turbulent or laminar flow profile can be obtained.

A side-by-side study will be conducted to gain insights into the conductivity and resistance character-
istics of shear-thinning laminar and turbulent flow profiles with viscosity exponent n = 0.6, represented
by ReGτ = 110 and ReGτ = 180 respectively. This side by side comparison will represent the transition
region for which the laminar flow profile will start exhibiting turbulent characteristics. To find out which
flow profile in this transition region is favorable, different channel half heights Hphy will be considered.
The chosen Hphy will result in varying shear rate ranges representing drastically different regions of
the experimental conductivity curve found by Youssry [86].

To create a equal comparison with the same γ̇w and Hphy, a single ReG,Transitionτ is chosen to rep-
resent both the flow profiles. It is therefore assumed that there is such a ReG,Transitionτ for which an
infinitesimal increase in ReGτ results in the switch from the laminar flow profile to the flow profile rep-
resented by ReGτ = 180. Due to the limitations of the current fluid dynamics model, the exact value
for ReG,Transitionτ , given a power-law fluid with n = 0.6, could not be determined. Therefore, as an ap-
proximation ReG,Transitionτ = 145, exactly in between the laminar Reτ = 110 and transitional turbulent
Reτ = 180 simulation.

Table 6.4: Physical units for Laminar vs Turbulence conversions

Hphy [m] γ̇Transitionw [s−1]
0.131 1000
0.292 313
0.654 100
1.46 31.6
3.28 10

Using equation (6.8) and the transitional wall shear rate γ̇
(110)
w = γ̇

(180)
w = γ̇Transitionw , chosen to

represent different regions on the conductivity curve, the varying Hphy are found. Using these physical
parameters, represented in table 6.4, the conductivity curves and effective conductivities are calculated.

The average and root mean square fluctuating conductivity fields are shown in figure 6.7a forHphy =
[0.131, 0.654, 3.28]. It can be seen that on average the laminar simulation has a higher conductivity but
shows a dip in the center line region, for H > 3.28 [m]. The range of relative increase in average
conductivity between the laminar simulation and the turbulent simulation varies from 22% to 50%, with
the disparity increasing as the value of Hphy increases or γ̇Transitionw decreases.

The effect the turbulent and laminar flow fields have on the effective conductivity is shown in figure
6.7b. Here it can be seen that over the full range of Hphy and corresponding γ̇Transitionw considered, the
laminar effective conductivity outperforms its turbulent counterpart. Just like the average conductivity
the difference in σeff diminishes for decreasingHphy and subsequent increasing γ̇Transitionw . Specifically
the relationship between σeff and Hphy is characterized by a negative power index ψH from equation
(6.6) with ψLaminar

H = −0.44 > ψTurbulent
H = −0.54.

6.4.5. Non-Newtonian Conductivity and Resistance Results Summary
To sum up the non-Newtonian conductivity results, the following observations are considered.
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• When considering the non-Newtonian rheology, a decrease in resistance is found, when com-
pared to the Newtonian results. However, the rate at which the resistance decreases for increas-
ing ReGτ seems less pronounced.

• There is clearly a different non-dimensional scaling involved, when for the laminar and turbulent
regimes, i.e. different θ and ψ.

• When comparing the laminar and turbulent conductivity fields with the same γ̇Transitionw over varying
Hphy, the laminar effective conductivity is lower in all the cases considered.

How the above-mentioned observations can be interpreted and what they mean for SSFB design will
be discussed in the next and final section of this chapter.

(a) σ and σRMS (b) Effective conductivity σeff

Figure 6.7: Figure 6.7a shows the average and RMS fluctuating conductivity field, obtained from the laminar
(ReGτ = 110, n = 0.6) and turbulent (ReGτ = 180, n = 0.6) non-Newtonian simulations. The simulations are dimensionalised
for the different channel heights found in table 6.4. For the conversion to physical units the Reynolds number is taken to be
equal, resulting in equal γ̇w for both the laminar and turbulent simulation. Figure 6.7b shows the effective conductivity for the
same conversions, obtained from the FV potential calculation. There are clearly two different scaling laws ψ for the laminar and

turbulent simulation, where the Laminar conductivity is higher throughout.

6.5. Discussion
In this section, the reliability and generality of the findings regarding the turbulent effects on CB resis-
tance and conductivity are presented. Subsequently, this final section will be concluded by assessing
the implications of the current findings on SSFB design.

6.5.1. Reliability and Generality of Results
There are some notes to be made on the reliability and generality of the results on the effect of turbu-
lence on the conductivity and resistance of a CB suspension.

