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ABSTRACT

Microfluidic liquid-liquid extraction is a fast and safe alternative for transferring radioiso-
topes from one carrier liquid to another. This thesis investigates the effect of the chan-
nel geometry on the flow patterns and leakage observed in a two-phase microfluidic T-
channel using n-heptane-water and toluene-water systems. The color-gradient RK mul-
tiphase Lattice Boltzmann Method is used in combination with multiphase fluid-fluid
and fluid-solid boundary conditions.

As Capillary numbers increase, the flow pattern changes from slug flow to parallel flow
due to the increasing dominance of viscous forces. The main parallel flow regime oc-
curs for water Capillary numbers above 2×10−4 and n-heptane Capillary numbers above
1.25×10−4. In the transition region between slug and parallel flow, a flow pattern is ob-
served where an eventual parallel flow pushes out several initial slugs. In accordance
with previous research, leakage at the outlet of the simulated T-channel always occurs
in either direction. For volumetric flow rate ratios Φw ater /Φtol uene below 0.87, leakage
of toluene into the water outlet occurs. Above this value leakage into the toluene outlet
takes place. The observed rate is in disagreement with the theoretically and experimen-
tally found value of 0.66 for a Y-channel. Near the transition flow rate ratio, droplets
leak into the outlet whereas parallel outlet flow behaviour occurs further away from the
boundary.

Generally, parallel flow is observed for a broader range of low inlet velocities compared
to a Y-channel, with similar overall leakage performance. Experimental research for con-
firmation is a required follow-up. The current implementation of the Lattice Boltzmann
method was not able to simulate transition flow as observed in experiments. Thus, fur-
ther improvement of the multiphase Lattice Boltzmann Method is desirable.
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1
INTRODUCTION

The extraction of solvents from one liquid to another is a common challenge in many
fields of research and industrial applications. Liquid-liquid extraction using microchan-
nels shows great potential in facilitating efficient and safe extraction. Microfluidic sys-
tems have caught interest due to the high surface-to-volume ratio resulting in high mass
and heat transfer ratios [1–4]. Small volumes in microchannels allow for higher control
of the fluid flow and a more controlled extraction, making them suitable for dealing with
dangerous chemicals [5, 6]. In addition, their small scale enables highly parallelizable
setups [7, 8]. This is desirable in applications that require low residence times, such as
radioisotope production. As a result, liquid-liquid extraction using microchannels has
been implemented in a variety of different applications such as industrial scale metal
extraction [9], bio-medicine [10] and sample pre-treatment processes [11]. Yet the be-
haviour inside microchannels remains hard to predict, raising the need for additional
research.

In the current work the implementation of microfluidic systems is investigated in
the field of medical radioisotope production. As radioisotopes have a finite half-life, mi-
crofluidic extraction is investigated as an option to minimize residence time inside the
separation stage. The short diffusion distance could allow for shorter extraction times
[12]. Additionally, the small-scale ’online’ application of microfluidic extractors lowers
the radiation exposure to researchers.

1.1. MICROFLUIDIC FLOW
Microfluidics is the domain of science and technology concerned with fluid behaviour
at a small scale (< 1mm) [13]. The microfluidic channel is a common instrument within
microfluidics. In microfluidic liquid-liquid extraction (LLE), two immiscible fluids enter
a microchannel from separate inlets. Often one fluid is aqueous and the other one is
organic to ensure immiscibility. In the channel the two fluids propagate together, with
mass exchange taking place as a result of differing solubilities of the solute in the two
phases. A schematic example of microfluidic LLE can be seen in Figure 1.1.
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Figure 1.1: Schematic of liquid-liquid extraction between two immiscible fluids in a double-Y microchannel.
Solutes are transferred from the blue phase to the green phase.

Figure 1.1 depicts the ideal case where the fluids flow parallel from the inlets to the
outlets. However, this is not the only flow pattern observed. The flow pattern plays an
important role in the surface-to-volume ratio and therefore in the efficiency of the ex-
traction. Moreover, the flow pattern influences the amount of leakage at the end of the
channel, which in turn determines whether an additional separation step is required.

FLOW PATTERNS

The influence of fluid properties and channel architecture on microfluidic flow is a topic
that has been of interest the last decades. As channel widths are typically a few hun-
dred micrometers, the dominating forces vary from a traditional, larger-scale fluid sys-
tem. When considering the flow of multiple fluids at the micro scale, their interaction at
the interface plays a more important role while gravity is often negligible [14, 15]. Flow
consisting of multiple fluids is called multiphase flow. Generally, multiphase flow types
can be classified in 4 main categories: parallel flow phenomena, slug flow phenomena,
droplet flow phenomena and transition flow phenomena. In literature, many different
names have been used to describe the observed patterns [1, 15–17]. In order to prevent
ambiguity, each flow pattern will be briefly introduced.

(a) Parallel flow, adapted from
Darekar et al. [1].

(b) Parallel flow, adapted from
M.Kashid and L. Kiwi-Minsker [18].

(c) Parallel flow, adapted from Zhao et
al. [19].

Figure 1.2: Examples of parallel flow patterns in microchannels.

Parallel flow patterns include all patterns in which the two phases flow side by side.
This can happen on either side of the channel (Figure 1.2a), or in an annular way where
one phase is enclosed by the other phase. (Figure 1.2b). Slug and droplet flows are flows
in which either of the phases is dispersed in the other phase. In slug flow, the dispersed
phase forms slugs that occupy (nearly) the entire width of the channel. In droplet flow,
the dispersed phase droplets are separated from the wall by a layer of the continuous
phase. Examples of different slug and droplet flows can be seen in figures 1.3-1.4.
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(a) Slug flow, adapted from Darekar et
al. [1].

(b) Slug flow, adapted from M.Kashid
and L. Kiwi-Minsker [18].

(c) Slug flow, adapted from Zhao et al.
[19].

Figure 1.3: Examples of slug flow patterns in microchannels.

(a) Droplet flow, adapted from Darekar et al. [1]. (b) Droplet flow, adapted from Zhao et al. [19].

Figure 1.4: Examples of droplet flow patterns in microchannels.

Transition flow is less clearly defined and it encompasses flow patterns often referred
to as slug-droplet flow (Figure 1.5a-1.5b) and deformed interface flow (Figure 1.5c). In
this work, transition flow will be referred to as the phenomena of a starting parallel flow
that breaks up into a slug/droplet flow inside the channel at a fixed point as explained
by Z. Liu [14].

(a) Slug-droplet flow, adapted from
Darekar et al. [1].

(b) Slug-droplet flow, adapted from
M.Kashid and L. Kiwi-Minsker [18].

(c) Transition flow, adapted from
M.Kashid and L. Kiwi-Minsker [18].

Figure 1.5: Examples of deformed interface flow patterns in microchannels.

The aforementioned flow patterns are dependent on fluid characteristics and chan-
nel architecture. Qian et al. give a broad overview of possible channel architectures [15].
In this work T-channels (Figure 1.6a) and Y-channels (Figure 1.6b) are considered, as
these are the most researched and offer the most reference results. However, more elab-
orate channel types such as axisymmetrical channels [20] and cross-shaped microchan-
nels [21] have also been researched.

(a) Schematic of a T-channel, adapted from M.Kashid and L.
Kiwi-Minsker [18].

(b) Schematic of a Y-channel, adapted from M.Kashid and L.
Kiwi-Minsker [18].

Figure 1.6: Two commonly implemented microchannels, the T-channel and the Y-channel.
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The effect of fluid properties has been investigated Darekar et al. using a Y-channel
[1]. They experienced slug flow as a result of a dominance in interfacial tension. Droplet
flow occurred in regions where the inertial force is large enough to compete with the
interfacial force. Parallel flow was observed when the inertial force dominates. Crucially
they found that an increase of the dispersed phase flow rate leads to parallel flow.

In their research on the flow of immiscible fluids in a rectangular T-channel, Zhao
et al. found similar results with higher Weber numbers (regions where inertial forces
dominate over interfacial tension) leading to parallel flow [19]. This recurring pattern is
also confirmed by Dessimoz et al. using a Y-channel [16]. Zhao et al. found slug flow at
high continuous to dispersed velocity ratios, with the slug size decreasing as the inlet ve-
locity increases. Even though they observed parallel flow at lower Weber numbers than
Darekar et al., they did experience unstable flow interfaces for higher Weber numbers
[19]. Y-channel research showed mixed results regarding unstable interface forming at
high Weber numbers, with Darekar et al. not experiencing this phenomena while Dessi-
moz et al. did [16].

Besides the shape of the microchannel, the material choice plays a role in the fluid
behaviour as shown by Salim et al [22]. It affects the way in which fluids ’stick’ to the
wall. This phenomenon is called the wettability of the channel wall. The more wettable
a wall is, the more a fluid attaches to it. Upon investigating the channel architecture
and material choice, Darekar et al. concluded that all flow transitions seem to occur at
lower flow rates for smaller diameter channels. In addition, if the wall is less wettable
for the dispersed fluid, slug flow occurs more easily [1]. This agrees with the research
done into wettability by Zhao et al. [23]. As a reference, M. Kashid and L. Kiwi-Minsker
[18] compared flow pattern maps from T and Y channels. They found a broader region
of deformed interface flow for a Y-channel compared to a T-channel. They created a
general flow type prediction table based on these results, in combination with a set of
dimensionless numbers that describe the different forces.

To further compare channel architectures, research has been done into specific flow
patterns. Ushikubo et al. [24] and Shui et al. [25] focused on the formation of droplets in
both T and Y channels, investigating the effect of fluid properties and channel architec-
ture on the droplet size. However, in the current implementation parallel flow is the most
interesting domain. Goyal et al. have shown that the extraction of radioactive copper-64
can be done with an extraction efficiency of up to 95% using parallel flow [26]. In the ex-
traction of radioisotopes the minimization of residence time is one of the key interests.
It is therefore desired to operate with no leakage at the outlet. When leakage occurs,
a certain amount of the organic fluid leaks into the water outlet and/or vice versa. In
additional to practical issues such as the need for an additional separation step, there
are strict requirements for the purity of radio-pharmaceuticals that emphasize the need
for proper phase separation [27]. This outlet leakage has not yet been researched exten-
sively. Most recently, Z. Liu investigated flow patterns and leakage phenomena prevalent
in a Y-channel both experimentally and numerically [14]. From these experiments, leak-
age was found at all inlet velocities when using water and toluene, which is undesirable.
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A T-channel could therefore offer a valuable alternative if the amount of leakage is lim-
ited.

1.2. PROBLEM DESCRIPTION AND THESIS OUTLINE
In this present work two immiscible fluids in a T-shape microchannel will be investigated
using numerical simulation as a cost-effective alternative to experiments. The power of
numerical simulation in microfluidics has been proven extensively [28–32]. The result-
ing flow patterns will be compared to the results obtained by Z. Liu for a Y-channel [14].
In addition, the leakage at the outlet of the T-channel will be simulated for various mass
flow ratios and compared to the results obtained by Z. Liu. By doing so, a better decision
can be made regarding which channel architecture is more suitable for the extraction of
radioisotopes. The fluid properties will be portrayed by means of the Capillary number,
which is the ratio between viscous and interfacial forces. To facilitate this comparison,
the same liquids will be used as used by Z. Liu. The following research questions have
been defined:

1. How do the observed flow patterns in a simulated T-channel with water and n-
heptane compare to the flow patterns in a Y-channel as observed by Z. Liu?

(a) How does the occurrence of flow patterns differ between T and Y-channel
research as a function of the fluid Capillary numbers?

(b) How do the transitions between regimes differ between T and Y-channel sim-
ulation?

2. How do the observed flow patterns in a simulated T-channel compare to experi-
mental results for a T-channel based on the evaluation of dominating forces?

3. What leakage is observed at the end of the T-channel as a result of parallel flow
using water and toluene compared to the results obtained for a Y-channel by Z.
Liu?

In order to answer these questions Chapter 2 discusses the required theory associ-
ated with multiphase flow and the Lattice Boltzmann method. Subsequently, the multi-
phase Lattice Boltzmann model variant used will be discussed in detail in Chapter 3. In
Chapter 4 the obtained results will be presented and compared to the results found for
a Y-channel by Z. Liu. Finally an overview of conclusions and recommendations will be
presented.



2
THEORY

This chapter provides an outline of the physics behind multiphase flow and a dimen-
sionless framework in which fluid properties can be defined. Subsequently the general
principle of the Lattice Boltzmann Method is introduced, which provides a base for the
multiphase model used to simulate a T-channel.

2.1. FLUID DYNAMICS
In order to understand the behaviour in a microchannel, first fluid dynamics must be
discussed. Fluid dynamics is the study of the propagation of fluids, which can be char-
acterised by a set of main equations and dimensionless numbers. When dealing with
multiple fluids, the interaction between the two fluids will have to be taken into account
in the form of contact angles and interface tension. [33]

2.1.1. GOVERNING EQUATIONS
There are two important sets of equations in fluid dynamics that define the flow of fluids
at any scale: the continuity equation and the Navier-Stokes equations. The continuity
equation describes the mass flow in and out of a system and ensures mass conservation.
For a single fluid, this equation can be written using the fluid density ρ and velocity u
[34]:

∂ρ

∂t
+∇· (ρu) = 0, (2.1)

where ρu is referred to as the momentum density. The continuity equation translates
as: the sum of the density change over time and the flux of momentum density must be
zero. More generally, the right hand side of the equation contains a production (source)
term. However, flow where no additional mass is produced is considered. Hence this
term equals zero. In the case of incompressible flow, this equation simplifies into:

∇·u = 0. (2.2)

Together with the conservation of mass, the conservation of momentum is ensured
by the Navier-Stokes equations (NSEs). In the case of incompressible liquid flow, the
NSEs can be written in terms of the kinematic viscosity ν of the fluid in combination
with the material derivative:

D

Dt
= ∂

∂t
+u ·∇ (2.3)
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and the Laplacian operator:
∆=∇·∇. (2.4)

Using these mathematical definitions the incompressible NSE can be written as [34]:

ρ
Du

Dt
=∇p +ρν∆u+F. (2.5)

Equation 2.5 states that the change in momentum density (ρu) is due to three factors:
a pressure gradient (∇ρ), the viscosity times the velocity field (ρν∆u) and an external
force (F). Brennen et al. [33] provide an extensive overview of the application of these
principles in multiphase fluid dynamics.

2.1.2. MULTIPHASE FLOW
Generally, fluids are described based on their density ρ and their kinematic viscosity ν.
However, when working with multiphase flow, interfacial phenomena also need to be
taken into account. These interfacial phenomena can be defined using a set of interfa-
cial tensions σi .1 The interfacial tension between two liquids (or liquid-gas) will be re-
ferred to asσ. In addition to this fluid-fluid interaction, wetting at fluid-solid boundaries
plays an important role in microfluidic systems [25]. Wetting is a result of fluid-solid in-
teractions manifesting in a surface tension. The extent to which wetting takes place is
observed as the adhesion between a fluid and an interface. It can be described using the
contact angle θC , formed by the interfacial tension between the two fluids (or gas-fluid)
σLG and the surface tension from both liquids σSG and σSL . A schematic illustration of
the contact angle formed in a droplet at a solid interface can be seen in Figure 2.1.

Figure 2.1: The contact angle θc is formed by the liquid surface tension σSL , gas surface tension σSG and
liquid-gas interface tension σLG .

A smaller contact angle means that the liquid has a bigger affinity for the solid in-
terface and therefor it is more wetting. The contact angle also allows for differentiation
between hydrophilic (θc < 90◦) and hydrophobic (θc > 90◦) materials [35]. It is given by
Young’s law [36]:

cos(θc ) = σSG −σSL

σLG
. (2.6)

1It is important to differentiate well between interfacial tension (between two liquids) and surface tension
(between a liquid and a solid).
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The contact angle depends on many factors such as interface roughness [37] and
surface tension [38], ranging from macroscopic to molecular scales [39]. In practice,
the contact angle is measured macroscopically. When dealing with dynamic conditions
(moving liquids), hysteresis of the contact angle takes place. Contact angle hysteresis is
the phenomenon of the angle varying based on the fluid velocity and flow direction [35].
The implementation of the contact angle hysteresis is left out as it is tough to implement,
because the advancing and receding contact angles are unknown. For the interested
reader, Liu et al. discuss a possible implementation of the contact angle hysteresis [40].

2.1.3. DIMENSIONLESS NUMBERS
Based on the physics of fluids and multiphase flow, the system and material properties
can be defined in terms of dimensionless numbers. A big reason for this is the so-called
law of similarity [34]. The law of similarity states that fluids characterized by the same
dimensionless numbers obey the same physics when scaled by typical length and veloc-
ity scales. Dimensionless numbers typically relate time scales, length scales and/or the
influence of different forces to each other. In this research, 4 dimensionless numbers will
be used. They are described in table 2.1, based on fluid properties as well as the typical
length scale L. In this work the typical length scale is taken as the channel width.

Table 2.1: An overview of relevant dimensionless numbers and their formulas, along with the relation of forces
which they represent. In all the equations the characteristic length scale is denoted by L. Furthermore, the
fluid is described by its density ρ, velocity u and kinematic viscosity ν. In the Capillary and Weber number the
fluid interfacial tension is characterized byσ. The Bond number is dependent on the gravitational acceleration
g and density difference between the two phases ∆ρ.

Reynolds number2 Re uL
ν Inertial force / Viscous force

Capillary number Ca νρu
σ Viscous force / Interfacial tension

Weber number We ρLu2

σ Inertial force / Interfacial tension

Bond number Bo ∆ρg L2

σ Gravitational force/ Interfacial tension

When considering microfluidic flow the Bond number is typically very small. If the Bond
number is smaller than 0.05 the effect of gravity can be neglected [41]. Calculating the
Bond number for the fluids and channel architecture used in this research results in
6.25×10−4, hence the effect of gravity can be neglected.