The first discussion point concerns the resolution of the laminar flow simulation. For the laminar
simulation at (ReGτ = 60, n = 1) and (ReGτ = 110, n = 0.6), the actual γ̇min should be zero in the middle
of the channel. However, as stated in Section 5.5, due to the resolution of the simulation in the middle
of the channel, the shear rates never really go to zero. This overestimation of the shear rate in the
center of the channel results in an over- or under-representation of the local conductivity dependent
on the height of γ̇w. However, due to the small region this concern and the larger influence of other
assumptions, this effect will have a marginal effect on the final conclusions.

The next discussion points are related to the choice of the CB conductivity curve and how this
choice affects the generalizability of the current results. There are two statements to be made to this
end. First, within nonaqueous CB suspensions the shear rate conductivity curve changes with the
concentration and type of CB used, as stated in section 2.1.3. The conductivity of all CB concentrations
shown in figure 2.2 do, however, increase from a certain point onward. In these increasing regions, the
same effect will be found as represented in the current results. Second, in addition to the differences
within nonaqueous CB suspensions, there are also aqueous CB suspensions that show an order of
magnitude higher conductivity at rest [48][85][57]. However, for these aqueous CB suspensions, there
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are no conductivity shear rate relations found in the literature. If this data becomes available and the
conductivity characteristics turn out to differ significantly with respect to the non-aqueous results used
here, the current simulation setup could be used to determine the effect of turbulence on aqueous CB
conductivity.

The last discussion point concerning the applicability of the current results has to do with the over-
estimation of the electrical resistance. The determination of Rtot assumes that the electron travels the
entire vertical length of the channel. Due to the CB conductivity σ being orders of magnitude lower
than the ionic conductivity κ, reactions will predominately take place near the current collector [64].
Therefore, the path of the electron will be much shorter, reducing the electrical resistance. Because
reactions will most likely take place near the wall, the conductivity at the wall becomes increasingly
important. This is favorable for the laminar conductivity profile, which shows significantly higher con-
ductivity near the wall. However, to quantify this exact effect, the full electrochemical performance, as
described in section 2.1.4, needs to be modeled.

6.5.2. Effects of turbulence on SSFB Design
The main observations from the current research and the consequences for SSFB design will be dis-
cussed here.

Impact of Turbulent Flow on CB Suspension Conductivity in a SSFB: Key Obser-
vations
Three observations resulting from the presented research significantly impact our understanding of the
influence of a turbulent flow field on the internal conductivity of a CB suspension within a SSFB. These
two observations are:

• The extreme shear thinning rheology of a CB suspension acts as a damper on the development
of turbulence in a channel, increasing the ReG,Transitionalτ for which the transition from laminar to
turbulence occurs. This means that significant pumping power and drastically increased fluid
velocity or a larger channel height are needed to obtain turbulent flow. Not only the studied shear-
thinning trend of the viscosity (represented by n) but also the absolute height of the currently CB
viscosity (represented by K) acts as an amplification to this consequence.

• The characteristic shear rate shape of the turbulent flow with respect to laminar flow does not
create an advantage in the characteristic conductivity field of the respective CB flow fields. Specif-
ically, on average the turbulent shear rate is lower, where this decrease is most pronounced near
the wall. Since the experimental conductivity curve increases for increasing shear rate [86] a
higher local shear rate generates a higher local conductivity. This already results in an overall
worse effective conductivity when considering the Ohmic losses over the full channel. When the
reactions are taken to take place near the current collector, as expected, the Ohmic losses of the
turbulent flow profile will be even worse as compared to its laminar counterpart.

• When a larger fixed height is chosen, pumping harder and consequently reaching a turbulent state,
results in a better conductivity simply because the conductivity improves for increased shear rate.
However, the next section will dive into the reasons why this larger channel height is unfavorable
in SSFB design.

Therefore, two things can be concluded. First, given an SSFB design, pumping harder improves the
effective conductivity, but when a turbulent state is reached, the rate at which the conductivity improves
decreases. This is due to the unfavorable characteristic shear rate profile associated with turbulent
flow. Second, it will not be likely for turbulence to occur in an SSFB due to fluid rheology, resulting in a
damping effect on turbulence. This will be explained next.

The Impact of the Shear-Thinning Rheology on Turbulence Occurrence in a SSFB
That a SSFB design is unlikely to opt for the increase in pumping power or the increase in channel
height needed for turbulence to occur, can be explained by the negative effect both decisions would
have on battery efficiency. This has two main reasons:

• Channel Height Typically large electrode dimensions are not found in SSFB designs [48][22].
This is due to the discussed relatively low conductivity of CB restricting the reactions to the region
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near the current collector. The channel being larger therefore results in the pumping of anolyte
and catholyte fluids that will never react. This can have a negative impact on the overall efficiency
of the battery.

• Pumping Power The electrical efficiency of the battery is reduced when pumping the catholytic
fluids through the channel, as a greater portion of the available energy is consumed for pumping
instead of being stored. Apart from this obvious negative effect, it also increases the average
fluid velocity. Because of the limited current in common SSFB, this high fluid velocity results in a
limited amount of pumped reactant gaining the chance to react before leaving the electrochemical
stack. This can also have a negative impact on the efficiency of the battery.