In addition to dimensionless numbers, multiphase flow systems are often described
using ratios of volumetric flow rates. The volumetric flow rate Φ is the volume of fluid
that moves through a system per unit time. It can be calculated from the fluid velocity u
and the surface area A it flows through: Φ= u A.

2The Reynolds number is the only dimensionless number of these four that represents a force relation between
two intrinsic forces, the other three all concern the influence of multiple phases.
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2.2. COMPUTATIONAL FLUID DYNAMICS
Numerical simulations are a particularly powerful method of research in microfluidics.
As the NSEs rarely have an analytical outcome, the field of Computational Fluid Dynam-
ics (CFD) offers an alternative in the form of numerical simulation. CFD is cost-effective
as it does not require an experimental setup.

There is a vast amount of different CFD methods available. Each method comes with
its advantages and disadvantages. The most straight-forward form of CFD for multi-
phase flow is direct discretization of the Navier Stokes Equation using the Finite Differ-
ence method as described by S. Patanakar [42]. However, the simplicity of this method
comes at the cost of weak stability and poor conservation of mass [43]. A similar ap-
proach using the Finite Volume method solves the conservation issue, but it is difficult
to define for complex grid architectures [43]. As an alternative to these direct methods,
there is also a range of particle-based solvers that operate on the microscopic scale in-
stead of the macroscopic scale. Several particle-based methods more suitable for mul-
tiphase flow simulations are the Phase Field method [44], Volume of fluid methods [45,
46], Level-set methods [47, 48] and the Lattice Boltzmann method (LB). The LB method
simulates fluids as groups of particles using a probabilistic particle distribution. By do-
ing so, it is a method at the so-called mesoscopic scale. This scale lies in between micro-
scopic and macroscopic scale [34]. It is the method of choice for this research due to its
high parallelizability and ease of boundary condition implementation [49], in addition
to its strong connection to macroscopic conservation laws [34].

2.3. THE LATTICE BOLTZMANN METHOD
In order to properly convey the working of the LBM, its application on a single phase will
be discussed first. Chapter 3 will cover the used multiphase LBM in detail.

2.3.1. OVERVIEW
The Lattice Boltzmann method is based on the solution of the Boltzmann equation. The
Boltzmann equation describes the propagation of gases based on probabilistic particle
distributions [34]. These probabilistic particle distributions f (x,ξ, t ) are also known as
particle populations. They encompass the behaviour of a particle group based on its
position x, lattice velocity ξ and time t . From this particle population the macroscopic
moments can be calculated to find density and velocity:

ρ(x, t ) =
∫

f (x,ξ, t )d 3ξ, (2.7)

ρ(x, t )u(x, t ) =
∫
ξ f (x,ξ, t )d 3ξ. (2.8)

In addition to providing the macroscopic properties, the evolution over time of the
distribution function can be determined. This is done by solving the Boltzmann equa-
tion [34]:

∂ f

∂t
+ξi

∂ f

∂xi
+ Fi

ρ

∂ f

∂ξi
=Ω( f ). (2.9)
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This equation follows straight forward from the derivative of f to t . With i = x, y, z being
the Cartesian coordinates and Fi /ρ as the body force. The last term Ω( f ) is commonly
referred to as the collision operator. In fluid mechanics, this collision operator dictates
how the particle distributions interact with each other as a function of the fluid viscos-
ity. The original collision operator used by Boltzmann is a cumbersome double integral
over velocity space in order to make sure all two-particle collisions are accounted for
[34]. However, a much more often used and easy-to-implement collision operator is the
Bhatnagar-Gross-Krook (BGK) collision operator [50]:

Ω( f ) =− f − f eq

τ
∆t . (2.10)

The BGK collision operator can be interpreted as the tendency of the system f to fall
back to its equilibrium state f eq over a characteristic relaxation time τ, which depends
on the viscosity of the fluid. Using a mathematical Chapman-Enskog analysis it can be
shown that this simple operator is enough to recover the NSE and continuity equation
behaviour from the Boltzmann Equation [34].

Discretizing the Boltzmann equation into distribution functions fi associated with
specific directions i results in the Lattice Boltzmann equation (LBE) [34]:

fi (x+ci∆t , t +∆t ) = fi (x, t )+Ωi (x, t )+Si (x, t ). (2.11)

Equation 2.11 is one of the most important equations in the LBM. It describes how the
particle distribution propagates in direction i over 1 time step ∆t , due to the collision
operatorΩi and a source term Si .

The simulation grid is defined by a discrete time step ∆t and space lattice character-
ized by a spacing ∆x. By choosing a limited fixed set of directions, a discrete velocity set
{ei } can be defined. The most important aspect of this velocity set is that each velocity
maps a population exactly to another lattice point over a time step∆t . This way the spa-
tial grid is kept over time. The velocity sets used in LBM are named based on the number
of spatial dimensions d and the number of discrete velocities q in the form: DdQq . The
most commonly used velocity sets are D2Q9 and D3Q19 for 2D and 3D respectively. Both
of these can be seen in Figure 2.2. In order to make sure each velocity component maps
to a lattice point they are defined in terms of the lattice speed c =∆x/∆t . For D2Q9 this
results in:

[e0 ,e1 ,e2 ,e3 ,e4 ,e5 ,e6 ,e7 ,e8] = c

[
0 1 0 −1 0 1 −1 −1 1
0 0 1 0 −1 1 1 −1 −1

]
. (2.12)

By discretizing the velocity sets in this way, the macroscopic properties from equa-
tions 2.7 and 2.8 can be retrieved by a sum over the velocity sets [34]:

ρ(x, t ) =∑
i

fi (x, t ), ρu(x, t ) =∑
i

ci fi (x, t ). (2.13)
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Figure 2.2: Graphical illustrations of the D2Q9 and D3Q19 velocity sets. In both cases the zeroth component
e0 is given by the velocity [0,0]. Adapted from Krüger et al. [34].

2.3.2. EQUILIBRIUM DISTRIBUTION

The lattice speed of sound cs is related to the lattice speed c: c2
s = c2/3. The lattice speed

of sound is used to calculate the equilibrium distribution function that is used in the
BGK operator (Equation 2.10). The equilibrium function is derived using a so-called
Hermite expansion. Fortunately, only the first three terms are required to recover the
macroscopic characteristic of fluid dynamics [34]:

f eq
i (x, t ) = wiρ

[
1+ ei ·u

c2
s

+ (ei ·u)2

2c4
s

− u2

2c2
s

]
. (2.14)

In Equation 2.14 each velocity ei is assigned a specific weight wi to account for the mag-
nitude of the velocity. For the D2Q9 velocity set these weights correspond to:

w =


w0 = 4
9 ,

w1−4 = 1
9 ,

w5−8 = 1
36 .

(2.15)

Using again the Chapman-Enskog expansion the kinematic viscosity ν can be retrieved
as a function of the relaxation time τ [34]:

ν= c2
s

(
τ− ∆t

2

)
. (2.16)

2.3.3. STREAMING AND COLLIDING
The most common and intuitive way of implementing the LBM is by separating Equa-
tion 2.11 into a streaming and a colliding step. This implementation splits the LBE in
a separated local step (colliding) and a parallelizable non-local step (steaming). In the
collision step, the collision operator is computed, creating a local post-collision distribu-
tion f ∗

i . When using the previously introduced BGK collision operator, the discretized
collision step reads as:
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f ∗
i (x, t ) = fi (x, t )− ∆t

τ

[
fi (x, t )− f eq

i (x, t )
]

. (2.17)

After the post-collision distribution is computed locally, it is simply streamed along its
velocity direction i to a neighbouring lattice point:

fi (x+ei∆t , t +∆t ) = f ∗
i (x, t ). (2.18)

After streaming the physical properties of the system are calculated, which are then again
used for the calculation of the next equilibrium function in the collision step. This way
the process is repeated.

2.3.4. UNIT CONVERSION
An important aspect of the LBM is proper unit conversion. As the LBE is solved in a
discrete grid, it requires conversion factors in order to be matched to corresponding
physical properties. In other words, conversion factors (C ) between lattice quantities
(depicted with an asterisk * ) and physical properties are required. For example, when
connecting the channel length l [m] to the simulation channel length l∗ [lattice units]
([lu]), the the conversion factor Cl is used:

l∗ = l

Cl
. (2.19)

As any mechanical quantity can be described in terms of the SI quantities length l ,
time t and mass m, exactly three independent conversion factors are needed [34]. For
a full derivation of the used conversion factors see Appendix A.1. Conventionally, the
lattice time step ∆x∗ and ∆t∗ are set to 1, such that Cl =∆x and Ct =∆t .

The law of similarity (Chapter 2.1.3) is used to determine the conversion factors. It
implies that for identical flow behaviour, the simulation and real-world dimensionless
numbers must be exactly the same. For example, the Reynolds number must equate:

Re = ul

ν
= u∗l∗

ν∗
. (2.20)

Inserting the definition of the conversion factors from Equation 2.19 into Equation 2.20
yields a relationship between the conversion factors:

CuCl

Cν
= 1. (2.21)

2.4. MULTIPHASE LATTICE BOLTZMANN METHOD
Multiphase flow introduces contact angle phenomena and surface tension as additional
boundary conditions. Separating the two phases is an issue that has been tackled in
many different ways. Some examples of multiphase LBMs are the Multiphase Shan-Chen
model, the Free energy model and the Color-gradient RK model. All of which have been
described thoroughly by Huang et al. [49].
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In this research the Color-gradient RK model will be used. By not explicitly tracking
the fluid interface, it allows for strict mass conservation for each separate fluid, as well as
great flexibility in adjusting interfacial tension. Furthermore, it allows the user to sepa-
rately adjust density and viscosity ratios, with accurate performance over many different
viscosity ratios [51, 52]. When combined with the right collision operator it can even deal
with high density ratios [53].



3
MODEL DESCRIPTION

As argued in Section 2.4, the color-gradient Rothman-Keller (RK) model will be used.
First introduced by Rothman and Keller in 1988 [54]. The current implementation is
based on the implementation using a Multiple Relaxation Time (MRT) Collision operator
by Lallemand and Luo [55]. Some additions to this model will be made as proposed by
Ba et al. [53] and Liu et al. [40].

3.1. MODEL OUTLINE
The color-gradient model gets its name from the way in which it characterizes different
fluids. Each fluid k has a separate distribution function f k . Typically, the model uses a
’red’ and a ’blue’ fluid. A total distribution function can be defined from these separate
distribution functions:

fi (x, t ) =∑
k

f k
i (x, t ). (3.1)

Using Equation 2.13 the density and velocity can be calculated for the separate phases by
summing over f k

i , or for the total system by summing over fi . Analogous to the general
LBM, the algorithm for the color-gradient model consists of a streaming and a collision
step. However, a so-called recoloring step is added in between to separate the two flu-
ids. In the streaming step each phase f k is streamed separately from its post-recoloring
distribution f k+:

f k
i (x+ei∆t , t +∆t ) = f k+

i (x, t ). (3.2)

ei represent the velocities from the D2Q9 velocity set introduced in Section 2.3.1. The
collision step contains an additional second operator (Ωk )(2) (perturbation operator)
that takes care of interfacial phenomena between the two phases:

f k∗
i (x, t ) = f k

i (x, t )+ (Ωk
i )(1) + (Ωk

i )(2). (3.3)

In Equation 3.3, f k∗
i represent post-collision distributions. After the collision step the

single-phase distributions f k+ are redistributed from the total distribution.

3.1.1. COLLISION OPERATOR
The BGK collision operator introduced in Equation 2.10 introduces unwanted error terms
when recovering physical behaviour as shown by Huang et al. [56], especially when sim-
ulating multiple phases with different densities. A better alternative is the MRT collision
operator as described by Ba et al. [53]:

14
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(Ωk
i )(1) =∑

j
(M−1S)i j (mk

j −mk,eq
j )+∑

j
(M−1)i j C k

j . (3.4)

In order to be able to use this MRT collision operator, the distribution functions f k

are mapped to their moment space counterparts mk . A linear orthogonal transforma-
tion matrix M and its inverse M−1 are used to do so. Their values for the D2Q9 velocity
model can be found in appendix A.2. The moment space distribution functions can be
determined as follows:

mk
i =∑

j
Mi j f k

j , mk,eq
i =∑

j
Mi j f k,eq

j . (3.5)

Similar to the standard LBM, the equilibrium distribution function f eq can be de-
rived using a second order Hermite expansion. Alternatively, Ba et al. chose to imple-
ment a third order Hermite expansion. They found it cancels out the unwanted error
term that can occur in the third order velocity moment, while still fulfilling the first and
second order velocity moments given in Equation 2.13 [53]. Upon comparing both equi-
librium functions in the current research, a significant increase in computation time is
observed while no accuracy is gained. Hence the second order expansion is used:

f k,(eq)
i (x, t ) = ρk

(
φk

i +wi

[
1+ ei ·u

c2
s

+ (ei ·u)2

2c4
s

− u2

2c2
s

])
. (3.6)

As the D2Q9 is used, the weights wi as defined in Equation 2.15 remain. In Equation
3.6, ρk is the density of the individual phases. The density ratio of the fluids is ensured
using the parameter αk :

ρ1

ρ2
= 1−α(2)

1−α(1)
. (3.7)

This density ratio is included in the equilibrium distribution using a direction-dependent
factor φk

i :

φk
i =


αk , i = 0,(
1−αk

)
/5, i = 1,2,3,4,(

1−αk
)

/20, i = 5,6,7,8.

(3.8)

Furthermore, Equation 3.4 contains a source term C k
j that ensures the exact recovery

of the NSEs. A detailed explanation of the source term is provided by Ba et al. [53]. The
remaining matrix S is a diagonal relaxation matrix that specifies a relaxation rate si to
each velocity component in fi . s0, s3 and s5 are associated with conserved moments and
have been proven not to influence the derivation of the NSEs [57], therefore they are set
to 1. s1, s2, s4 and s6 are independent and can be adjusted for optimal stability. The
values as suggested by Lallemand and Luo [58] are used:

S = diag[1,1.63,1.54,1,1.92,1,1.92, s7, s8]. (3.9)

The remaining relaxation parameters s7 and s8 are related to the phase relaxation times:
s7 = s8 = 1/τ. In pursuance of a smooth transition of the relaxation time over the phase
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interfaces, an interpolation scheme as proposed by Grunau et al is used.[59]. This is
especially important if the difference between relaxation times τ1 and τ2 is large. The
full interpolation scheme can be found in appendix A.3. Analogous to the single-phase
LBM the simulation viscosity can be found from these relaxation times:

νk = c2
s (τk −0.5)∆t . (3.10)

3.1.2. PERTURBATION OPERATOR

The perturbation operator (Ωk )(2) is introduced to include fluid-fluid interfacial tension
into the LBM. Analogous to the collision operator, it is also implemented in the moment-
space as proposed by Liu et al [40]:

(Ωk )(2) = M−1
(

I− 1

2
S
)

MF̃s . (3.11)

The same relaxation matrix from Equation 3.9 is used in combination with a 9x9 unity
matrix I and the mapping matrices used in the collision operator. Ba et al. demonstrate
how the elements of the interfacial force matrix F̃s can be derived from the the interfacial
body force Fs and the extrapolated phase relaxation time τk [53]:

F̃S = Ak wi

(
1− τk

2

)[
(ei −u)

c2
s

+ (ei ·u)ei

c4
s

]
·Fs , (3.12)

where Ak is the fraction of the interfacial tension due to the fluid k, which must satisfy∑
k Ak = 1. The interfacial body force Fs depends on the interface tension coefficient σ,

the local curvature of the interface κ and the gradient of the phase field ∇ρN :

Fs =−1

2
σκ∇ρN . (3.13)

The phase-field ρN is a crucial parameter in the color-gradient model. As the color-
gradient RK method does not track the fluid interface explicitly, the phase field is used to
locate fluid interfaces. As a result, the interfacial force is only implemented in the region
where fluid mixing takes place. The phase field is merely a function of the fluid densities:

ρN = ρ1 −ρ2

ρ1 +ρ2
. (3.14)

As a result, the normal vector n at the fluid interface can be expressed in terms of the
phase-field:

n = −∇ρN∣∣∇ρN
∣∣ . (3.15)

This allows the interface curvature κ to be numerically implementable with a finite dif-
ference scheme which approximates the actual curvature:

κ= nx ny

(
∂

∂y
nx + ∂

∂x
ny

)
−n2

x
∂

∂y
ny −n2

y
∂

∂x
nx . (3.16)
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3.1.3. REDISTRIBUTION
As the LBM does not track the fluid-fluid interface, it can not guarantee immiscibility.
Instead of a tracked interface there exists a diffuse interface with a finite thickness. This
diffuse interface is used in the redistribution step to separate the fluids. In order to do
so, the two phases must be redistributed from the total post-collision and -perturbation
population f ∗

i to the separate distributions f 1+ and f 2+. This step is also known as the
recoloring step:

f 1+
i = ρ1

ρ
f ∗

i +βρ1ρ2

ρ
wi cos(λi )|ei |, (3.17)

f 2+
i = ρ2

ρ
f ∗

i −βρ1ρ2

ρ
wi cos(λi )|ei |. (3.18)

In equations 3.17-3.18, β is a numerical constant that dictates the diffuse interface thick-
ness. The recoloring step is governed by the the angleλi between the phase field gradient
and the lattice vectors ei :

cos(λi ) = ei ·∇ρN

|ei |
∣∣∇ρN

∣∣ . (3.19)

3.2. BOUNDARY CONDITIONS
The above sections provide the framework in order to retrieve information that obeys
the NSEs. However, the NSEs are governed largely by boundary conditions (BCs). Due
to their importance, all boundary conditions in the simulation will be discussed. In a T-
channel this concerns inlet boundary conditions, outlet boundary conditions and walls.
At the walls the contact angle as discussed in Chapter 2.1.2 must also be enforced.

3.2.1. WALLS
At all the walls of the T-channel a no-slip boundary condition is enforced. The no-slip
boundary condition ensures that the particles close to the wall have the same velocity
as the wall itself, i.e. they do not slip against the wall. This condition is implemented
using one of the oldest and most commonly used LBM boundary condition methods: a
bounce-back scheme. In short, bounce-back enforces particle populations that hit the
wall to reflect to the fluid node they came from. This simple method ensures strict mass
conservation [34]. Half way bounce-back is the method of choice, as opposed to full way
bounce-back, due to its ease of implementation and the fact that it only takes 1 time step
instead of 2. Both methods have been described in detail by Krüger et al. [34].

As can be seen in Figure 3.1, a particle streaming from a fluid node xN into a solid
wall node xN+1 encounters the wall in between at time ∆t/2. It is reflected back to the
fluid node xN where it arrives at time ∆t . This way, the entire reflection process takes
place in 1 time step. As the corners have fluid coming in from more directions, they have
an extended bounce-back implementation.
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Figure 3.1: Graphical illustration of the half way bounce-back scheme where a population is reflected to the
fluid node it came from. Adapted from Krüger et al. [34].

CONTACT ANGLE

As the phenomena of wetting occurs at the walls, it is expected to influence the wall
boundary conditions. With the contact angle θc defined in Figure 2.1 the geometrical
formulation proposed by Ding and Spelt [60] is used to implement wetting in LBM. In
this formulationΘw is defined as:

Θw = tan
(π

2
−θc

)
. (3.20)

In combination with the unit normal wall vector nw , the unit tangent wall vector tw and
the phase field defined in Equation 3.14, the following expression is found:

nw ·∇ρN =−Θw
∣∣tw ·∇ρN ∣∣. (3.21)

The implementation of Equation 3.21 makes use of the fact that the walls are situated
in between nodes as explained in half way bounce-back. As an example, a bottom wall
with a solid node at y = 0 and a fluid node at y = 1 can be discretized using the central
difference method:

ρN
x,1 = ρN

x,1 +Θw
∣∣tw ·∇ρN ∣∣∆x. (3.22)

An extrapolation scheme proposed by Huang et al. [61] is used to determine the tangen-
tial component of the gradient of the phase function at the wall:

tw ·ρN = 1.5∂xρ
N |x,1 −0.5∂xρ

N |x,2, (3.23)

where the partial derivatives are approximated using a central difference method. From
Equation 3.22 follows that this boundary condition occurs as an implicit boundary con-
dition for the phase field near the wall.

3.2.2. INLETS
The inlets of the physical channel are assumed to be sufficiently long to ensure a steady-
state developed flow profile. This allows the use of a shorter inlet with an enforced inlet
fluid velocity ui n . Its implementation is similar to bounce-back at a moving-wall, which
’pushes’ the fluid into the channel at a constant velocity. A. Ladd proposes the following
[62]:

f k
i (xb , t +∆t )− f k∗

i (xb , t )−2wiρ
k
w

ci ·ui n

c2
s

, (3.24)
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where a subscript w refers to a property near the wall. In the simulation, the inlet veloc-
ities ui n are determined from the desired Capillary numbers for both phases.

3.2.3. OUTLETS
As the full outlet length is not of interest, the outlet boundary condition must be defined
to fully bound the simulation regime. In order for the bulk physics not to be affected
by computational errors occurring due to the choice of boundary condition, the Con-
vective Boundary Condition (CBC) is implemented. As shown by Lou et al. this method
outperforms other commonly used methods as the Neumann boundary condition and
the extrapolation boundary condition [63]. A wall at x = N obeys the CBC as follows:

∂χ

∂t
+U

∂χ

∂x
= 0, (3.25)

where χ is the variable constrained at the outlet. As suggested by Lou et al. the typical
velocity normal to the outlet U is approximated with the average velocity over the outlet
width:

U (t ) =Uavg(t ) = 1

M +1

∑
y

u(N −1, y, t ). (3.26)

In Equation 3.26 the width of the outlet is M+1 and the velocity u is taken at x = N−1 at a
time t for all values of y that correspond to the outlet width. The constrained variableχ is
the distribution function f k . This way the CBC is discretized using a first order derivation
approximation to find the mesoscopic implementation for the particle distributions f k :

f k
i (N , j , t +∆t ) = f k

i (N , j , t )+λ f k
i (N −1, j , t +∆t )

1+λ , (3.27)

where λ is given by:

λ=U (t +∆t )
∆t

∆x
. (3.28)

3.3. STABILITY REQUIREMENTS
Due to the vast amount of parameters, there are a number of stability requirements that
need to be taken into account. Huang et al. found that the interface thickness parameter
β should be not too large, else the simulation will get unstable [49]. As per convention
β is set to = 0.7 [40, 52]. Krüger et al. describe how typical velocities are limited by the
lattice speed of sound [34]. In practice, this means that inlet velocities should be kept
below 0.1 or even 0.03. As this is the case for single phase LBM, the real stability limit for
multiphase LBM may lie even lower than 0.03. Furthermore, Krüger et al. find that the
relaxation time of the individual phases should not be much larger than 1.
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3.4. MODEL PARAMETERS
The physical channel used by Z. Liu [14] has a width d of 100 µm and a length of 2 cm.
However, for simulation purposes a channel length l of 2 mm was used. This choice was
motivated by research that showed that the channel length influences the flow pattern
when it exceeds 4m [64]. In the simulation the width of the channel is set to l∗ = 10 lu,
corresponding with a conversion factor Cl of 10−5 m/lu. From this follows the simula-
tion channel length l∗ = 200 lu. Both the inlet and outlet lengths have been set to 45 lu,
corresponding to 450µm. This choice is made based on the assumption made regarding
the developed inlet flow boundary conditions (Section 3.24). In order to save computa-
tion times, the channel used for the simulation of flow patterns has a single outlet where
the convective boundary condition is applied. Figure 3.2 shows the single-T channel
which corresponds to the simulation domain being limited to the inlet and first part of
the channel. For the leakage simulation, a double-T channel with a main channel length
of 200 lu is implemented.

Figure 3.2: Outline of the single T-channel used
for flow pattern investigation.

Figure 3.3: Outline of the double T-channel used
for leakage investigation.

As the inlets for both phases are identical in size, the volumetric flow rate ratio intro-
duced in Section 2.1.3 for the aqueous (acq) and organic (org) phase simplifies to:

Φor g

Φacq
= uor g

uacq
, (3.29)

where uacq and uor g are the inlet velocities applied to the boundary condition given in
Equation 3.24.

FLUID PROPERTIES

The fluids used in this work are water, n-heptane and toluene. For the flow pattern in-
vestigation water and n-heptane are used, while leakage is simulated using water and
toluene. These combinations match the combinations used by Z. Liu [14]. The physical
properties of all three liquids can be found in table 3.1.
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Table 3.1: An overview of the physical properties of the liquids used in the simulations. The contact angles
have been experimentally determined by Z. Liu [14].

Fluids
Kinematic
Viscosity
ν [m2/s]

Density
ρ [g/cm3]

Interfacial
tension
σ [mN/m]

Contact
angle [◦]

water 1×10−6 1 - -
n-heptane 5.68 ×10−7 0.68 50.2 47
toluene 6.74 ×10−7 0.87 36.1 49

From these physical properties, a set of simulation parameters can be defined us-
ing the conversion derivation in appendix A.1. This conversion leads to the simulation
densities ρ∗, density parameters α, relaxation times τ∗, viscosities ν∗ and interfacial
tensions σ∗. For ease of implementation, the density of n-heptane is approximated as
666.67 kg/m3. The simulation parameters for water and n-heptane can be found in table
3.2.

Table 3.2: An overview of the fluid simulation parameters for water and n-heptane. The values of alpha have
been chosen to recover the correct density ratio while ensuring numerical stability.

Fluids ρ∗ α τ∗ ν∗ σ∗

water 1.5 5/9 0.5244 0.00816 0.05
n-heptane 1 3/9 0.5139 0.00463 0.05

Similarly table 3.3 contains the simulation parameters for the water-toluene combina-
tion.

Table 3.3: An overview of the fluid simulation parameters for water and toluene. The values of alpha have been
chosen to recover the correct density ratio while ensuring numerical stability.

Fluids ρ∗ α τ∗ ν∗ σ∗

water 1.1494 0.565 0.5280 0.00933 0.0361
toluene 1 0.5 0.5188 0.00628 0.0361

Using the architecture simulation parameters and the fluid simulation parameters, the
length conversion factor Cl and the velocity conversion factor Cu can be found. These
lead to the physical length of the time steps: ∆thept ane = 8.13× 10−7 s and ∆ttol uene =
9.33×10−7 s.

SIMULATION INITIALIZATION

In both the single T and double T channels the initialization of the system ensures that
the complete channel is filled with water, except for the right inlet. The right inlet is
initialized with the organic phase. At time step t = 0 this results in the initial situation as
displayed in Figure 3.4
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Figure 3.4: Initialization state of a single T-channel. The blue fluid corresponds to water and the red fluid
corresponds to n-heptane.

3.5. PYTHON ALGORITHM
The model has been implemented in Python 3.7, making use of the following libraries:
Numba, Numpy, Matplotlib.pyplot, time, scipy.io, math and os.
Figure 3.5 provides a flowchart of the algorithm, saving and plotting of data is done every
5000 time steps. The full python3 algorithm can be found in appendix C.

Figure 3.5: Flowchart of the python algorithm.



4
RESULTS AND DISCUSSION

Using the model described in Chapter 3, in combination with the model parameters
from Section 3.4, simulations have been performed using n-heptane and toluene. The
color-gradient model has been validated on two-phase Poiseuille flow by F. De Groot
[65]. First, the n-heptane flow patterns for a range of Capillary numbers have been sim-
ulated in a single T-channel. The observed flow patterns, along with the corresponding
flow map, will be presented and discussed in Section 4.1. In Section 4.2, leakage at the
outlet of the T-channel using water and toluene will be analysed and compared to the
results obtained by Z. Liu.

4.1. N-HEPTANE FLOW PATTERNS
Simulations of water and n-heptane have been done over a range of water Capillary
numbers C aw from 10−4 to 3× 10−3 and a range of n-heptane Capillary numbers C ah

from 4×10−5 to 2×10−3. The upper limit of this range ensures inlet velocities that do
not exceed the stability requirement given in Section 3.3. Within this range three types of
flow patterns have been observed: parallel flow, slug flow and a third pattern which will
be referred to as parallel breakup flow. This third pattern will be discussed extensively in
Section 4.1.2. Figure 4.1 gives an overview of the observed flow patterns.

(a) Slug flow observed for C ah = 7 ×
10−5 and C aw = 5×10−4 at time step
100000.

(b) Parallel breakup flow observed for
C ah = 6×10−5 and C aw = 3×10−4 at
time step 160000.

(c) Parallel flow observed for C ah =
2× 10−4 and C aw = 3× 10−4 at time
step 200000.

Figure 4.1: Three flow patterns observed in simulation of a T-channel using water (blue) and n-heptane (red).

Generally speaking, the observed flow pattern moves from slug flow (Figure 4.1a) to
parallel flow (Figure 4.1c) as the Capillary number of both phases increases. The parallel

23
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breakup flow pattern observed in Figure 4.1b, occurs in transition regions between slug
flow and parallel flow, in addition to high Capillary number regimes. The observed flow
patterns as a function of the Capillary numbers of the two phases have been plotted in
Figure 4.2.

Figure 4.2: Flow map for water and n-heptane generated using a simulation of a T channel.

Figure 4.2 shows how a broad range of Capillary numbers result in parallel flow. This
flow pattern occurs for water Capillary numbers from 10−4 to 10−3 and n-heptane Cap-
illary numbers from 6×10−5 to 2×10−3. In contrast, Dessimoz et al. find the slug flow
pattern to dominate the flow map of a T-channel [16]. However, their research was done
based on the combination of water and toluene. Z. Liu performed Y-channel research
into both the water-toluene and water-n-heptane system and found that parallel flow
occurs generally for lower Capillary numbers in the case of water-n-heptane compared
to water-toluene [14]. So this does not necessarily contradict the observed results.

In order to investigate the effect of junction geometry, the obtained flow map can be
compared to the flow map obtained by Z. Liu for a Y-channel. This flow map has been
generated based on experimental results and can be seen in Figure 4.3. It is clear that
the general trend of both flow maps are similar. Analogous to the T-junction simulation,
the flow patterns in a Y-channel move from slug flow to parallel flow as the Capillary
numbers increase. Interestingly, the results for a T-channel indicate an earlier transition
towards parallel flow. Flow inside the T-channel is parallel for water Capillary numbers
as low as 10−4 and n-heptane Capillary numbers as low as 6× 10−5. In the Y-channel
research by Liu parallel flow occurred only for water Capillary numbers of 6×10−4 and
n-heptane Capillary numbers of 4×10−4.
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Figure 4.3: Flow map obtained by Z. Liu in a Y-channel experiment. Both the results for the water-n-heptane
and water-toluene have been plotted. Adapted from Z. Liu [14].

This result is seemingly unexpected, as Dessimoz et al. found that the flow map for a
T-channel is more dominated by slug flow compared to its Y-channel counterpart. How-
ever, the early transition into parallel flow, especially for lower water inlet velocities was
also found by Salim et al. using a glass T-channel [17]. The parallel flow generated at
low water Capillary numbers will be discussed later on, as it differs from the parallel flow
observed at higher Capillary numbers. A possible numerical reason for the difference
with the Y-channel is the missing of contact angle hysteresis in the model, causing in-
adequate recreation of slugs for low velocities. The contact angle increases as the fluid
moves [40]. At low velocities this impact may be large, as the fluid rests longer against
the wall at any point.

In the high Capillary regions Z. Liu observed parallel flow whereas the simulation
indicates parallel breakup flows. These simulations consist of the highest tested inlet
velocities: 0.012 for water and 0.02 for heptane at the outer data points. Even though
the theoretical stability limit of the single LBM is around 0.03 as described in Section
3.3, the practical velocity limit for multiphase flow simulations might be lower. A. Sudha
observed numerical instabilities at similar inlet velocities for a Y-channel. This apparent
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lowering in stability may have many reasons such as the large density difference, inter-
facial effects or the contact angle implementation. However, further investigation into
this lies outside the scope of this work.

Besides the appearance of parallel breakup flow at high Capillary numbers, another
interesting phenomena occurs in parallel flow observed at low water Capillary numbers.
In order to investigate the phenomena causing these effects, each flow type will be elab-
orated on further in detail.

4.1.1. SLUG FLOW
Slug flow is observed when the average Capillary number of the two phases is low (below
5.5×10−4) and the Capillary numbers lie beneath 10−3 for water and 10−4 for n-heptane.
Due to the conservation of mass, the length of the slugs should increase with an increase
in the flow ratio. Figure 4.4 indeed shows that the length of the n-heptane slugs increases
with the flow ratio uhept ane /uw ater . This is also in accordance with research done by
Ushikubo et al., where they quantitatively show how the slug/droplet volume of the dis-
persed phase increases as the flow ratio of the dispersed to continuous phase increases.
[24].

(a) Short slug length observed for a
flow ratio of uhept ane /uw ater = 0.33
at time step 100000.

(b) Medium slug length observed for a
flow ratio of uhept ane /uw ater = 0.44
at time step 160000.

(c) Long slug length observed for a
flow ratio of uhept ane /uw ater = 0.66
at time step 160000.

Figure 4.4: Slug flow observed for a n-heptane Capillary number of 5×10−5.

The formation of slugs at the junction of the channel takes place as a ’pinching’ mo-
tion where the interface of the organic phase starts convex and is pushed to a concave
state until the interface reaches the junction corner and it breaks. This phenomenon has
also been found in experiments and numerical simulations by Li et al. [66]. An example
of this pinching process can be found in appendix Figure B.1. As slug flow occurs for low
Capillary numbers, the interfacial force dominates over the viscous force. As a result,
the tendency towards interface generation is strong, causing the pinching motion to oc-
cur at the inlet. This matches and substantiates the findings by Dessimoz et al. that an
increase in interfacial tension leads to slug flow [16].
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4.1.2. PARALLEL BREAKUP FLOW
The aforementioned pinching behaviour is also observed inside of the channel. This
leads to the formation of parallel breakup flow. The pinching behaviour inside the chan-
nel is illustrated in appendix Figure B.2. This behaviour has also been observed by Guil-
lot and Colin, who found that the slug generation inside the main channel cannot be
described by the competition between viscous and interfacial forces [67]. Rather, the
flow enters the channel as parallel flow. Inside the channel, the tip of the parallel flow
moves inwards. This inward movement clogs the channel at some point, causing the
blocked water flow to pinch the n-heptane stream until it detaches into a slug.

However, in contrast to experiments [14, 18], the parallel breakup flow results in par-
allel flow when simulated over extended periods of time. The slugs/droplets formed in-
side the channel get pushed out over time. Real transition flow phenomena are steady-
state patterns of an initially parallel flow that breaks up at a (somewhat) fixed point in
the channel. Even though prevalent in experiments, this flow pattern has not been ob-
served. Currently, cases have been found from 1-5 preceding slugs/droplets. An example
of parallel breakup flow can be seen in Figure 4.1b.

Figure 4.5: Irregularly shaped droplets in parallel
breakup flow for C aw = 1.5×10−3 and C ah = 2×
10−3 at time step 5000.