The limitations mentioned above for an efficient SSFB design will make it unlikely that turbulence
will occur in a flow battery with the channel dimensions used in this research. Given that turbulence
also does not have a positive effect on the conductivity of the CB, this can be seen as a positive thing.
However, pinpointing the exact pumping power or ReG,Transitionalτ for which the transition to turbulence
occurs and how this changes for different types of channels and rheologies is still interesting to study.
Also the positive effects turbulence can have on the mass transfer of active particles are definitely
interesting to study, as will be discussed in the recommandations.



7
Conclusion and Recommendation

Due to the intermittent electricity production of solar and wind power plants, the transition to renewable
energy relies heavily on energy storage. As a safer, more scalable, and longer-lasting alternative to
conventional battery packs, Flow Batteries are being built. To improve on this concept Semi-Solid
electrolytes are being studied requiring a switch from Carbon Felt to a Carbon Black suspension as
conducting media. The conductivity and rheology of such a Carbon Black suspension is found to be
strongly dependent on shear rate. This leads to the question of what effect a turbulent flow profile has
on the electrical resistance and pumping power of an SSFB. The goal of this thesis was to determine
the effect of turbulence on the internal conductivity and total electrical resistance of a carbon black
suspension inside a SSFB. To this end, a fluid dynamics model was developed as well as a model to
describe the electric potential inside a variable conductor. This chapter will discuss the conclusions
that follow from this work and will follow up with some recommendations for further work.

7.1. Conclusion
The Filter Matrix Lattice Boltzmann Method (FM-LBM) was implemented to run on a GPU to simulate
non-Newtonian turbulent fluid flow within a reasonable time frame. The FM-LBM was chosen for its
stability for low viscosity, which was benchmarked by simulating flows in the laminar non-Newtonian
and Newtonian turbulent regimes. The discrepancies of the laminar simulations results, compared
to analytical data, were well within the error margin, where the turbulent simulations showed small
deviations in the first-order turbulent statistics compared to statistics reported in the literature [54][39].
These small deviations could, however, be explained due to an insufficient spatial resolution, and the
marginal effect it had on further research was considered. The GPU implementation shows a three-fold
improvement over resent CPU implementations, but the low efficiency compared to memory bandwidth
leaves room for improvement [88][21].

Using the FM-LBM, non-Newtonian channel flow characteristics resembling CB suspension rhe-
ology were simulated in the transitional turbulence Reτ = 110, low turbulence Reτ = 180 and high
turbulence Reτ = 395 regimes. The turbulent characteristics of the CB suspension were investigated
by approximating the CB rheology using the power-law viscosity model. The investigation focused on
the impact of decreasing the power index, denoted as n, which indicates an increase in shear-thinning
viscosity characteristics assosiated with the CB rheology. These non-Newtonian turbulent channel flow
results demonstrated a similar turbulence characteristics with decreasing n as found by comparable re-
search done on pipe flows [70][30]. Compared to Newtonian turbulence, shear-thinning turbulent flows
exhibited a damped turbulent effect increasing the general Reynolds number for which the flow transi-
tioned from a turbulent to a laminar regime (ReG,Transitionτ ). This increase in ReG,Transitionτ was also the
most important influence found on the characteristics of the shear rate required for the CB conductivity
results.

To determine the effect of turbulence on the conductivity and electrical resistance of a CB suspen-
sion, the shear rate profiles were converted to conductivity profiles using the experimental data found
by Youssry et al. [86]. The finite volume method was used to describe the potential field, generated
by an applied voltage, inside the full SSFB channel, to determine the total CB resistance. The scaling
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of this resistance as well as the effective conductivity with respect to ReGτ and the channel half height
Hphy were studied.

For a large constant Hphy, an increase in ReGτ and subsequent dimensional shear rate presented
improved conductivity profiles and subsequent CB resistance when considering the Newtonian limit.
However, the increase in pumping power significantly outweighed the slight positive effect the higher
ReGτ turbulence had on the conductivity. Both the decrease in resistance as the increase in pumping
power became less pronounced when considering shear-thinning rheology. In the transition region from
laminar to turbulence, the laminar conductivity profile even resulted in better conductivity characteristics
for the wide range of channel heights considered.

Turbulence therefore has an overall negative effect on the pumping and Ohmic losses inside an
SSFB when considering the electron resistance of the non-aqueous CB suspension studied in this re-
search. Due to the relatively high viscosity of the CB suspension considered, and the damped turbulent
effect due to its shear-thinning characteristics, turbulence is not something readily encountered in SSFB
design. However, the exactReG,Transitionτ and pumping power scaling for varying CB suspensions needs
to be established for different channel geometries to determine the SSFB designs for which turbulence
modeling can be excluded.