Figure 4.6: Big slug attachment in parallel flow for
C aw = 1×10−4 and C ah = 9×10−5 at time step
100000.

Parallel breakup flow observed for high water and n-heptane Capillary numbers dif-
fer from the parallel breakup flow patterns observed in the transition region between
slug and parallel flow. Parallel breakup flow observed in the transition region enclosed
by 3× 10−4 < C aw < 10−3 and 6× 10−5 < C ah < 1.25× 10−4 produces slugs or droplets
that are similar in shape to slug flow and experimental research as done by for exam-
ple Zhao et al. [19]. Parallel breakup flow at high Capillary numbers, such as Figure 4.5,
lie past the parallel flow regime and produce irregularly shaped droplets/slugs. As dis-
cussed before, this might be an effect of a reduced practical stability limit. It seems likely
that experimental research in this region would lead to parallel flow.
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4.1.3. PARALLEL FLOW
The initial slug attachment that leads to parallel breakup flow does not always clog the
channel and detach. In fact, all parallel flow observed in this research started of with a
slug attachment. In the extreme case of very low n-heptane/water flow ratios, the par-
allel flow is preceded by a large slug followed by a narrow section. This slug does not
detach from the parallel flow, but stays attached during the entire propagation. Figure
4.6 shows an example of such slug attachment. The bulk of the observed parallel flow
lies in the region spanned by 2× 10−4 < C aw < 10−3 and 1.25× 10−4 < C ah < 5× 10−4.
Comparing Figure 4.1c to 4.6 shows that the attachment in the main region of parallel
flow does not occupy a significant length in the simulation domain, whereas the slug at-
tachment for the extreme low velocity ratio flows does. Even though this phenomenon
has not been observed in actual experiments, it has been observed by A. Sudha in a LBM
simulation of a Y-channel. Seemingly, the slug attachment is a numerical artefact from
the LBM. From the bachelor thesis of F. De Groot follows that the slug attachment is an
aspect of the LBM which results from the method needing to establish an interface [65].
The large slug attachment may possibly be caused by the inability of the aqueous phase
to detach the slug attachment due to the low water inlet velocity. It does not play a crucial
role as the initial slug attachment is pushed out over time.

4.2. TOLUENE LEAKAGE
In addition to the simulation of flow patterns using water and n-heptane, the behaviour
of water and toluene has been simulated at the outlet of the microchannel. Leakage has
been simulated over a range of toluene Capillary numbers in between 6×10−4 and 2×
10−3, with varying volumetric flow rate ratios. This range of Capillary numbers is lower
than the range used by Z. Liu, based on the observation that the T-channel facilitates
parallel flow for lower Capillary numbers than the Y-channel. It is important to keep in
mind that transition flow was not observed in the previous simulations, so some of the
lower Capillary numbers possibly result in transition flow in practice. The direction of
the leakage can be found in Figure 4.7.

All simulations showed leakage into either direction. No cases of leakage in both di-
rections or no leakage at all have been found. This is in accordance with the experimen-
tal results from Z. Liu [14]. When simulating a Y-channel using the Phase Field method,
Z. Liu did however find cases of no leakage. This might be an effect of the Phase Field
method tracking the interface of the fluid explicitly, which the LBM does not. Nonethe-
less, A. Sudha simulated leakage in a Y-channel using the LBM for water and toluene.
This simulation did result in some cases of leakage into both outlets. So far it remains
undecided whether the LBM offers a significant advantage of the phase field method in
leakage simulation.
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Figure 4.7: Leakage direction in a water-toluene system as a function of toluene Capillary number and the
volumetric flow rate ratio.

Pohar et al. have done a quantitative research into parallel flow patterns in a Y-
channel. They proposed a correlation for the flow rate ratio required in order to pin
the interface between two phases at the middle of the channel outlet [68]:

Φ1

Φ2
=

(
ρ1ν1

ρ2ν2

)−0.76

. (4.1)

For water and toluene this results in a flow rate of 0.66. The experimental results by Z. Liu
confirm this flow ratio to be the transition point between leakage into the water outlet to
leakage into the toluene outlet. On the contrary, the phase field method was unable to
retrieve the transition line in leakage direction [14]. The flow rate of 0.66 has been plot-
ted in Figure 4.7 as a dotted line. The simulations clearly do not match this transition
point. Even though the patterns do not behave according to the transition flow ratio de-
termined by Pohar et al., there is a clear transition point between leakage direction that
seems to be consistent over the entire simulation range of toluene Capillary numbers.
The flow ratio that corresponds to this line lies around 0.87. As this line is also valid for
low toluene Capillary numbers, it is therefore unlikely that the possible appearance of
transition flow is a nuisance.
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4.2.1. LEAKAGE TYPES
For volumetric flow rate ratios far away from the transition line the leakage exhibits par-
allel flow behaviour in the outlet. This is the case for both leakage into the water outlet
and leakage into the toluene outlet, as can be seen in figures 4.8 and 4.9.

Figure 4.8: Parallel leakage of toluene into the
water outlet for a toluene Capillary number of
8× 10−4 and a volumetric flow rate ratio of 0.59
at time step 70000.

Figure 4.9: Parallel leakage of water into the
toluene outlet for a toluene Capillary number of
10−3 and a volumetric flow rate ratio of 1.17 at
time step 120000.

Closer to the transition line the leakage takes the form of droplet flow, both for leak-
age into the water outlet and leakage into the toluene outlet. The droplets formed by
toluene into the water are hydrophobic and should show less affinity with the wall, as
the wall is simulated to be more wettable for water. This effect is correctly retrieved by
the model as the toluene droplets (Figure 4.10) form a larger angle to the wall at the con-
tact point compared to the water droplets (Figure 4.11).

Figure 4.10: Droplet leakage of toluene into the
water outlet for a toluene Capillary number of
8× 10−4 and a volumetric flow rate ratio of 0.73
at time step 70000.

Figure 4.11: Droplet leakage of water into the
toluene outlet for a toluene Capillary number of
6×10−4 and a volumetric flow rate ratio of 0.98 at
time step 100000.
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It is remarkable that droplet flow into the toluene outlet is observed instead of par-
allel flow, even though the wall is hydrophilic. Upon investigating the simulation results
it can be seen that the rightmost contact point between the wall, water and toluene pro-
gresses very slowly into the toluene outlet, as if it starts to form parallel flow. However, at
some point this parallel flow is pinched of by the toluene as it is forced against the outlet
top wall, forming a droplet against the wall that gets dragged along by the bulk toluene.
From figures 4.12 and 4.13 it can be seen that the process which forms toluene droplets
is similar, apart from the fact that the initial advancing flow makes a larger contact angle
with the top wall. These observed droplet shapes are in line with experimental research
done by Trantidou into the effect of surface wettability on droplet shape [69].

Figure 4.12: Toluene droplet formation leakage
over 15000 time steps for a toluene Capillary
number of 8×10−4 and a volumetric flow rate ra-
tio of 0.73.

Figure 4.13: Water droplet formation leakage over
15000 time steps for a toluene Capillary number
of 6×10−4 and a volumetric flow rate ratio of 0.98.

It seems that the interface pinning at the middle of the outlet is less important in
contrast to the Y-channel example described by Pohar et al. [68]. Instead, the transition
line lies at a volumetric flow rate ratio above which the water flow rate is high enough
to block off the toluene flowing to the left. This in turn causes leakage into the toluene
outlet as the water creeps along the wall due to the wall being hydrophilic. Hence it does
not seem unlikely that the contact angle plays an important role in the determination of
the transition line. At higher volumetric flow rate ratios, the water velocity increases to a
point where its viscous force is large enough to build a stable interface that does not get
pinched of, resulting in parallel flow. The round edge with water around at the end of
the toluene in the toluene outlet channel visible in Figure 4.8-4.13 is a result of the outlet
boundary condition and is of no concern.



5
CONCLUSION AND

RECOMMENDATIONS

In this thesis the behaviour of multiphase flow inside of a microfluidic T-channel has
been investigated. A color-gradient multiphase Lattice Boltzmann Method was used to
simulate the flow patterns generated by water and n-heptane, in addition to the outlet
leakage using water and toluene. The results have been compared to previous experi-
ments with T-channels as well as simulations and experiments done on Y-channels by Z.
Liu.

5.1. CONCLUSION
The flow map obtained for the T-channel is dominated by parallel flow in the middle
register of n-heptane Capillary numbers (1.25×10−4 to 10−3). Several experimental re-
searches found a lesser tendency towards parallel flow in T-channels, often due to the
use of different fluids. Generally, the conversions between slug and parallel flow seem to
match experimental results.

Compared to the results obtained for a Y-channel by Z. Liu using water and n-heptane,
parallel flow occurs for lower Capillary numbers and hence for lower velocities. Parallel
flow for lower velocities is a desirable flow pattern as it increases the time available for
mass exchange inside the channel. In addition, the range of Capillary numbers that re-
sulted in parallel flow is larger, potentially leading to a broader range of usable operating
conditions. High Capillary numbers (above 2×10−3) resulted in distorted initial flow due
to the inlet velocity nearing a practical stability limit.

While the droplet formation in the simulations matched experimental research, the
transition flow regime as experimentally and numerically found by Z. Liu did not appear.
A comparable flow pattern was observed which moved to parallel flow over time. The
same lack of transition flow simulation capabilities was also experienced by A. Sudha
in Y-channel simulation, making it likely that it is a Lattice Boltzmann Method short-
coming. This shortcoming might be due to the time required by the Lattice Boltzmann
Method to establish an initial interface. This same phenomenon also leads to the slug
attachment that is observed in parallel flow, especially being significant for low water
Capillary numbers (10−4 and below) in combination with low volumetric flow ratios.
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All simulated cases of parallel flow for the water-toluene system led to leakage in ei-
ther direction, with no cases without leakage. This corresponds with the experimental
results found for a Y-channel by Z. Liu. The lattice Boltzmann method shows a clear im-
provement over the Phase Field method used by Z. Liu for the simulation of leakage. The
transition line between leakage into the water outlet and leakage into the toluene outlet
is fixed at 0.87 for all simulated toluene Capillary numbers. This is in disagreement with
the analytically computed value for a Y-channel, meaning that the transition between
leakage direction for a T-channel lies higher than for a Y-channel. In other words, the
amount of water that can flow through the channel for a fixed toluene flow rate before
the leakage direction shifts is larger than in the case of a Y-channel.

For flow rates far away from the transition flow rate, the leakage occurred as parallel
flow into the outlet channel. Flow rates close to the transition line led to droplet leakage.
The phenomena of wetting was successfully retrieved from the leakage simulation as the
toluene droplets showed less affinity with the wall compared to the water droplets. As
the contact angle plays an important role in the formation of droplets near the flow rate
ratio transition line, it is not unlikely that the contact angle may have influence on the
position of the transition line.

As neither the T-channel nor the Y-channel exhibited cases without leakage the sep-
aration remains an issue. However, the lower boundary for parallel flow found for a T-
channel does make it potentially useful for liquid-liquid extraction of radioisotopes.

5.2. RECOMMENDATIONS
The current implementation of the color-gradient Lattice Boltzmann Method is unable
to retrieve transition flow for either T-channels nor Y-channels, it is therefore recom-
mended to further investigate the origin of this shortcoming. A possible research in-
cludes the implementation of the introduced contact angle hysteresis. In addition a
more elaborate research into the influence of outlet boundary conditions is a recom-
mended addition to the Lattice Boltzmann implementation at hand. With a better un-
derstanding of the boundary condition influence, simulations over the full length of the
channel might be desirable to confirm the observed flow patterns.

Further research into the transition flow rate regarding outlet leakage direction is
advised in order to more accurately predict the leakage in a microfluidic T-channel. Ex-
perimental research into the leakage at the outlet of such channels is required to confirm
this transition. Subsequently, a method to eliminate leakage at the outlet of the channel
must be found in order to be able to implement this separation technique successfully.

Lastly, it is recommended to extend the comparison between T and Y-channels to the
effect of the angle between the two channels. Instead of focusing on 180◦, inlet angles
greater than 180◦ or smaller than a typical Y-channel might offer an alternative.
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[43] J. H. Ferziger, M. Perić, and R. L. Street, Computational methods for fluid dynamics
(Springer, 2020).

[44] I. Steinbach, Phase-field models in materials science, Modelling and Simulation in
Materials Science and Engineering 17, 073001 (2009).

[45] M. Renardy, Y. Renardy, and J. Li, Numerical simulation of moving contact line prob-
lems using a volume-of-fluid method, Journal of Computational Physics 171, 243
(2001).

[46] C. Hirt and B. Nichols, Volume of fluid (vof) method for the dynamics of free bound-
aries, Journal of Computational Physics 39, 201 (1981).

[47] Y. Chen, R. Mertz, and R. Kulenovic, Numerical simulation of bubble formation on
orifice plates with a moving contact line, International Journal of Multiphase Flow
35, 66 (2009).

[48] S. Osher and J. A. Sethian, Fronts propagating with curvature-dependent speed: Al-
gorithms based on hamilton-jacobi formulations, Journal of Computational Physics
79, 12 (1988).

[49] H. Huang, M. C. Sukop, and X.-Y. Lu, Rothman-keller multiphase lattice boltzmann
model, in Multiphase lattice boltzmann methods: Theory and application (John Wi-
ley and Sons, Inc., 2015) Chap. 4, pp. 1–54, 1st ed.

[50] P. L. Bhatnagar, E. P. Gross, and M. Krook, A model for collision processes in gases.
i. small amplitude processes in charged and neutral one-component systems, Phys.
Rev. 94, 511 (1954).

[51] T. Reis and T. N. Phillips, Lattice boltzmann model for simulating immiscible two-
phase flows, Journal of Physics A: Mathematical and Theoretical 40, 4033 (2007).

[52] H. Liu, A. J. Valocchi, and Q. Kang, Three-dimensional lattice boltzmann model for
immiscible two-phase flow simulations, Phys. Rev. E 85, 046309 (2012).

http://dx.doi.org/ 10.1103/RevModPhys.81.739
http://dx.doi.org/ 10.1103/RevModPhys.81.739
http://dx.doi.org/ https://doi.org/10.1016/j.jcis.2006.03.051
http://dx.doi.org/ https://doi.org/10.1016/j.jcis.2006.03.051
http://dx.doi.org/10.1103/PhysRevE.92.033306
http://dx.doi.org/10.1103/PhysRevE.92.033306
http://dx.doi.org/10.1115/1.2410008
http://dx.doi.org/10.1115/1.2410008
http://arxiv.org/abs/https://asmedigitalcollection.asme.org/heattransfer/article-pdf/129/2/101/5632638/101_1.pdf
http://arxiv.org/abs/https://asmedigitalcollection.asme.org/heattransfer/article-pdf/129/2/101/5632638/101_1.pdf
http://dx.doi.org/ 10.1088/0965-0393/17/7/073001
http://dx.doi.org/ 10.1088/0965-0393/17/7/073001
http://dx.doi.org/ https://doi.org/10.1006/jcph.2001.6785
http://dx.doi.org/ https://doi.org/10.1006/jcph.2001.6785
http://dx.doi.org/ https://doi.org/10.1016/0021-9991(81)90145-5
http://dx.doi.org/ https://doi.org/10.1016/j.ijmultiphaseflow.2008.07.007
http://dx.doi.org/ https://doi.org/10.1016/j.ijmultiphaseflow.2008.07.007
http://dx.doi.org/ https://doi.org/10.1016/0021-9991(88)90002-2
http://dx.doi.org/ https://doi.org/10.1016/0021-9991(88)90002-2
http://dx.doi.org/10.1103/PhysRev.94.511
http://dx.doi.org/10.1103/PhysRev.94.511
http://dx.doi.org/10.1088/1751-8113/40/14/018
http://dx.doi.org/ 10.1103/PhysRevE.85.046309


BIBLIOGRAPHY

5

38

[53] Y. Ba, H. Liu, Q. Li, Q. Kang, and J. Sun, Multiple-relaxation-time color-gradient lat-
tice boltzmann model for simulating two-phase flows with high density ratio, Phys-
ical Review E 94 (2016), 10.1103/PhysRevE.94.023310.

[54] D. H. Rothman and J. M. Keller, Immiscible cellular-automaton fluids, Journal of
Statistical Physics 52, 1119 (1988).

[55] P. Lallemand and L.-S. Luo, Theory of the lattice boltzmann method: Dispersion, dis-
sipation, isotropy, galilean invariance, and stability, Phys. Rev. E 61, 6546 (2000).

[56] H. HUANG, J.-J. HUANG, X.-Y. LU, and M. C. SUKOP, On simulations of
high-density ratio flows using color-gradient multiphase lattice boltzmann
models, International Journal of Modern Physics C 24, 1350021 (2013),
https://doi.org/10.1142/S0129183113500216 .

[57] Z. Guo, C. Zheng, and B. Shi, Discrete lattice effects on the forcing term in the lattice
boltzmann method, Phys. Rev. E 65, 046308 (2002).

[58] P. Lallemand and L.-S. Luo, Theory of the lattice boltzmann method: Dispersion, dis-
sipation, isotropy, galilean invariance, and stability, Phys. Rev. E 61, 6546 (2000).

[59] D. Grunau, S. Chen, and K. Eggert, A lattice boltzmann model for mul-
tiphase fluid flows, Physics of Fluids A: Fluid Dynamics 5, 2557 (1993),
https://doi.org/10.1063/1.858769 .

[60] H. Ding and P. D. M. Spelt, Wetting condition in diffuse interface simulations of con-
tact line motion, Phys. Rev. E 75, 046708 (2007).

[61] J.-J. Huang, H. Huang, and X. Wang, Numerical study of drop motion on a surface
with stepwise wettability gradient and contact angle hysteresis, Physics of Fluids 26,
062101 (2014), https://doi.org/10.1063/1.4880656 .

[62] A. J. C. Ladd, Numerical simulations of particulate suspensions via a discretized
boltzmann equation. part 1. theoretical foundation, Journal of Fluid Mechanics 271,
285–309 (1994).

[63] Q. Lou, Z. Guo, and B. Shi, Evaluation of outflow boundary conditions for two-phase
lattice boltzmann equation, Physical Review E - Statistical, Nonlinear, and Soft Mat-
ter Physics 87 (2013), 10.1103/PhysRevE.87.063301.

[64] J. Jovanovic, E. Rebrov, T. Nijhuis, M. Kreutzer, V. Hessel, and J. Schouten, Liquid-
liquid flow in a capillary microreactor: Hydrodynamic flow patterns and extraction
performance, Industrial & Engineering Chemistry Research 51, 1020 (2012).

[65] F. De Groot, Investigating the effect of microchannel junction geometry on two-phase
flow using the Lattice Boltzmann Method, Bachelor’s thesis, TU Delft (2021).

[66] X.-B. Li, F.-C. Li, J.-C. Yang, H. Kinoshita, M. Oishi, and M. Oshima, Study on the
mechanism of droplet formation in t-junction microchannel, Chemical Engineering
Science 69, 340 (2012).

http://dx.doi.org/10.1103/PhysRevE.94.023310
http://dx.doi.org/10.1103/PhysRevE.94.023310
http://dx.doi.org/10.1103/PhysRevE.61.6546
http://dx.doi.org/ 10.1142/S0129183113500216
http://arxiv.org/abs/https://doi.org/10.1142/S0129183113500216
http://dx.doi.org/ 10.1103/PhysRevE.65.046308
http://dx.doi.org/10.1103/PhysRevE.61.6546
http://dx.doi.org/10.1063/1.858769
http://arxiv.org/abs/https://doi.org/10.1063/1.858769
http://dx.doi.org/ 10.1103/PhysRevE.75.046708
http://dx.doi.org/10.1063/1.4880656
http://dx.doi.org/10.1063/1.4880656
http://arxiv.org/abs/https://doi.org/10.1063/1.4880656
http://dx.doi.org/ 10.1017/S0022112094001771
http://dx.doi.org/ 10.1017/S0022112094001771
http://dx.doi.org/ 10.1103/PhysRevE.87.063301
http://dx.doi.org/ 10.1103/PhysRevE.87.063301
http://dx.doi.org/ 10.1021/ie200715m
http://dx.doi.org/https://doi.org/10.1016/j.ces.2011.10.048
http://dx.doi.org/https://doi.org/10.1016/j.ces.2011.10.048


BIBLIOGRAPHY 39

[67] P. Guillot and A. Colin, Stability of parallel flows in a microchannel after a t junc-
tion, Physical Review E - Statistical, Nonlinear, and Soft Matter Physics 72 (2005),
10.1103/PhysRevE.72.066301.

[68] A. Pohar, M. Lakner, and I. Plazl, Parallel flow of immiscible liquids in a microre-
actor: Modeling and experimental study, Microfluidics and Nanofluidics 12, 307
(2012).

[69] T. Trantidou, Y. Elani, E. Parsons, and O. Ces, Hydrophilic surface modification
of pdms for droplet microfluidics using a simple, quick, and robust method via
pva deposition, Microsystems & amp; Nanoengineering 3 (2017), 10.1038/micro-
nano.2016.91.

http://dx.doi.org/ 10.1103/PhysRevE.72.066301
http://dx.doi.org/ 10.1103/PhysRevE.72.066301
http://dx.doi.org/ 10.1007/s10404-011-0873-7
http://dx.doi.org/ 10.1007/s10404-011-0873-7
http://dx.doi.org/10.1038/micronano.2016.91
http://dx.doi.org/10.1038/micronano.2016.91


A
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A.1. UNIT CONVERSION METHOD
Converting the physical units into simulation units is done using the Capillary and Reynolds
numbers:

Re = uL

ν
, C a = νρu

σ
. (A.1)

The channel width L = 100µm is L∗ = 10lu in the simulation. Resulting in a fixed con-
version factor of CL = 10µm. The density conversion and interface tension conversion
are also fixed but depend on the combination of liquids. The known properties therefor
are L,L∗ (channel) and ρ,ρ∗,ν,σ,σ∗ (fluids). First, the general approach is explained
followed by the results obtained for water-heptane and water-toluene.

The first step is to pick a fixed Capillary number, say 10−4, and derive the physical
velocity from it as the viscosity, density and interface tension are known:

C a = νρu

σ
= 10−4 ⇒ u = σC a

νρ
. (A.2)

With the physical velocity known the corresponding Reynolds number Re can be calcu-
lated from the known physical channel width and fluid viscosity. The law of similarity
states:

C a = νρu

σ
= ν∗ρ∗u∗

σ∗ =C a∗ (A.3)

Re = uL

ν
= u∗L∗

ν∗
= Re∗. (A.4)

Using this law of similarity, two equations with two unknowns: ν∗ and u∗ remain. These
can be found by substituting u∗ from C a into Re∗ to find ν∗:

u∗ = σ∗C a

ν∗ρ∗ ⇒ (ν∗)2 = σ∗L∗C a

ρ∗Re
. (A.5)

With ν∗ known the required simulation relaxation time τ∗ can be determined:

τ∗ = 3ν∗+ 1

2
. (A.6)

Applying this procedure to the combination of water and n-heptane and water and toluene
based on their properties defined in table 3.1 results in the model parameters in tables
3.2 and 3.3. The value of α was determined to achieve optimal stability.
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A.2. MRT MOMENT OPERATOR
Equations A.7 and A.8 show the moment operator matrices used in combination with
the D2Q9 model.

M =



1 1 1 1 1 1 1 1 1
−4 −1 −1 −1 −1 2 2 2 2

4 −2 −2 −2 −2 1 1 1 1
0 1 0 −1 0 1 −1 −1 1
0 −2 0 2 0 1 −1 −1 1
0 0 1 0 −1 1 1 −1 −1
0 0 −2 0 2 1 1 −1 −1
0 1 −1 1 −1 0 0 0 0
0 0 0 0 0 1 −1 1 −1


(A.7)

M−1 = 1

36



4 −4 4 0 0 0 0 0 0
4 −1 −2 6 −6 0 0 9 0
4 −1 −2 0 0 6 −6 −9 0
4 −1 −2 −6 6 0 0 9 0
4 −1 −2 0 0 −6 6 −9 0
4 2 1 6 3 6 3 0 9
4 2 1 −6 −3 6 3 0 −9
4 2 1 −6 −3 −6 −3 0 9
4 2 1 6 3 −6 −3 0 −9


(A.8)

A.3. RELAXATION TIME INTERPOLATION
The Grunau interpolation scheme [49, 59] uses a dimensionless density ratio parameter
ψ(x) to adjust the relaxation time:

ψ(x) = ρ1(x)−ρ2(x)

ρ1(x)+ρ2(x)
. (A.9)

This parameter is used to determine a local relaxation time τ(x) at location x.

τ(x) =


τ1 ψ> δ
g1(ψ) δ≥ψ> 0

g2(ψ) 0 ≥ψ≥−δ
τ2 ψ<−δ

(A.10)

In equation A.10 τ1 and τ2 are the relaxation times for the two phases. δ is a parameter
that governs the interface thickness. Based on convention it is set to δ = 0.98 [49]. At
locations well outside the interface width, the individual relaxation times are used. In
the interface region the interpolation functions g1 and g2 are used:{

g1(ψ) = s1 + s2ψ+ s3ψ
2,

g2(ψ) = t1 + t2ψ+ t3ψ
2,

(A.11)
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with the constants s1−3 and t1−3 given by:

s1 = t1 = 2
τ1τ2

τ1 +τ2
, (A.12)

s2 = 2
τ1 − s1

δ
, (A.13)

s3 =− s2

2δ
, (A.14)

t2 = 2
t1 −τ2

δ
, (A.15)

t3 = t2

2δ
. (A.16)
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PINCHING MOTION AT INLET

Figure B.1: Pinching occurring at the T-junction for slug flow at C an−hept ane = 5×10−5 and C aw ater = 2×
10−4. Time steps 15000-50000 have been plotted every other 5000 time steps.
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PINCHING MOTION IN CHANNEL

Figure B.2: Pinching occuring inside the channel for parallel breakup flow at C an−hept ane = 6× 10−5 and

C aw ater = 3×10−4. Time steps 220000-250000 have been plotted every other 5000 time steps.
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APPENDIX | CODE

# −*− coding : utf −8 −*−
"""
Microchannel code to simulate out let for Toluene and water

@author : asudha1
Adapted by hbaetsen from 26−05 onwards .
"""
#%% Import Packages
import numpy as np
import time
import scipy . io as sio
import numba as nb
import math
import matplotlib . pyplot as p l t
import os
#from sys import e x i t
#%% parameters

####### CHANGE EACH ITERATION ########
runno = ’ leakage_toluene_22 ’
############ END CHANGE #############

s t a r t =time . time ( ) #Determine code execution time
l x =220 # grid dimensions
l y =100
cw= i n t (10) # Channel width

ex= np . array ( [ 0 . 0 , 1 , 0 , −1 , 0 , 1 , −1 , −1 , 1 ] ) #D2Q9
ey= np . array ( [ 0 . 0 , 0 , 1 , 0 , −1 , 1 , 1 , −1 , −1])
cc=1 # l a t t i c e speed
csqu= pow( cc , 2 ) / 3
#Weights
w1=4/9
w2=1/9
w3=1/36
wk=np . zeros ( 9 )
wk[0]=w1
wk[ 1 : 5 ] =w2
wk[ 5 : ] =w3
#rsq i s the length of the v e l o c i t i e s , i e the direction , diagonal i s sqrt ( 2 )
rsq= np . zeros ( 9 )
rsq [ 0 ] = 0 ; rsq [ 1 : 5 ] = 1 ; rsq [ 5 : ] = np . sqrt ( 2 )
#Bi=np . zeros ( 9 )
#Bi [0]= −4/27
#Bi [1:5]=2/27
#Bi [5 : ]=1/36
nw=1000 #Dump data every nw time steps
beta =0.7 #Parameter adjusting i n t e r f a c e thickness S t a r t value : 0.7
sigma= 0.0361; # i n t e r f a c e tension # S t a r t value 0.05
df= 0.000000015; #body force , i f needed
alphar= 0 . 5 6 5 ; #parameters that determine i n i t i a l density
alphab= 0 . 5 ;
rhori= 1.1494; # i n i t i a l density water
rhobi= 1 ; # i n i t i a l density toluene
tm= 300000; #max time steps
uib= −0.0068952344570719125 # i n l e t v e l o c i t y toluene
uir= 0.006061310576236988 # i n l e t v e l o c i t y water
#Relaxation time
taur =0.5280 # Water
taub=0.5188 # toluene
#Parameters for calculat ing pressure
csqr =3*(1 − alphar ) / 5 ; csqb= 3*(1 −alphab ) / 5 ;

theta_w = 49*np . pi /180 # contact angle water ( radians ) : (Z . Liu , 2022)
#theta= math . tan ( 4 3 . 4 *np . pi /180) #tan of contact angle
theta = math . tan (np . pi /2 − theta_w )

Tw=np . zeros ( ( lx , l y ) ) #Contact angle matrix
Tw[ : , : ] = theta #
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s=np . zeros ( ( 9 , 9 ) )
#MRT matrix
M= [[1.0 ,1 ,1 ,1 ,1 ,1 ,1 ,1 ,1] , [ −4 , −1 , −1 , −1 , −1 ,2 ,2 ,2 ,2] , [4 , −2 , −2 , −2 , −2 ,1 ,1 ,1 ,1] ,

[0 ,1 ,0 , −1 ,0 ,1 , −1 , −1 ,1] , [0 , −2 ,0 ,2 ,0 ,1 , −1 , −1 ,1] , [0 ,0 ,1 ,0 , −1 ,1 ,1 , −1 , −1] ,
[0 ,0 , −2 ,0 ,2 ,1 ,1 , −1 , −1] , [0 ,1 , −1 ,1 , −1 ,0 ,0 ,0 ,0] , [0 ,0 ,0 ,0 ,0 ,1 , −1 ,1 , −1]]

M=np . array (M)#%% I n i t i a l i z e density and v e l o c i t y
def i n i t i a l i z e (Tw) :

obst= np . zeros ( ( lx , l y ) ) #wall d e f i n i t i o n
ux= np . zeros ( ( lx , l y ) ) #x v e l o c i t y
uy= np . zeros ( ( lx , l y ) ) #y v e l o c i t y
rhor= np . zeros ( ( lx , l y ) ) #Density of red f l u i d
rhob= np . zeros ( ( lx , l y ) ) #Density of blue f l u i d
Uib=np . zeros ( ( 1 2 , l y ) ) # I n l e t v e l o c i t y
Uir=np . zeros ( ( 1 2 , l y ) )
Uir [ : , : ] = 1 0 * * − 8
Uib [ : , : ] = 1 0 * * − 8

# Defining nodes : 0 i s f l u i d node , −1 i s empty space , obst >= 1 i s s o l i d node
for x in nb . prange ( 0 , l x ) :

for y in nb . prange ( 0 , l y ) :
i f ( x ==0): #Top wall

obst [ x , y ] = 1
e l i f (0 < x < (cw+ 1 ) ) :

i f ( y == 0 ) :
obst [ x , y ] = 0.5 # Left i n l e t

e l i f ( y == ly − 1 ) :
obst [ x , y ] = 0.7 # Right i n l e t

e l i f ( x == (cw+ 1 ) ) :
i f ( y < ( l y //2 −(cw//2 +1)) or y > ( l y //2 +(cw / / 2 ) ) ) :

obst [ x , y ] = 2 # Bottom i n l e t wall
e l i f ( (cw+1) < x < ( lx −2−cw ) ) :

i f ( y == ( l y //2 −(cw//2 + 1 ) ) ) :
obst [ x , y ] = 3 # Right wall

e l i f ( y == ( l y //2 +(cw / / 2 ) ) ) :
obst [ x , y ] = 4 # Left wall

e l i f ( ( l y //2 −(cw//2 +1)) < y < ( l y //2 +(cw / / 2 ) ) ) :
obst [ x , y ] = 0

else :
obst [ x , y ] = −1 # Empty Space

e l i f ( x== ( lx −2−cw ) ) : # out let wall channel side
i f ( y < ( l y //2 −(cw//2 +1)) or y > ( l y //2 +(cw / / 2 ) ) ) :

obst [ x , y ] = 8
e l i f ( ( lx −2−cw) < x < ( lx − 1 ) ) :

i f ( y == 0 ) :
obst [ x , y ] = 11 # Left Outlet

e l i f ( y == ly − 1 ) :
obst [ x , y ] = 12 # Right Outlet

e l i f ( x==lx − 1 ) : # Outlet bottom wall
obst [ x , y ] = 7

# I n l e t junction corners
obst [ ( cw+ 1 ) , ( l y //2 −(cw//2 + 1 ) ) ] = 5
obst [ ( cw+ 1 ) , ( l y //2 +(cw/ / 2 ) ) ] = 6

# Outlet junction corners
obst [ ( lx −cw− 2 ) , ( l y //2 −(cw//2 + 1 ) ) ] = 9
obst [ ( lx −cw− 2 ) , ( l y //2 +(cw/ / 2 ) ) ] = 10

# Defining i n i t i a l de ns i t i es −> Also at the boundaries
for x in nb . prange ( 0 , l x ) :

for y in nb . prange ( 0 , l y ) :
i f ( x <= (cw+1) and y <= ( l y //2 +(cw / / 2 ) ) ) :

rhor [ x , y ] = rhori
e l i f ( x <= (cw+1) and y > ( l y //2 +(cw / / 2 ) ) ) :

rhob [ x , y ] = rhobi
e l i f ( ( l y //2 −(cw//2 +1)) <= y <= ( l y //2 +(cw/ / 2 ) ) and x > (cw+ 1 ) ) :

rhor [ x , y ] = rhori
rhob [ x , y ] = 0

e l i f ( ( x >= lx −2−cw ) ) :
rhor [ x , y ] = rhori
rhob [ x , y ] = 0

else : #empty space
rhor [ x , y ] = 0.5
rhob [ x , y ] = 0.5

rho=rhor+rhob
G= np . zeros ( ( lx , l y ) ) # Gravity term
G[ : , : ] = df

return ux , uy , rhor , rhob , rho , obst ,G, Uir , Uib ,Tw
[ ux , uy , rhor , rhob , rho , obst ,G, Uir , Uib ,Tw] = i n i t i a l i z e (Tw)

#%% Equil Dist . Function
@nb. n j i t ( p a r a l l e l =True )
def feq ( rhor , rhob , ux , uy , alphar , alphab , wk, csqu , ex , ey , lx , ly , obst ) :

usqu= ux**2+uy**2
un= np . zeros ( ( 9 , lx , l y ) )
f e r =np . zeros ( ( 9 , lx , l y ) )
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feb=np . zeros ( ( 9 , lx , l y ) )
for x in nb . prange ( 0 , l x ) :

for y in nb . prange ( 0 , l y ) :
for i in nb . prange ( 0 , 9 , 1 ) :

i f ( obst [ x , y ] >=0):
un[ i , x , y ]= ex [ i ] * ux [ x , y ]+ ey [ i ] * uy [ x , y ]
# These equations are per MP LB , they d i f f e r from Ba et a l as the f a c t o r 3 i s here
# included in the l a t t i c e speed of sound .
i f ( i ==0):

f e r [ i , x , y ]=wk[ i ] * rhor [ x , y ] * ( un[ i , x , y ] / csqu+ un[ i , x , y ] * * 2 / ( 2 * csqu * * 2 ) −
usqu [ x , y ] / ( 2 * csqu ) ) +rhor [ x , y ] * alphar

feb [ i , x , y ]=wk[ i ] * rhob [ x , y ] * ( un[ i , x , y ] / csqu+ un[ i , x , y ] * * 2 / ( 2 * csqu * * 2 ) −
usqu [ x , y ] / ( 2 * csqu ) ) +rhob [ x , y ] * alphab

e l i f ( i >0 and i < 5 ) :
f e r [ i , x , y ]=wk[ i ] * rhor [ x , y ] * ( un[ i , x , y ] / csqu+ un[ i , x , y ] * * 2 / ( 2 * csqu * * 2 ) −

usqu [ x , y ] / ( 2 * csqu ) ) +rhor [ x , y ]*(1 − alphar )/5
feb [ i , x , y ]=wk[ i ] * rhob [ x , y ] * ( un[ i , x , y ] / csqu+ un[ i , x , y ] * * 2 / ( 2 * csqu * * 2 ) −

usqu [ x , y ] / ( 2 * csqu ) ) +rhob [ x , y ]*(1 − alphab )/5
else :

f e r [ i , x , y ]=wk[ i ] * rhor [ x , y ] * ( un[ i , x , y ] / csqu+ un[ i , x , y ] * * 2 / ( 2 * csqu * * 2 ) −
usqu [ x , y ] / ( 2 * csqu ) ) +rhor [ x , y ]*(1 − alphar )/20

feb [ i , x , y ]=wk[ i ] * rhob [ x , y ] * ( un[ i , x , y ] / csqu+ un[ i , x , y ] * * 2 / ( 2 * csqu * * 2 ) −
usqu [ x , y ] / ( 2 * csqu ) ) +rhob [ x , y ]*(1 − alphab )/20

return fer , feb

# Equil . Dist . Fns
[ fer , feb ]= feq ( rhor , rhob , ux , uy , alphar , alphab , wk, csqu , ex , ey , lx , ly , obst )

# I n i t i a l probabi l i ty d i s t r i b u t i o n of p a r t i c l e s
f r = f e r ; fb=feb ;
f f = f r +fb ; # Overall prob d i s t .