7.2. Recommendations
The further recommendations for this research can be subdivided into three categories. First the further
research in optimizing the electrochemical model is discussed. Then further research on the modeling
of turbulent non-Newtonian flow characteristics is proposed. And finally some recommendations for
further numerical method improvements are discussed.

Recommendations for further study's into the Electrochemical Performance of
a SSFB
In order to gain a comprehensive understanding of the impact of turbulence on the electrochemical
performance of a semi-solid flow battery (SSFB), it is necessary to develop a coupled electrochemical-
transport model. As described in section 2.1.4, this model requires the simultaneous solving of the
mass transfer, potential and momentum equations, and a model for the active surface area of CB in
the electrolyte. With this electrochemical performance model the following effects of turbulence on the
performance of a SSFB can be studied:

• Ohmic Losses The model will have to describe the location of the reactions making it possible
to improve the description of the effects of turbulence on the Ohmic losses. Given the character-
istic conductivity profiles of laminar and turbulent flows, and the fact that the reactions will most
likely take place near the current collector, it is expected that turbulence will have an even more
detrimental effect when reaction location is considered.

• Mass Transport Limitations With the proposed model, the depletion of active material near
the current collector can be described. This will enable the study of the turbulent effects of mass
transfer limitations in a SSFB. Given that turbulent flow generatesmass convection in the direction
of the current collector, turbulence is expected to improve the mass transport limitations of a
SSFB.

• Channel Geometry The flow profile and subsequent electrochemical performance of a SSFB
will depend greatly on the channel geometries. Studying the effect of turbulence on SSFB perfor-
mance metrics considering different channel geometries and porous electrodes is therefore an
interesting research direction.

Recommendations for further non-Newtonian turbulence research
In order to further improve the understanding of the turbulent characteristics of the CB suspension, the
following research directions are proposed.

• Time Dependant Rheology To improve the characterisation of the CB suspension flow profile,
further research is advised to incorporate rheological models that better represent the CB rheol-
ogy. Specifically, given the strong shear history dependence of the CB rheology, incorporating
this into the fluid model might drastically change the characteristics of the (turbulent) flow profile.
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• Transitional TurbulenceWith this improvedmodel research into an appropriate scaling forReTransitionτ

and the pumping power needed for operation is advised. This will help determine for what SSFB
designs turbulence can be excluded.

Recommendations for further FM-LBM GPU implementation optimisation
To improve the current numerical setup the following recommendations can be made.

• Grid Refinement Due to the higher resolution requirement near the wall, local grid refinement
in this region will improve the overall results, while reducing the memory requirements. This will
enable the increase in computational domain needed to determine ReTransitionτ .

• Shared Memory Using shared memory will drastically improve the computational efficiency and
speed of the GPU implementation of the FM-LBM. This will shorten the simulation time and in-
crease research output.
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Miscellaneous
This master thesis represents the culmination of my two-year master’s program in Applied Physics at
the Technical University of Delft. I had the privilege of conducting this research within the group of
Transport Phenomena in Nuclear Applications, located inside the TU Delft Reactor Institute (RID). I am
grateful to Dr.Ir. Martin Rohde, the supervisor and group leader of this academic group, for providing
me with guidance and support throughout this endeavor.

The unique nature of the group of Transport Phenomena in Nuclear Applications allowed me to
explore and combine the academic fields of physical transport phenomena and energy physics. This
perfectly aligned with my academic focus, as I have dedicated my studies to these two fields of physics.
Consequently, this master thesis represents the final work for my chosen track, Physics of Energy.

I would again like to express my sincere gratitude to Dr.Ir. Martin Rohde for his exceptional supervi-
sion. His expertise, dedication, and continuous support have been instrumental in shaping the direction
and quality of my research. Furthermore, I would like to extend my appreciation to Dr.Ir. Danny Lath-
ouwers for his help with the implementation of the finite volume method. Additionally, I would like to
thank Dr. Erik Kelder and Dr. Willem Haverkort for their guidance in the field of electrochemical mod-
eling, and Dr. Matthias Moller for his support in parallel programming and GPU implementation. Their
contributions have significantly enriched the depth and breadth of my thesis.

I would also like to acknowledge the previous work done by Willemijn Peters, which provided a
solid foundation for my research. Her insights and efforts were invaluable in getting me up to speed
and facilitating the progress of my work. Finally, I would like to give a shout-out to Mees Wortelboer,
with whom I collaborated on parts of the numerical setup and talked over all the aspects of the roller
coaster that is the master thesis end project.

For any inquiries or further discussion about my research, I can be reached at danielvanbemme-
len@outlook.com. I ammore than happy to provide additional insights and support to those interested.
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