#%% Streaming Function
@nb. n j i t ( fastmath=True )
def stream ( f , lx , ly , obst ) :

f s = np . copy ( f )
# Change according to a T−shaped channel
for x in np . arange ( 0 , l x ) :

for y in np . arange ( 0 , l y ) :
i f ( obst [ x , y ] >=0):

#Streaming at boundaries ( f i l l in the otherwise missing populations )
i f ( ( ( obst [ x , y ] == 1) and ( y == 0 ) ) or ( ( obst [ x , y ] ==8) and ( y = = 0 ) ) ) :

f s [ 1 , x +1 ,y ] = f [ 1 , x , y ]
f s [ 2 , x , y+1] = f [ 2 , x , y ]
f s [ 5 , x +1 ,y+1] = f [ 5 , x , y ]

e l i f ( ( ( obst [ x , y ] == 1) and (0 < y < ly −1)) or ( ( obst [ x , y ] ==8) and (0 < y < ly − 1 ) ) ) :
f s [ 1 , x +1 ,y ] = f [ 1 , x , y ]
f s [ 2 , x , y+1] = f [ 2 , x , y ]
f s [ 4 , x , y −1] = f [ 4 , x , y ]
f s [ 5 , x +1 ,y+1] = f [ 5 , x , y ]
f s [ 8 , x +1 ,y −1] = f [ 8 , x , y ]

e l i f ( ( ( obst [ x , y ] == 1) and ( y == ly −1)) or ( ( obst [ x , y ] ==8) and ( y==ly − 1 ) ) ) :
f s [ 1 , x +1 ,y ] = f [ 1 , x , y ]
f s [ 4 , x , y −1] = f [ 4 , x , y ]
f s [ 8 , x +1 ,y −1] = f [ 8 , x , y ]

e l i f ( obst [ x , y ] == 0 . 5 ) :
f s [ 1 , x +1 ,y ] = f [ 1 , x , y ]
f s [ 2 , x , y+1] = f [ 2 , x , y ]
f s [ 3 , x −1 ,y ] = f [ 3 , x , y ]
f s [ 5 , x +1 ,y+1] = f [ 5 , x , y ]
f s [ 6 , x −1 ,y+1] = f [ 6 , x , y ]

e l i f ( obst [ x , y ] == 0 . 7 ) :
f s [ 1 , x +1 ,y ] = f [ 1 , x , y ]
f s [ 3 , x −1 ,y ] = f [ 3 , x , y ]
f s [ 4 , x , y −1] = f [ 4 , x , y ]
f s [ 7 , x −1 ,y −1] = f [ 7 , x , y ]
f s [ 8 , x +1 ,y −1] = f [ 8 , x , y ]

e l i f ( ( ( obst [ x , y ] == 2) and ( y == 0 ) ) or ( ( obst [ x , y ] ==7) and ( y = = 0 ) ) ) :
f s [ 2 , x , y+1] = f [ 2 , x , y ]
f s [ 3 , x −1 ,y ] = f [ 3 , x , y ]
f s [ 6 , x −1 ,y+1] = f [ 6 , x , y ]

e l i f ( ( ( obst [ x , y ] == 2) and (0 < y < ly −1)) or ( ( obst [ x , y ] ==7) and (0 < y < ly − 1 ) ) ) :
f s [ 2 , x , y+1] = f [ 2 , x , y ]
f s [ 3 , x −1 ,y ] = f [ 3 , x , y ]
f s [ 4 , x , y −1] = f [ 4 , x , y ]
f s [ 6 , x −1 ,y+1] = f [ 6 , x , y ]
f s [ 7 , x −1 ,y −1] = f [ 7 , x , y ]

e l i f ( ( ( obst [ x , y ] == 2) and ( y == ly −1)) or ( ( obst [ x , y ] ==7) and ( y == ly − 1 ) ) ) :
f s [ 3 , x −1 ,y ] = f [ 3 , x , y ]
f s [ 4 , x , y −1] = f [ 4 , x , y ]
f s [ 7 , x −1 ,y −1] = f [ 7 , x , y ]

e l i f ( ( obst [ x , y ] == 3) and ( x < lx − 1 ) ) :
f s [ 1 , x +1 ,y ] = f [ 1 , x , y ]
f s [ 2 , x , y+1] = f [ 2 , x , y ]
f s [ 3 , x −1 ,y ] = f [ 3 , x , y ]
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f s [ 5 , x +1 ,y+1] = f [ 5 , x , y ]
f s [ 6 , x −1 ,y+1] = f [ 6 , x , y ]

e l i f ( ( obst [ x , y ] == 3) and ( x == lx − 1 ) ) :
f s [ 2 , x , y+1] = f [ 2 , x , y ]
f s [ 3 , x −1 ,y ] = f [ 3 , x , y ]
f s [ 6 , x −1 ,y+1] = f [ 6 , x , y ]

e l i f ( ( obst [ x , y ] == 4) and ( x < lx − 1 ) ) :
f s [ 1 , x +1 ,y ] = f [ 1 , x , y ]
f s [ 3 , x −1 ,y ] = f [ 3 , x , y ]
f s [ 4 , x , y −1] = f [ 4 , x , y ]
f s [ 7 , x −1 ,y −1] = f [ 7 , x , y ]
f s [ 8 , x +1 ,y −1] = f [ 8 , x , y ]

e l i f ( ( obst [ x , y ] == 4) and ( x == lx − 1 ) ) :
f s [ 3 , x −1 ,y ] = f [ 3 , x , y ]
f s [ 4 , x , y −1] = f [ 4 , x , y ]
f s [ 7 , x −1 ,y −1] = f [ 7 , x , y ]

# Outlets
e l i f ( obst [ x , y ] == 1 1 ) : # Left out let

f s [ 1 , x +1 ,y ] = f [ 1 , x , y ]
f s [ 2 , x , y+1] = f [ 2 , x , y ]
f s [ 3 , x −1 ,y ] = f [ 3 , x , y ]
f s [ 5 , x +1 ,y+1] = f [ 5 , x , y ]
f s [ 6 , x −1 ,y+1] = f [ 6 , x , y ]

e l i f ( obst [ x , y ] == 1 2 ) : # Right out let
f s [ 1 , x +1 ,y ] = f [ 1 , x , y ]
f s [ 3 , x −1 ,y ] = f [ 3 , x , y ]
f s [ 4 , x , y −1] = f [ 4 , x , y ]
f s [ 7 , x −1 ,y −1] = f [ 7 , x , y ]
f s [ 8 , x +1 ,y −1] = f [ 8 , x , y ]

# I n l e t junction corners
e l i f ( obst [ x , y ] == 5 ) :

f s [ 1 , x +1 ,y ] = f [ 1 , x , y ]
f s [ 2 , x , y+1] = f [ 2 , x , y ]
f s [ 3 , x −1 ,y ] = f [ 3 , x , y ]
f s [ 4 , x , y −1] = f [ 4 , x , y ]
f s [ 5 , x +1 ,y+1] = f [ 5 , x , y ]
f s [ 6 , x −1 ,y+1] = f [ 6 , x , y ]
f s [ 7 , x −1 ,y −1] = f [ 7 , x , y ]

e l i f ( obst [ x , y ] == 6 ) :
f s [ 1 , x +1 ,y ] = f [ 1 , x , y ]
f s [ 2 , x , y+1] = f [ 2 , x , y ]
f s [ 3 , x −1 ,y ] = f [ 3 , x , y ]
f s [ 4 , x , y −1] = f [ 4 , x , y ]
f s [ 6 , x −1 ,y+1] = f [ 6 , x , y ]
f s [ 7 , x −1 ,y −1] = f [ 7 , x , y ]
f s [ 8 , x +1 ,y −1] = f [ 8 , x , y ]

# Outlet junction corners
e l i f ( obst [ x , y ] == 1 1 ) :

f s [ 1 , x +1 ,y ] = f [ 1 , x , y ]
f s [ 2 , x , y+1] = f [ 2 , x , y ]
f s [ 3 , x −1 ,y ] = f [ 3 , x , y ]
f s [ 4 , x , y −1] = f [ 4 , x , y ]
f s [ 5 , x +1 ,y+1] = f [ 5 , x , y ]
f s [ 6 , x −1 ,y+1] = f [ 6 , x , y ]
f s [ 8 , x +1 ,y −1] = f [ 8 , x , y ]

e l i f ( obst [ x , y ] == 1 2 ) :
f s [ 1 , x +1 ,y ] = f [ 1 , x , y ]
f s [ 2 , x , y+1] = f [ 2 , x , y ]
f s [ 3 , x −1 ,y ] = f [ 3 , x , y ]
f s [ 4 , x , y −1] = f [ 4 , x , y ]
f s [ 5 , x +1 ,y+1] = f [ 5 , x , y ]
f s [ 7 , x −1 ,y −1] = f [ 7 , x , y ]
f s [ 8 , x +1 ,y −1] = f [ 8 , x , y ]

e lse :
yn= y % ( ly −1) + 1
i f ( y == ly − 1 ) :

yn = 0

xe= x%(lx −1)+1
i f ( x == lx − 1 ) :

xe = 0

ys = l y − 1 − ( ly −y ) % ( l y )
xw = l x − 1 − ( lx −x ) % ( l x )

#Streaming Step at i n t e r i o r
f s [ 1 , xe , y ] = f [ 1 , x , y ] ;
f s [ 2 , x , yn ] = f [ 2 , x , y ] ;
f s [ 3 ,xw, y ] = f [ 3 , x , y ] ;
f s [ 4 , x , ys ] = f [ 4 , x , y ] ;
f s [ 5 , xe , yn]= f [ 5 , x , y ] ;
f s [ 6 ,xw, yn]= f [ 6 , x , y ] ;
f s [ 7 ,xw, ys ]= f [ 7 , x , y ] ;
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f s [ 8 , xe , ys ]= f [ 8 , x , y ] ;

for x in np . arange ( 0 , l x ) :
for y in np . arange ( 0 , l y ) :

#Propagation
f [ 1 : , x , y ]= f s [ 1 : , x , y ]

return f

#%% Bounceback function
@nb. n j i t ( fastmath=True ) # ( p a r a l l e l =True )
def bounceback1 ( f , f f , obst , fe , fc , uib , uir , ex , ey , ux , uy , wk, rho , csqu , tau ) :

for x in nb . prange ( 0 , l x ) :
for y in nb . prange ( 0 , l y ) :

# Inlet , Kruger Equation 5.26
i f ( obst [ x , y ] == 0 . 5 ) :

f [ 2 , x , y+1] = fc [ 4 , x , y+1] − (2*wk[ 4 ] * rho [ x , y +1]* ey [ 4 ] * uir )/ csqu
f [ 5 , x +1 ,y+1]= fc [ 7 , x +1 ,y+1] − (2*wk[ 7 ] * rho [ x +1 ,y +1]* ey [ 7 ] * uir ) / csqu
f [ 6 , x −1 ,y+1]= fc [ 8 , x −1 ,y+1] − (2*wk[ 8 ] * rho [ x −1 ,y +1]* ey [ 8 ] * uir )/ csqu

e l i f ( obst [ x , y ] == 0 . 7 ) :
f [ 4 , x , y −1] = fc [ 2 , x , y −1] − (2*wk[ 2 ] * rho [ x , y −1]* ey [ 2 ] * uib ) / csqu
f [ 7 , x −1 ,y −1] = fc [ 5 , x −1 ,y −1] − (2*wk[ 5 ] * rho [ x −1 ,y −1]* ey [ 5 ] * uib ) / csqu
f [ 8 , x +1 ,y −1] = fc [ 6 , x +1 ,y −1] − (2*wk[ 6 ] * rho [ x +1 ,y −1]* ey [ 6 ] * uib ) / csqu

# BB for walls , change for T channel
# INLET SIDE & OUTLET SIDE
e l i f ( ( ( obst [ x , y ] == 1) and ( y == 0 ) ) or ( ( obst [ x , y ] == 8) and ( y == 0 ) ) ) :

f [ 5 , x +1 ,y+1] = fc [ 7 , x +1 ,y+1]
e l i f ( ( ( obst [ x , y ] == 1) and (0 < y < ly −1)) or ( ( obst [ x , y ] == 8) and (0 < y < ly − 1 ) ) ) :

f [ 1 , x +1 ,y ] = fc [ 3 , x +1 ,y ]
f [ 5 , x +1 ,y+1] = fc [ 7 , x +1 ,y+1]
f [ 8 , x +1 ,y −1] = fc [ 6 , x +1 ,y −1]

e l i f ( ( ( obst [ x , y ] == 1) and ( y == ly −1)) or ( ( obst [ x , y ] == 8) and ( y == ly − 1 ) ) ) :
f [ 8 , x +1 ,y −1] = fc [ 6 , x +1 ,y −1]

e l i f ( ( ( obst [ x , y ] == 2) and ( y == 0 ) ) or ( ( obst [ x , y ] == 7) and ( y == 0 ) ) ) :
f [ 6 , x −1 ,y+1] = fc [ 8 , x −1 ,y+1]

e l i f ( ( ( obst [ x , y ] == 2) and (0 < x < lx −1)) or ( ( obst [ x , y ] == 7) and (0 < y < ly − 1 ) ) ) :
f [ 3 , x −1 ,y ] = fc [ 1 , x −1 ,y ]
f [ 6 , x −1 ,y+1] = fc [ 8 , x −1 ,y+1]
f [ 7 , x −1 ,y −1] = fc [ 5 , x −1 ,y −1]

e l i f ( ( ( obst [ x , y ] == 2) and ( y == ly −1)) or ( ( obst [ x , y ] == 7) and ( y == ly − 1 ) ) ) :
f [ 7 , x −1 ,y −1] = fc [ 5 , x −1 ,y −1]

# Main Channel
e l i f ( ( obst [ x , y ] == 3) and ( x < lx − 1 ) ) :

f [ 2 , x , y+1] = fc [ 4 , x , y+1]
f [ 5 , x +1 ,y+1] = fc [ 7 , x +1 ,y+1]
f [ 6 , x −1 ,y+1] = fc [ 8 , x −1 ,y+1]

e l i f ( ( obst [ x , y ] == 4) and ( x < lx − 1 ) ) :
f [ 4 , x , y −1] = fc [ 2 , x , y −1]
f [ 7 , x −1 ,y −1] = fc [ 5 , x −1 ,y −1]
f [ 8 , x +1 ,y −1] = fc [ 6 , x +1 ,y −1]

# Corners of T−junction
# INLET
e l i f ( obst [ x , y ] == 5 ) :

f [ 2 , x , y+1] = fc [ 4 , x , y+1]
f [ 3 , x −1 ,y ] = fc [ 1 , x −1 ,y ]
f [ 5 , x +1 ,y+1] = fc [ 7 , x +1 ,y+1]
f [ 6 , x −1 ,y+1] = fc [ 8 , x −1 ,y+1]
f [ 7 , x −1 ,y −1] = fc [ 5 , x −1 ,y −1]

e l i f ( obst [ x , y ] == 6 ) :
f [ 3 , x −1 ,y ] = fc [ 1 , x −1 ,y ]
f [ 4 , x , y −1] = fc [ 2 , x , y −1]
f [ 6 , x −1 ,y+1] = fc [ 8 , x −1 ,y+1]
f [ 7 , x −1 ,y −1] = fc [ 5 , x −1 ,y −1]
f [ 8 , x +1 ,y −1] = fc [ 6 , x +1 ,y −1]

# OUTLET
e l i f ( obst [ x , y ] == 9 ) :

f [ 1 , x +1 ,y ] = fc [ 3 , x +1 ,y ]
f [ 2 , x , y+1] = fc [ 4 , x , y+1]
f [ 5 , x +1 ,y+1] = fc [ 7 , x +1 ,y+1]
f [ 6 , x −1 ,y+1] = fc [ 8 , x −1 ,y+1]
f [ 8 , x +1 ,y −1] = fc [ 6 , x +1 ,y −1]

e l i f ( obst [ x , y ] == 1 0 ) :
f [ 1 , x +1 ,y ] = fc [ 3 , x +1 ,y ]
f [ 4 , x , y −1] = fc [ 2 , x , y −1]
f [ 5 , x +1 ,y+1] = fc [ 7 , x +1 ,y+1]
f [ 7 , x −1 ,y −1] = fc [ 5 , x −1 ,y −1]
f [ 8 , x +1 ,y −1] = fc [ 6 , x +1 ,y −1]

#Outlets , Lou et a l 2011
e l i f ( obst [ x , y ] == 1 1 ) :

f [ 2 , x , y+1]= ( f [ 2 , x , y+1]+ f [ 2 , x , y +2]*np .mean( uy [ ( ly −cw−1): −1 , y + 2 ] ) ) / \
(1+np .mean( uy [ ( ly −cw−1): −1 , y + 2 ] ) )
f [ 5 , x , y+1]= ( f [ 5 , x , y+1]+ f [ 5 , x , y +2]*np .mean( uy [ ( ly −cw−1): −1 , y + 2 ] ) ) / \
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(1+np .mean( uy [ ( ly −cw−1): −1 , y + 2 ] ) )
f [ 6 , x , y+1]= ( f [ 6 , x , y+1]+ f [ 6 , x , y +2]*np .mean( uy [ ( ly −cw−1): −1 , y + 2 ] ) ) / \
(1+np .mean( uy [ ( ly −cw−1): −1 , y + 2 ] ) )

e l i f ( obst [ x , y ] == 1 2 ) :
f [ 4 , x , y−1]= ( f [ 4 , x , y−1]+ f [ 4 , x , y −2]*np .mean( uy [ ( ly −cw−1): −1 , y − 2 ] ) ) / \
(1+np .mean( uy [ ( ly −cw−1): −1 , y − 2 ] ) )
f [ 7 , x , y−1]= ( f [ 7 , x , y−1]+ f [ 7 , x , y −2]*np .mean( uy [ ( ly −cw−1): −1 , y − 2 ] ) ) / \
(1+np .mean( uy [ ( ly −cw−1): −1 , y − 2 ] ) )
f [ 8 , x , y−1]= ( f [ 8 , x , y−1]+ f [ 8 , x , y −2]*np .mean( uy [ ( ly −cw−1): −1 , y − 2 ] ) ) / \
(1+np .mean( uy [ ( ly −cw−1): −1 , y − 2 ] ) )

# #Corners of out let boundaries
f [ 6 , lx −1 ,1] = fc [ 8 , lx −1 ,1]
f [ 5 , lx −2−cw, 1 ] = fc [ 7 , lx −2−cw, 1 ]
f [ 7 , lx −1 , −2] = fc [ 5 , lx −1 , −2]
f [ 8 , lx −2−cw, −2] = fc [ 6 , lx −2−cw, −2]

return f

#%% Function for determining u , v , rho
@nb. n j i t ( p a r a l l e l =True )
def getuv ( obst , ux , uy , rhor , rhob , rho , rhon , fr , fb ) :

for i in nb . prange ( 0 , l x ) :
for j in nb . prange ( 0 , l y ) :

i f ( obst [ i , j ] == 0 ) :
rhor [ i , j ] = f r [ 0 , i , j ]+ f r [ 1 , i , j ]+ f r [ 2 , i , j ]+ f r [ 3 , i , j ]+ \

f r [ 4 , i , j ]+ f r [ 5 , i , j ]+ f r [ 6 , i , j ]+ f r [ 7 , i , j ]+ f r [ 8 , i , j ] ;
rhob [ i , j ] = fb [ 0 , i , j ]+ fb [ 1 , i , j ]+ fb [ 2 , i , j ]+ fb [ 3 , i , j ]+ \

fb [ 4 , i , j ]+ fb [ 5 , i , j ]+ fb [ 6 , i , j ] +fb [ 7 , i , j ]+ fb [ 8 , i , j ] ;
rho [ i , j ] = rhor [ i , j ] + rhob [ i , j ] ;

ux [ i , j ] = ( fb [ 1 , i , j ] − fb [ 3 , i , j ]+ fb [ 5 , i , j ] − fb [ 6 , i , j ] − fb [ 7 , i , j ]+ fb [ 8 , i , j ]
+ f r [ 1 , i , j ] − f r [ 3 , i , j ]+ f r [ 5 , i , j ] − f r [ 6 , i , j ] − f r [ 7 , i , j ] + f r [ 8 , i , j ] ) / rho [ i , j ] ;

uy [ i , j ] = ( fb [ 2 , i , j ] − fb [ 4 , i , j ]+ fb [ 5 , i , j ]+ fb [ 6 , i , j ] − fb [ 7 , i , j ]
−fb [ 8 , i , j ]+ f r [ 2 , i , j ] − f r [ 4 , i , j ]+ f r [ 5 , i , j ]+ f r [ 6 , i , j ] \
− f r [ 7 , i , j ] − f r [ 8 , i , j ] ) / rho [ i , j ]

#Phase f i e l d function which determines f r a c t i o n of each f luid , Liu et a l 2015
rhon [ i , j ]= ( rhor [ i , j ] −rhob [ i , j ] ) / ( rhor [ i , j ]+rhob [ i , j ] )

p=rho/3 #pressure

# I n l e t
rhon [ : , 0 ] = rhon [ : , 1 ]
rhon [ : , ly −1] = rhon [ : , ly −2]

for i in nb . prange ( 0 , l x ) :
for j in nb . prange ( 0 , l y ) :

i f ( obst [ i , j ] > 0 ) :
i e = i %(lx −1)+1
i f ( i ==lx − 1 ) :

i e = 0
iw=lx −1−( lx − i )%( l x )
jn= j %(ly −1)+1
i f ( j ==ly − 1 ) :

jn = 0
j s = ly −1−( ly − j )%( l y )

i f ( ( obst [ i , j ] == 1) or ( obst [ i , j ] == 8 ) ) :
#Central dif ference near boundary

dw1= ( rhon [ i +1 , jn ] −rhon [ i +1 , j s ] ) / 2
dw2=(rhon [ i +2 , jn ] −rhon [ i +2 , j s ] ) / 2
rhon [ i , j ]= rhon [ i +1 , j ]+Tw[ i , j ] *np . abs ( 1 . 5 *dw1−0.5*dw2)

i f ( ( obst [ i , j ] == 2) or ( obst [ i , j ] == 7 ) ) :
#Central dif ference near boundary

dw1= ( rhon [ i −1 , jn ] −rhon [ i −1 , j s ] ) / 2
dw2=(rhon [ i −2 , jn ] −rhon [ i −2 , j s ] ) / 2
rhon [ i , j ]= rhon [ i −1 , j ]+Tw[ i , j ] *np . abs ( 1 . 5 *dw1−0.5*dw2)

i f ( ( obst [ i , j ] == 3 ) ) :
dw1= ( rhon [ ie , j +1]−rhon [ iw , j +1])/2
dw2= ( rhon [ ie , j +2]−rhon [ iw , j +2])/2
rhon [ i , j ]= rhon [ i , j +1]+Tw[ i , j ] *np . abs ( 1 . 5 *dw1−0.5*dw2)

i f ( ( obst [ i , j ] == 4 ) ) :
dw1= ( rhon [ ie , j −1]−rhon [ iw , j −1])/2
dw2= ( rhon [ ie , j −2]−rhon [ iw , j −2])/2
rhon [ i , j ]= rhon [ i , j −1]+Tw[ i , j ] *np . abs ( 1 . 5 *dw1−0.5*dw2)

# Junction Corners − INLET
i f ( ( obst [ i , j ] == 5 ) ) :

dw1h= ( rhon [ i −1 , jn ] −rhon [ i −1 , j s ] ) / 2
dw2h= ( rhon [ i −2 , jn ] −rhon [ i −2 , j s ] ) / 2
rhonh= rhon [ i −1 , j ]+Tw[ i , j ] *np . abs ( 1 . 5 *dw1h−0.5*dw2h)

dw1v= ( rhon [ ie , j +1]−rhon [ iw , j +1])/2
dw2v= ( rhon [ ie , j +2]−rhon [ iw , j +2])/2
rhonv= rhon [ i , j +1]+Tw[ i , j ] *np . abs ( 1 . 5 * dw1v−0.5*dw2v)

rhon [ i , j ] = ( rhonh + rhonv )/2
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i f ( ( obst [ i , j ] == 6 ) ) :
dw1h = ( rhon [ i −1 , jn ] −rhon [ i −1 , j s ] ) / 2
dw2h = ( rhon [ i −2 , jn ] −rhon [ i −2 , j s ] ) / 2
rhonh = rhon [ i −1 , j ]+Tw[ i , j ] *np . abs ( 1 . 5 *dw1h−0.5*dw2h)

dw1v = ( rhon [ ie , j −1]−rhon [ iw , j −1])/2
dw2v = ( rhon [ ie , j −2]−rhon [ iw , j −2])/2
rhonv = rhon [ i , j −1]+Tw[ i , j ] *np . abs ( 1 . 5 * dw1v−0.5*dw2v)

rhon [ i , j ] = ( rhonh + rhonv )/2

# Junction Corners − OUTLET
i f ( ( obst [ i , j ] == 8 ) ) :

dw1h= ( rhon [ i +1 , jn ] −rhon [ i +1 , j s ] ) / 2
dw2h= ( rhon [ i +2 , jn ] −rhon [ i +2 , j s ] ) / 2
rhonh= rhon [ i +1 , j ]+Tw[ i , j ] *np . abs ( 1 . 5 *dw1h−0.5*dw2h)

dw1v= ( rhon [ ie , j +1]−rhon [ iw , j +1])/2
dw2v= ( rhon [ ie , j +2]−rhon [ iw , j +2])/2
rhonv= rhon [ i , j +1]+Tw[ i , j ] *np . abs ( 1 . 5 * dw1v−0.5*dw2v)

rhon [ i , j ] = ( rhonh + rhonv )/2

i f ( ( obst [ i , j ] == 9 ) ) :
dw1h = ( rhon [ i +1 , jn ] −rhon [ i +1 , j s ] ) / 2
dw2h = ( rhon [ i +2 , jn ] −rhon [ i +2 , j s ] ) / 2
rhonh = rhon [ i +1 , j ]+Tw[ i , j ] *np . abs ( 1 . 5 *dw1h−0.5*dw2h)

dw1v = ( rhon [ ie , j −1]−rhon [ iw , j −1])/2
dw2v = ( rhon [ ie , j −2]−rhon [ iw , j −2])/2
rhonv = rhon [ i , j −1]+Tw[ i , j ] *np . abs ( 1 . 5 * dw1v−0.5*dw2v)

rhon [ i , j ] = ( rhonh + rhonv )/2

# Outlets
i f ( obst [ i , j ]==11) :

rhon [ i , j ]=rhon [ i , j +1]
i f ( obst [ i , j ]==12) :

rhon [ i , j ]=rhon [ i , j −1]

# I n l e t Corners
rhon [ 0 , 0 ] = ( rhon [1 ,0]+ rhon [ 0 , 1 ] ) / 2
rhon [cw+1 ,0] = ( rhon [cw, 0 ] + rhon [cw+1 ,1])/2
rhon [ 0 , ly −1] = ( rhon [ 1 , ly −1]+rhon [ 0 , ly −2])/2
rhon [cw+1 , ly −1] = ( rhon [cw, ly −1]+rhon [cw+1 , ly −2])/2

# Outlet corners
rhon [ lx −cw−2 ,0] = ( rhon [ lx −cw−1 ,0]+rhon [ lx −cw−2 ,1])/2
rhon [ lx −1 ,0] = ( rhon [ lx −2 ,0]+rhon [ lx −1 ,1])/2
rhon [ lx −cw−2 , ly −1] = ( rhon [ lx −cw−1 , ly −1]+rhon [ lx −cw−2 , ly −2])/2
rhon [ lx −1 , ly −1] = ( rhon [ lx −2 , ly −1]+rhon [ lx −1 , ly −2])/2

return rhor , rhob , rho , ux , uy , p , rhon

#%% Moment equation for MRT
@nb. n j i t ( p a r a l l e l =True )
def meq( obst , f , lx , ly , rho , ux , uy , alpha ,M, s ) :

fmeq=np . zeros ( ( 9 , lx , l y ) )
fmo=np . zeros ( ( 9 , lx , l y ) )
Mi=np . l i n a l g . inv (M)
for i in nb . prange ( 0 , l x ) :

for j in nb . prange ( 0 , l y ) :
i f ( obst [ i , j ] == 0 ) :

fmeq[ 0 , i , j ]= rho [ i , j ]
fmeq[ 1 , i , j ]= rho [ i , j ] * ( − 3 . 6 * alpha −0.4+3*(ux [ i , j ]**2+ uy [ i , j ] * * 2 ) )
fmeq[ 2 , i , j ]= rho [ i , j ] * ( 5 . 4 * alpha −1.4 −3*(ux [ i , j ]**2+ uy [ i , j ] * * 2 ) )
fmeq[ 3 , i , j ]= rho [ i , j ] * ux [ i , j ]
fmeq[ 4 , i , j ]= rho [ i , j ] * ux [ i , j ] * ( − 1 . 8 * alpha −0.2)
fmeq[ 5 , i , j ]= rho [ i , j ] * uy [ i , j ]
fmeq[ 6 , i , j ]= rho [ i , j ] * uy [ i , j ] * ( − 1 . 8 * alpha −0.2)
fmeq[ 7 , i , j ]= rho [ i , j ] * ( ux [ i , j ]**2 −uy [ i , j ] * * 2 )
fmeq[ 8 , i , j ]= rho [ i , j ] * ux [ i , j ] * uy [ i , j ]
for k in nb . prange ( 0 , 9 ) :

mom=0
for l in nb . prange ( 0 , 9 ) :

mom = mom + M[ k , l ] * f [ l , i , j ]
fmo[ k , i , j ] = mom

return fmeq , fmo

#%% C o l l i s i o n Function − MRT model , parameters as per Ba et a l 2017
@nb. n j i t ( p a r a l l e l =True )
def c o l l i s i o n ( obst , ux , uy , rhor , rhob , rho , fr , fb , f f , fer , feb , wk, ex ,G, csqu , taur , taub , s ,M) :

#Parameters for relaxat ion parameter
del t =0.98;
alp= 2* taur * taub / ( taur+taub )
bet= 2*( taur −alp ) / del t ;
kap= −bet /(2* del t ) ;
eta= 2*( alp −taub ) / del t ;
kxi= eta /(2* del t ) ;
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tau=np . zeros ( ( lx , l y ) )
#Parameters for calculat ing pressure
csqr =3*(1 − alphar ) / 5 ; csqb= 3*(1 −alphab ) / 5 ;
[ x , y ]= np . where ( obst ==0)
Mi=np . l i n a l g . inv (M) # Inverse of moment matrix
Id=np . i d e n t i t y ( 9 )
# Calculate equilibrium moments
[ fmer , fmor]= meq( obst , f r , lx , ly , rhor , ux , uy , alphar ,M, s )
[ fmeb , fmob]= meq( obst , fb , lx , ly , rhob , ux , uy , alphab ,M, s )
for i in nb . prange ( 0 , l x ) :

for j in nb . prange ( 0 , l y ) :
i f (0<= obst [ i , j ] < 0 . 5 ) :

jn= j %(ly −1)+1
i e = i %(lx −1)+1
# i f ( i ==lx − 1 ) :
# i e =0
j s = ly −1−( ly − j )%( l y )
iw= lx −1−( lx − i )%( l x )
phi= ( rhor [ i , j ] −rhob [ i , j ] ) / ( rhor [ i , j ]+rhob [ i , j ] )
#Relaxation parameter as a function of position
#Relaxation time
i f ( phi> de lt ) :

tau [ i , j ]= taur
e l i f ( ( phi >0) & ( phi<= del t ) ) :

tau [ i , j ]= alp+bet * phi+kap* phi **2
e l i f ( ( phi <=0) & ( phi>=− del t ) ) :

tau [ i , j ]= alp+eta * phi+kxi * phi **2
e l i f ( phi<− del t ) :

tau [ i , j ]= taub
#Relaxation Matrix −> values from Liu et a l .
s [ 0 , 0 ] = 1 ; s [ 1 , 1 ] = 1 . 6 3 ; s [ 2 , 2 ] = 1 . 5 4 ; s [ 3 , 3 ] = 1 ; s [ 4 , 4 ] = 1 . 9 2 ; s [ 5 , 5 ] = 1 ; s [6 ,6]=1.92
s [7 ,7]=1/ tau [ i , j ] ; s [8 ,8]=1/ tau [ i , j ]
#Remove unwanted terms as per Ba et al , 2017 ( eq 18−20)
dqxr=1/csqu * ( 1 . 8 * alphar − 0 . 8 ) * (wk[ 1 ] * ex [ 1 ] * rhor [ ie , j ] * ux [ ie , j ]+wk[ 3 ] * ex [ 3 ] * rhor [ iw , j ] * ux [ iw , j ]+ \

wk[ 5 ] * ex [ 5 ] * rhor [ ie , jn ] * ux [ ie , jn ]+wk[ 6 ] * ex [ 6 ] * rhor [ iw , jn ] * ux [ iw , jn ]+wk[ 7 ] * ex [ 7 ] * rhor [ iw , j s ] * ux [ iw , j s ]+wk[ 8 ] * ex [ 8 ] * rhor [ ie , j s ] * ux [ ie , j s ] )
dqxb=1/csqu * ( 1 . 8 * alphab − 0 . 8 ) * (wk[ 1 ] * ex [ 1 ] * rhob [ ie , j ] * ux [ ie , j ]+wk[ 3 ] * ex [ 3 ] * rhob [ iw , j ] * ux [ iw , j ]+ \

wk[ 5 ] * ex [ 5 ] * rhob [ ie , jn ] * ux [ ie , jn ]+wk[ 6 ] * ex [ 6 ] * rhob [ iw , jn ] * ux [ iw , jn ]+wk[ 7 ] * ex [ 7 ] * rhob [ iw , j s ] * ux [ iw , j s ]+wk[ 8 ] * ex [ 8 ] * rhob [ ie , j s ] * ux [ ie , j s ] )
dqyr=1/csqu * ( 1 . 8 * alphar − 0 . 8 ) * (wk[ 2 ] * ey [ 2 ] * rhor [ i , jn ] * uy [ i , jn ]+wk[ 4 ] * ey [ 4 ] * rhor [ i , j s ] * uy [ i , j s ]+ \

wk[ 5 ] * ey [ 5 ] * rhor [ ie , jn ] * uy [ ie , jn ]+wk[ 6 ] * ey [ 6 ] * rhor [ iw , jn ] * uy [ iw , jn ]+wk[ 7 ] * ey [ 7 ] * rhor [ iw , j s ] * uy [ iw , j s ]+wk[ 8 ] * ey [ 8 ] * rhor [ ie , j s ] * uy [ ie , j s ] )
dqyb=1/csqu * ( 1 . 8 * alphab − 0 . 8 ) * (wk[ 2 ] * ey [ 2 ] * rhob [ i , jn ] * uy [ i , jn ]+wk[ 4 ] * ey [ 4 ] * rhob [ i , j s ] * uy [ i , j s ]+ \

wk[ 5 ] * ey [ 5 ] * rhob [ ie , jn ] * uy [ ie , jn ]+wk[ 6 ] * ey [ 6 ] * rhob [ iw , jn ] * uy [ iw , jn ]+wk[ 7 ] * ey [ 7 ] * rhob [ iw , j s ] * uy [ iw , j s ]+wk[ 8 ] * ey [ 8 ] * rhob [ ie , j s ] * uy [ ie , j s ] )
Cr=np . zeros ( ( 9 ) )
Cr [1]=3*(1 − s [ 1 , 1 ] / 2 ) * ( dqxr+dqyr )
Cr [7]=(1 − s [ 7 , 7 ] / 2 ) * ( dqxr−dqyr )
Cb=np . zeros ( ( 9 ) )
Cb[1]=3*(1 − s [ 1 , 1 ] / 2 ) * ( dqxb+dqyb)
Cb[7]=(1 − s [ 7 , 7 ] / 2 ) * ( dqxb−dqyb)
D=np . dot (Mi, s )
# C o l l i s i o n step in moment space
for n in nb . prange ( 0 , 9 ) :

omr=0
omb=0
for m in nb . prange ( 0 , 9 ) :

omr=omr+ Mi[n ,m] * s [m,m] * ( fmor [m, i , j ] −fmer [m, i , j ]) −Mi[n ,m] * ( Id [m,m] − s [m,m] / 2 ) * Cr [m]
omb=omb + Mi[n ,m] * s [m,m] * ( fmob[m, i , j ] −fmeb[m, i , j ]) −Mi[n ,m] * ( Id [m,m] − s [m,m] / 2 ) *Cb[m]

f r [n , i , j ]= f r [n , i , j ] −omr
fb [n , i , j ]= fb [n , i , j ] −omb
# i f ( i <509):
f f [n , i , j ]= f r [n , i , j ]+ fb [n , i , j ]

return fr , fb , f f , tau

#%% Perturbation and Redistribution Function
@nb. n j i t ( p a r a l l e l =True )
def r e d i s t r i b u t e ( obst , csqu , ux , uy , rhor , rhob , rho , rhon , sigma , fr , fb , f f , ex , ey , lx , ly , wk, rsq , beta , tau , s ,M) :

Mi=np . l i n a l g . inv (M)
[ x , y ]= np . where ( ( obst ==0))
fc = np . zeros ( ( lx , l y ) )
#Unit normal and d e r i v a t i v e
dx= np . zeros ( ( lx , l y ) )
dy= np . zeros ( ( lx , l y ) )
nx= np . zeros ( ( lx , l y ) )
ny= np . zeros ( ( lx , l y ) )
dxnx=np . zeros ( ( lx , l y ) )
dynx=np . zeros ( ( lx , l y ) )
dxny=np . zeros ( ( lx , l y ) )
dyny=np . zeros ( ( lx , l y ) )
coslam= np . zeros ( ( 9 , lx , l y ) ) #angle between color gradient and direction
un=np . zeros ( ( 9 , lx , l y ) )
Fn=np . zeros ( ( 9 , lx , l y ) )
Fu=np . zeros ( ( lx , l y ) )
upx=np . zeros ( ( lx , l y ) )
upy=np . zeros ( ( lx , l y ) )
Fix=np . zeros ( ( lx , l y ) )
Fiy=np . zeros ( ( lx , l y ) )
Id=np . i d e n t i t y ( 9 )
#Gradient of phase f i e l d function , some special operations have been done for a few nodes , probably not needed for a T−channel .
for i in nb . prange ( 0 , l x ) :

for j in nb . prange ( 0 , l y ) :
i f ( obst [ i , j ] == 0 ) :

jn= j %(ly −1)+1
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i e = i %(lx −1)+1
j s = ly −1−( ly − j )%( l y )
iw= lx −1−( lx − i )%( l x )

# Gradient of phase f i e l d function
dx [ i , j ] = 1/csqu * (wk[ 1 ] * ex [ 1 ] * rhon [ ie , j ]+wk[ 3 ] * ex [ 3 ] * rhon [ iw , j ]+ wk[ 5 ] * ex [ 5 ] * rhon [ ie , jn ]+ \

wk[ 6 ] * ex [ 6 ] * rhon [ iw , jn ]+wk[ 7 ] * ex [ 7 ] * rhon [ iw , j s ]+wk[ 8 ] * ex [ 8 ] * rhon [ ie , j s ] )
dy [ i , j ] = 1/csqu * (wk[ 2 ] * ey [ 2 ] * rhon [ i , jn ]+wk[ 4 ] * ey [ 4 ] * rhon [ i , j s ]+ wk[ 5 ] * ey [ 5 ] * rhon [ ie , jn ]+ \

wk[ 6 ] * ey [ 6 ] * rhon [ iw , jn ]+wk[ 7 ] * ey [ 7 ] * rhon [ iw , j s ]+wk[ 8 ] * ey [ 8 ] * rhon [ ie , j s ] )

fc [ i , j ]= np . sqrt ( dx [ i , j ]**2+ dy [ i , j ] * * 2 )
i f ( fc [ i , j ] >10** −8):

nx [ i , j ]= −dx [ i , j ] / fc [ i , j ]
ny [ i , j ]= −dy [ i , j ] / fc [ i , j ]

for i in nb . prange ( 0 , l x ) :
for j in nb . prange ( 0 , l y ) :

i f ( obst [ i , j ] == 0 ) :
jn= j %(ly −1)+1
i e = i %(lx −1)+1
# i f ( i ==lx − 1 ) :
# i e =0
j s = ly −1−( ly − j )%( l y )
iw= lx −1−( lx − i )%( l x )
#Second d e r i v a t i v e for curvature , CSF for i n t e r f a c i a l tension
dxnx [ i , j ] = 1/csqu * (wk[ 1 ] * ex [ 1 ] * nx [ ie , j ]+wk[ 3 ] * ex [ 3 ] * nx [ iw , j ]+ wk[ 5 ] * ex [ 5 ] * nx [ ie , jn ]+ \
wk[ 6 ] * ex [ 6 ] * nx [ iw , jn ]+wk[ 7 ] * ex [ 7 ] * nx [ iw , j s ]+wk[ 8 ] * ex [ 8 ] * nx [ ie , j s ] )
dyny [ i , j ] = 1/csqu * (wk[ 2 ] * ey [ 2 ] * ny [ i , jn ]+wk[ 4 ] * ey [ 4 ] * ny [ i , j s ]+ \
wk[ 5 ] * ey [ 5 ] * ny [ ie , jn ]+wk[ 6 ] * ey [ 6 ] * ny [ iw , jn ]+wk[ 7 ] * ey [ 7 ] * ny [ iw , j s ]+wk[ 8 ] * ey [ 8 ] * ny [ ie , j s ] )
dynx [ i , j ] = 1/csqu * (wk[ 2 ] * ey [ 2 ] * nx [ i , jn ]+wk[ 4 ] * ey [ 4 ] * nx [ i , j s ]+ \
wk[ 5 ] * ey [ 5 ] * nx [ ie , jn ]+wk[ 6 ] * ey [ 6 ] * nx [ iw , jn ]+wk[ 7 ] * ey [ 7 ] * nx [ iw , j s ]+wk[ 8 ] * ey [ 8 ] * nx [ ie , j s ] )
dxny [ i , j ] = 1/csqu * (wk[ 1 ] * ex [ 1 ] * ny [ ie , j ]+wk[ 3 ] * ex [ 3 ] * ny [ iw , j ]+ wk[ 5 ] * ex [ 5 ] * ny [ ie , jn ]+ \
wk[ 6 ] * ex [ 6 ] * ny [ iw , jn ]+wk[ 7 ] * ex [ 7 ] * ny [ iw , j s ]+wk[ 8 ] * ex [ 8 ] * ny [ ie , j s ] )
#Curvature
K= nx [ i , j ] * ny [ i , j ] * ( dynx [ i , j ]+dxny [ i , j ]) −nx [ i , j ] * * 2 * dyny [ i , j ] −ny [ i , j ] * * 2 * dxnx [ i , j ]
Fix [ i , j ]= −0.5*sigma*K*dx [ i , j ] # I n t e r f a c i a l force , CSF model , Liu et al , 2015
Fiy [ i , j ]= −0.5*sigma*K*dy [ i , j ]
# Physical v e l o c i t y modified due to i n t e r f a c i a l force , Liu et a l 2015
upx [ i , j ]= ux [ i , j ]+ Fix [ i , j ]/2/ rho [ i , j ]
upy [ i , j ]= uy [ i , j ]+ Fiy [ i , j ]/2/ rho [ i , j ]
Fu[ i , j ]= Fix [ i , j ] * upx [ i , j ]+ Fiy [ i , j ] * upy [ i , j ]
un[ 0 : 9 , i , j ]= ex [ 0 : 9 ] * upx [ i , j ]+ ey [ 0 : 9 ] * upy [ i , j ]
Fn [ 0 : 9 , i , j ]= ex [ 0 : 9 ] * Fix [ i , j ]+ ey [ 0 : 9 ] * Fiy [ i , j ]
F=np . zeros ( ( 9 ) )
s [ 0 , 0 ] = 1 ; s [ 1 , 1 ] = 1 . 2 5 ; s [ 2 , 2 ] = 1 . 1 4 ; s [ 3 , 3 ] = 1 ; s [ 4 , 4 ] = 1 . 6 ; s [ 5 , 5 ] = 1 ; s [ 6 , 6 ] = 1 . 6
s [7 ,7]=1/ tau [ i , j ] ; s [8 ,8]=1/ tau [ i , j ]
#Perturbation operator , Ba et al ,2017
F= wk[ 0 : 9 ] * ( 1 − 0 . 5 / tau [ i , j ] ) * ( ( Fn [ 0 : 9 , i , j ] −Fu[ i , j ] ) / csqu+ \

( Fix [ i , j ] * ex [ 0 : 9 ] * un[ 0 : 9 , i , j ]+ Fiy [ i , j ] * ey [ 0 : 9 ] * un[ 0 : 9 , i , j ] ) / csqu * * 2 )
P=np . dot (np . dot (Mi , ( Id −0.5* s ) ) ,M)
F=np . dot (P , F) #Force in moment space , Liu et a l 2015 eq . 4

# Redistribution
for n in nb . prange ( 0 , 9 ) :

#Cases for denominator=0
i f ( fc [ i , j ] <10** −8 and fc [ i , j ] >=0):

f r [n , i , j ]= f f [n , i , j ] * rhor [ i , j ] / rho [ i , j ]
fb [n , i , j ]= f f [n , i , j ] * rhob [ i , j ] / rho [ i , j ]

e lse :
i f (n==0):

f f [n , i , j ]= f f [n , i , j ]+F [n]
f r [n , i , j ]= rhor [ i , j ] * f f [n , i , j ] / rho [ i , j ] ;
fb [n , i , j ]= rhob [ i , j ] * f f [n , i , j ] / rho [ i , j ] ;

e lse :
# Liu et a l eq 20
coslam [n , i , j ]= ( ex [n ] * dx [ i , j ]+ ey [n ] * dy [ i , j ] ) / ( rsq [n] * fc [ i , j ] ) ;
f f [n , i , j ]= f f [n , i , j ]+F [n]
tem= rhor [ i , j ] * rhob [ i , j ] / ( rho [ i , j ] ) ;
# Redistributed f ’ s ;
f r [n , i , j ]= rhor [ i , j ] * f f [n , i , j ] / rho [ i , j ]+ beta *tem*wk[n] * coslam [n , i , j ] ;
fb [n , i , j ]= rhob [ i , j ] * f f [n , i , j ] / rho [ i , j ] − beta *tem*wk[n] * coslam [n , i , j ] ;

return fr , fb

#%% Output function
@nb. j i t #( p a r a l l e l =True )
def r e s u l t s ( lx , ly , obst , rhor , rhob , rho , rhon , ux , uy , p ) :

x=np . array ( [ range ( 0 , l x ) ] )
y=np . array ( [ range ( 0 , l y ) ] )
mapnaam = ’ T_channel_Run_ { } ’ . format ( runno )
print ( ’ I t e r ’ , t )
d i c t ={ ’ x ’ : x , ’ y ’ : y , ’ rhor ’ : rhor , ’ rhob ’ : rhob , ’ rho ’ : rho , ’ rhon ’ : rhon , ’ ux ’ : ux , ’ uy ’ : uy , ’ p ’ : p , ’ obst ’ : obst }
fname = ’ . / { } / I t e r a { } ’ . format (mapnaam, t )
sa=sio . savemat (fname , d i c t )
return sa

#%% Make directory for f i l e s to go to .
def makedir ( runno ) :

t r y :
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os . mkdir ( ’ T_channel_Run_ { } ’ . format ( runno ) )
except OSError :

print ( ’ I t e r a t i o n number already in use , do you wish to overwrite run { } ’ . format ( runno ) )
answer = input ( )
i f answer == ’ yes ’ :

return
else :

e x i t ( )

#%% I t e r a t i o n s
f c r =np . zeros ( ( 9 , lx , l y ) ) #PDF a f t e r r e d i s t r i b u t i o n
fcb=np . zeros ( ( 9 , lx , l y ) )
rhon=np . zeros ( ( lx , l y ) )
ux=np . zeros ( ( lx , l y ) )
uy=np . zeros ( ( lx , l y ) )
[ fer , feb ]= feq ( rhor , rhob , ux , uy , alphar , alphab , wk, csqu , ex , ey , lx , ly , obst )
# I n i t i a l probabi l i ty d i s t r i b u t i o n of p a r t i c l e s
f r = f e r ; fb=feb ;
f f = f r +fb ; # Overall prob d i s t .
f c r =np . copy ( f r )
fcb=np . copy ( fb )

# Create the directory for the o u t p u t f i l e s .
makedir ( runno )

for t in range ( 0 ,tm+ 1 ) :
#Streaming
f r = stream ( fr , lx , ly , obst )
fb= stream ( fb , lx , ly , obst )
f f = f r +fb
f r = bounceback1 ( fr , f f , obst , fer , fcr , uib , uir , ex , ey , ux , uy , wk, rhor , csqu , taur )
fb= bounceback1 ( fb , f f , obst , feb , fcb , uib , uir , ex , ey , ux , uy , wk, rhob , csqu , taub )
#Determine u , v , rho
[ rhor , rhob , rho , ux , uy , p , rhon]= getuv ( obst , ux , uy , rhor , rhob , rho , rhon , fr , fb )
[ fer , feb ]= feq ( rhor , rhob , ux , uy , alphar , alphab , wk, csqu , ex , ey , lx , ly , obst )
s=np . zeros ( ( 9 , 9 ) )
[ f r , fb , f f , tau ]= c o l l i s i o n ( obst , ux , uy , rhor , rhob , rho , fr , fb , f f , fer , feb , wk, ex ,G, csqu , taur , taub , s ,M)
# Redistribution
[ fr , fb ]= r e d i s t r i b u t e ( obst , csqu , ux , uy , rhor , rhob , rho , rhon , sigma , fr , fb , f f , ex , ey , lx , ly , wk, rsq , beta , tau , s ,M)
f c r =np . copy ( f r )
fcb=np . copy ( fb )

i f ( t %(5*nw) = = 0 ) :
p l t . contourf ( rhor ,cmap= ’RdBu’ )
p l t . colorbar ( )
p l t . x label ( t )
p l t . show ( )

#Store data a f t e r nw i t e r a t i o n s
i f ( t %(5*nw) = = 0 ) :

r e s u l t s ( lx , ly , obst , rhor , rhob , rho , rhon , ux , uy , p)
intermediate = time . time ( )
print ( ’ Running time ’ , intermediate − s t a r t )

end= time . time ( )
print ( ’ Running Time : ’ , end− s t a r t )

#End
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